JPS58162804A - Optical measuring device - Google Patents

Optical measuring device

Info

Publication number
JPS58162804A
JPS58162804A JP4607582A JP4607582A JPS58162804A JP S58162804 A JPS58162804 A JP S58162804A JP 4607582 A JP4607582 A JP 4607582A JP 4607582 A JP4607582 A JP 4607582A JP S58162804 A JPS58162804 A JP S58162804A
Authority
JP
Japan
Prior art keywords
measured
measuring device
optical measuring
time
reference body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4607582A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kuwabara
義治 桑原
Hiroyoshi Hamada
浜田 啓好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP4607582A priority Critical patent/JPS58162804A/en
Publication of JPS58162804A publication Critical patent/JPS58162804A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform correction for change in temp. automatically in a length measuring device by laser of a high speed scanning type by irradiating and scanning a light beam to an object to be measured and determining sizes from the time when the beam is interrupted. CONSTITUTION:The beam from a light source 10 is made into parallel rays by a rotary mirror 16 and a collimator lens 18, and the parallel rays are irradiated to an object 24 to be measured. The light beams are detected through a condenser lens 22 by a detector 26, and the interruption time is determined by the pulses of a clock pulse generator 34. The clock pulses are used for controlling the rotary mirror as well and assure accuracy. A standard object 50 is inserted in the beam route, and when the specified time elapses, the beam scanning is accomplished with the object 50, and the value for the purpose of correcting the output is obtained. The output correction is accomplished automatically at every specified time.

Description

【発明の詳細な説明】 本発明に、光学式測定装置に係り、特に、レーザ光線を
利用して被測定物の寸法を測定する高速度走i型し−ザ
測長機に用いるのに好適な、平行走査光線ビーム象圭声
潰と、被測定物通過後の平行走査光線ビームを受光し、
その明暗を感知して電気信号とする受光素子と、前記平
行走査光線ビーム発生装置と受光素子との間に配置した
被測定物にエリ、前記平行走査光線ビームが遮ぎられて
生じる暗部又は明部のうちから、 II定対象となる暗
部又は明Sを選択するためのセグメント選択回路とを有
し、前記被測定物により前記平行走査光線ビームが遮ぎ
られて生じる暗部又は明部の時間の長さから被測定物の
寸法を測定するようにした光学式測定装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical measuring device, and is particularly suitable for use in a high-speed traveling I-type length measuring machine that measures the dimensions of a workpiece using a laser beam. Receives the parallel scanning light beam and the parallel scanning light beam after passing through the object to be measured,
A light-receiving element that senses the brightness and darkness and generates an electric signal, and an object to be measured placed between the parallel-scanning light beam generator and the light-receiving element. A segment selection circuit for selecting a dark area or a bright area S to be determined from among the parts II, and a segment selection circuit for selecting a dark area or a bright area S to be determined, and a segment selection circuit for selecting a dark area or a bright area S to be determined. The present invention relates to an improvement in an optical measuring device that measures the dimensions of an object based on its length.

従来から、回転走査光線ビーム(レーザビーム)換し、
該コリメータレンズと集光レンズの間に被測定4Ii!
yヲ置き、この被測定物によって#配子行走査光線ビー
ムが迩ぎられで生じる暗部又は明部の時間の長さから被
測定物の寸法を測定する高速度走査型レーザ測長機が知
られている。
Traditionally, rotating scanning light beams (laser beams) have been used.
There is 4Ii to be measured between the collimator lens and the condensing lens!
A high-speed scanning laser length measuring machine is known, which measures the dimensions of the object to be measured from the length of time in the dark or bright area that is generated when the #-row scanning light beam passes through the object. ing.

これは、例えば第1@に示す如(、レーザ光源10から
レーザビーム12を固定ミラー14に向けて発振し、こ
の固定ミラー14により反射されたレーザビーム12t
−回転ミラー16によって走査ビーム17に変換し、こ
の走査ビーム17をコリメータレンズ18によって平行
走査光線ビーム20に変換し、この平行走査光線ビーム
20によりコリメータレンズ18と集光レンズ22の間
に配置した被測定物24を高速走査し、その時被測定物
24によって生じるalli部又は明部の時間の長さか
ら、被#1定物24の走査方向寸法を測定するものであ
る。即ち、平行走査光線ビーム20の明暗ニ、集光レン
ズ22の焦点位置にある受光素子26の出力電圧の変化
となって検出され、該受光素子20からの信号は、プリ
アンプ28に入力され、ここで増幅された後、セグメン
ト選択回路30に送られる。このセグメント選択回路3
0は、被測定@24により、前記平行走査光線ビーム2
0が迩ぎられて生じる暗部又は明部のうちから、測定対
象となる暗部又は明部(以下測定セグメントと称する)
を選択するために、例えば押釦スイッチからなる手動選
択器31の設宇出力に応じて受光素子26の出力を時分
割して、被測定物24の測定セグメントが走査されてい
る時間tの間だけゲート回路32t−開く次めの電圧v
を発生して。
For example, as shown in the first @ (, a laser beam 12 is oscillated from a laser light source 10 toward a fixed mirror 14, and a laser beam 12t is reflected by this fixed mirror 14.
- converted by a rotating mirror 16 into a scanning beam 17 which is converted by a collimating lens 18 into a parallel scanning beam 20 arranged between the collimating lens 18 and the condensing lens 22; The object to be measured 24 is scanned at high speed, and the dimension of the #1 object 24 in the scanning direction is measured from the length of the alli area or bright area generated by the object 24 at that time. That is, the brightness and darkness of the parallel scanning light beam 20 are detected as changes in the output voltage of the light receiving element 26 located at the focal position of the condensing lens 22, and the signal from the light receiving element 20 is input to the preamplifier 28, where it is output. After being amplified, the signal is sent to the segment selection circuit 30. This segment selection circuit 3
0 is the parallel scanning light beam 2 due to the measured @24
Among the dark or bright areas that occur when 0 passes, the dark or bright area that is the measurement target (hereinafter referred to as measurement segment)
In order to select, for example, the output of the light receiving element 26 is time-divided in accordance with the setting output of the manual selector 31 consisting of a push button switch, and the output of the light receiving element 26 is time-divided according to the setting output of the manual selector 31 consisting of, for example, a push button switch, so that the output of the light receiving element 26 is divided only during the time t when the measurement segment of the object to be measured 24 is being scanned. Gate circuit 32t - next voltage v to open
occur.

ゲート回路32に出力するようにされている。このゲー
ト回路32には、クロックパルス発振器34からクロッ
クパルスCPが入力されているので、ゲート回路32は
、被測定物24の測定セグメントの走査方向寸法に対応
した時間tに対応するクロックパルスPt計数回路36
に入力する。
The signal is output to a gate circuit 32. Since the clock pulse CP is inputted to the gate circuit 32 from the clock pulse oscillator 34, the gate circuit 32 counts the clock pulse Pt corresponding to the time t corresponding to the scanning direction dimension of the measurement segment of the object to be measured 24. circuit 36
Enter.

計数回路36は、このクロックパルスPi−li数シて
、デジタル表示器38に計数信号を出力し、デジタル表
示器38は被測定物24の測定セグメントの走査方向寸
法をデジタル表示することになる。
The counting circuit 36 outputs a counting signal to the digital display 38 in response to the number of clock pulses Pi-li, and the digital display 38 digitally displays the dimension of the measurement segment of the object 24 in the scanning direction.

一方、前記回転ミラー16は、前記クロックパルス発振
器34出力と同期して正弦波を発生する同期正弦波発振
器40及びパワーアンプ42の出力により同期駆動され
ている同期モータ44によp、前記クロックパルス発振
器34出力のクロックパルスCPと同期して回転され、
測定精度を維持するようにされている。
On the other hand, the rotating mirror 16 is driven by a synchronous motor 44 which is synchronously driven by the output of a power amplifier 42 and a synchronous sine wave oscillator 40 that generates a sine wave in synchronization with the output of the clock pulse oscillator 34. Rotated in synchronization with the clock pulse CP of the oscillator 34 output,
Measurement accuracy is maintained.

このような高速度走査型レーザ測長機は、移動する物体
、高温物体の長さ、厚み等を非接触で高精度に測定でき
るので広く利用されつつある。しかしながら、レーザ測
長機の構成部材や被測定物の温度変化による測定値の変
化を無視することは、当然できず、従って従来は、同一
種類の被測定物を繰り返し多数測定する場合には、適宜
時間毎に、基準寸法に対する確認v4竪を行う必要があ
り、調整作業が面倒なものとなっていた。
Such high-speed scanning laser length measuring machines are becoming widely used because they can measure the length, thickness, etc. of moving objects and high-temperature objects with high precision in a non-contact manner. However, it is naturally impossible to ignore changes in measured values due to changes in the temperature of the components of the laser length measuring machine or the object to be measured. It is necessary to check the reference dimensions v4 at appropriate intervals, making the adjustment work troublesome.

本発明は、前記従来の欠点を解消するべ(なされたもつ
で、測友中に自動的に補正が行われ、従って、正確な寸
法測定値を極めて容易に得ることができる光学式測定装
置1ヲ提供することを目的とする。
The present invention aims to solve the above-mentioned drawbacks of the conventional art, and provides an optical measuring device in which correction is automatically performed during measurement, and therefore accurate dimensional measurements can be obtained very easily. The purpose is to provide.

本発明は、平行走査光線ビーム発生装量と、被測定物通
過後の平行走査丸線ビームを受光し、その明暗を感知し
て電気信号とする受光素子と、前記平行走査光線ビーム
発生装置と受光素子との間に配置した被測定物により、
前記平行走査光線ビームが鐘ぎられて生じる暗部又は明
部のうちから。
The present invention includes a parallel scanning light beam generator, a light receiving element that receives the parallel scanning round beam after passing through an object to be measured, detects its brightness and generates an electric signal, and the parallel scanning light beam generator. Due to the object to be measured placed between the light receiving element,
From a dark area or a bright area generated by the parallel scanning light beam.

測定対象となる暗部又は明部を選択するためのセグメン
ト選択回路とを有し、前記被測定物により前記平行走査
光線ビームが迩ぎられて生じる暗部又は明部の時間の長
さから被測定物の寸法を測定するようにした光学式測定
装置において、前記平行走査光線ビームの走置領域内に
基準体を配置すると共に、所定条件成立毎に!!!r記
セグメント選択回路を自動的に切換えて該基準体の寸法
を測足し、測定結果に応じて前記被測定物の寸法測定値
を補正するようにして、前記目的を達成したものである
a segment selection circuit for selecting a dark area or a bright area to be measured, and a segment selection circuit for selecting a dark area or a bright area to be measured; In the optical measuring device, a reference body is placed within the scanning area of the parallel scanning light beam, and each time a predetermined condition is satisfied. ! ! The above object is achieved by automatically switching the r segment selection circuit to measure the dimensions of the reference object, and correcting the measured dimensions of the object in accordance with the measurement results.

又、前記基準体を、走査領域内の被測定物が配置されな
い場所に、常時配置するようにしたものである。
Further, the reference body is always placed at a location within the scanning area where the object to be measured is not placed.

或いは、前記基準体を、前記所定条件成立毎に。Alternatively, the reference body is set every time the predetermined condition is satisfied.

走査領域内の被測定物が配置される場所に、被測定物の
代りに導入配置するようにしたものである。
The sensor is introduced and placed in place of the object to be measured at a location within the scanning area where the object to be measured is placed.

更に、前記基準体の材質を、前記被測定物の材質と同一
としたものである。
Furthermore, the reference body is made of the same material as the object to be measured.

又、前記所定条件を、一定時間経過毎に成立するものと
したものである。
Further, the predetermined condition is established every time a certain period of time elapses.

或いは、前記所定条件を、装置本体温度又は周囲温度が
一定値変化する毎に成立するものとしたものである。
Alternatively, the predetermined condition is established each time the temperature of the main body of the apparatus or the ambient temperature changes by a certain value.

以下図面を参照して、本発明に係る光学式測定装置の実
施例を詳細に説明する。
Embodiments of the optical measuring device according to the present invention will be described in detail below with reference to the drawings.

本実施例は、第2図に示す如(、前記従来例と同様の、
レーザ光源10.固定ミラー14、回転ミラー16.コ
リメータレンズ18.集光レンズ22、!光素子26、
プリアンプ2B、セグメント選択回路301手動選択器
31、ゲート回路32、クロックパルス発振器34、計
数回路36、デジタル表示器38.同期正弦波発振器4
o、パワーアンプ42及び同期モータ44を有する高速
度走査型レーザ測長機において、平行走査光線ビーム2
0の足介領域内の、被測定物24が配置されない場所に
、前記被測定物24の材質と同一材質からなる基準体5
05r常時配電すると共に、一定時間経過毎に自動選択
器52により前記セグメント選択回路30全自動的に切
替えて該基準体500寸法を測定し、更に、*記計数回
路36とデジタル表示器38の間に配置した補正回路5
4により、前記被測定物24の寸法測定値を補正するよ
うにしたものである。他の点については前記従来例と同
様であるので、説明は省略する。
The present embodiment is as shown in FIG.
Laser light source 10. Fixed mirror 14, rotating mirror 16. Collimator lens 18. Condensing lens 22! optical element 26,
Preamplifier 2B, segment selection circuit 301 manual selector 31, gate circuit 32, clock pulse oscillator 34, counting circuit 36, digital display 38. Synchronous sine wave oscillator 4
o. In a high-speed scanning laser length measuring machine having a power amplifier 42 and a synchronous motor 44, a parallel scanning light beam 2
A reference body 5 made of the same material as the object to be measured 24 is placed in the leg area of No. 0 at a place where the object to be measured 24 is not placed.
05r While constantly distributing power, the automatic selector 52 automatically switches over the segment selection circuit 30 at regular intervals to measure the dimensions of the reference body 500, and furthermore, between the counting circuit 36 and the digital display 38 Correction circuit 5 placed in
4, the dimension measurement value of the object to be measured 24 is corrected. The other points are the same as those of the conventional example, so the explanation will be omitted.

以下作用を説明する。The action will be explained below.

本実施例における測定は、第3図に示すような。The measurements in this example are as shown in FIG.

メインプログラムに従って行われる。即ち、まずステッ
プ101で、レーザ測長様の装置を校正する。次いでス
テップ102で、基準体50を平行走査光線ビーム20
の走査領域内の、被測定物24が配置されない場所にセ
ットする。次いでステップ103に進み、セグメント選
択回路30により基準体50の寸法を測定し、基準寸法
として記憶する。更にステップ104に進み、平行走査
光線ビーム20の走査領域内に被測定物24をセットす
る。次いでステップ105に進み、手動選択器31で被
測定物24の測定対象となる暗部又は明部を選択し、被
測定物の寸法t−測測定ると共に、所定条件成立毎に測
定した基準体50の寸法測定結果に応じて、前記被測定
物24の寸法測定値を自動補正して、このプログラムを
終了する。
It is done according to the main program. That is, first, in step 101, a device such as a laser length measurement device is calibrated. Then, in step 102, the reference body 50 is exposed to the parallel scanning light beam 20.
The object to be measured 24 is set at a location within the scanning area where the object to be measured 24 is not placed. Next, the process proceeds to step 103, where the segment selection circuit 30 measures the dimensions of the reference body 50 and stores them as reference dimensions. The process further proceeds to step 104, where the object to be measured 24 is set within the scanning area of the parallel scanning light beam 20. Next, the process proceeds to step 105, where the manual selector 31 selects a dark area or a bright area of the object 24 to be measured, and the dimension t-measurement of the object is performed. The dimensional measurement value of the object to be measured 24 is automatically corrected according to the dimensional measurement result of , and this program is ended.

前記メインプログラムのステップ105における自動補
正は、詳細には、第4図に示すような自動補正プログラ
ムに従って実行される。則ち、まずステップ110で、
手動選択器31で設定され九測定セグメントに応じて、
被測定物24の測定対象と る暗部又は明部の長さから
、被測定物の測定対象の寸法を測定する。次いで、ステ
ップ111に進み、前回の基準体寸法測定から所定時間
経過したか否か全判定する。判定結果が正である場合に
は、スナップ112に進み、前記自動選択器52により
、手動選択器31に優先してセグメント選択回路30t
−自動的に切替える。次いでステップ113で、基準体
50の寸法を測定する。
The automatic correction in step 105 of the main program is executed in detail according to an automatic correction program as shown in FIG. That is, first in step 110,
According to the nine measurement segments set by the manual selector 31,
The dimensions of the object to be measured are measured from the length of the dark or bright portion of the object 24 to be measured. Next, the process proceeds to step 111, where it is determined whether a predetermined period of time has elapsed since the previous measurement of the dimensions of the reference body. If the determination result is positive, the process proceeds to snap 112, where the automatic selector 52 selects the segment selection circuit 30t in priority over the manual selector 31.
- Automatically switch. Next, in step 113, the dimensions of the reference body 50 are measured.

更にステップ114に進み、ステップ1−13で測定さ
れた基準体50の寸法が、メインプログラムのステップ
103で記憶された基準寸法と一致しているか否かを判
定する。判定結果が否である場合には、温度変化が生じ
たと判断して、ステップ115に進み、基準寸法と今回
の基準体500寸法測定値との偏差に応じて、温度変化
量を求め、これから、該温度変化量を補正するのに必要
な補正値を算出する。次いでステップ116に進み。
The process further advances to step 114, where it is determined whether the dimensions of the reference body 50 measured in step 1-13 match the reference dimensions stored in step 103 of the main program. If the determination result is negative, it is determined that a temperature change has occurred, and the process proceeds to step 115, where the amount of temperature change is determined according to the deviation between the reference dimension and the current dimension measurement value of the reference body 500, and from this, A correction value necessary to correct the amount of temperature change is calculated. The process then proceeds to step 116.

前出ステップ110で測定された被測定物の寸法測定値
に、前出ステップ115で算出された補正値を加算(減
算)することによって、以後の被測定物の寸法測定値を
補正する。ステップ116M了後、或いは、前出ステッ
プ111における判定結果が否であるか、又は、前出ス
テップ114における判定結果が正である場合には、前
出ステップ110に戻る。
By adding (subtracting) the correction value calculated in step 115 to the dimensional measurement value of the object measured in step 110, the subsequent dimensional measurement value of the object to be measured is corrected. After step 116M is completed, or if the determination result in step 111 is negative, or if the determination result in step 114 is positive, the process returns to step 110.

本実施例における。走査領域内の被測定物24及び基準
体50の位置と、前記プリアンプ28出力1手動選択器
31出力、該手動選択器31出力に対応するゲート回路
32出力、自動選択器52出力、該自動選択器52出力
に対応するゲート回路52出力の関係の一例を第5図に
示す。
In this example. The positions of the object to be measured 24 and the reference body 50 within the scanning area, the output of the preamplifier 28, the output of the manual selector 31, the output of the gate circuit 32 corresponding to the output of the manual selector 31, the output of the automatic selector 52, and the automatic selection. An example of the relationship between the output of the gate circuit 52 and the output of the gate circuit 52 is shown in FIG.

この工5にして、所定時間経過毎に基準体500寸法を
測定し、測定開始前に測定した基準寸法との偏差に応じ
て、被測定物の寸法測定値を補正することによって、レ
ーザ測長様の構成部材や被−置物自体の温度変化等に起
因する測定値の経時変化が自動的に補正され、高精度の
測定値を容易に得ることができる。
In step 5, the dimensions of the reference body 500 are measured every predetermined time period, and the measured dimensions of the object are corrected according to the deviation from the reference dimensions measured before the start of measurement. Changes in measured values over time caused by temperature changes in the various structural members and objects themselves are automatically corrected, and highly accurate measured values can be easily obtained.

なお1.4記実施例においては、基準体50を、平行走
査光線ビーム20の走査領域内の被測定物24が配置さ
7′Lない場所に、常時配置するようにしていたが、基
準体50の配置方法はこnに限定さnず1例えば、所定
条件成立毎に、走査領域内の被測定物24が配置される
場所に、被測定物の代りに基準体50を導入配置するよ
うに構成することも可能である。この場合には、被測定
物24t #l定する実測定位置と、基準体50の寸法
を測定する基準寸法測定位置が一致するので、ビーム平
行度に問題があっても、悪影響を受けることがない。
In the embodiment described in 1.4, the reference body 50 was always placed at a location 7'L away from the object to be measured 24 within the scanning area of the parallel scanning light beam 20, but the reference body 50 The method of arranging the object 50 is not limited to this.For example, the reference body 50 may be introduced and placed in place of the object to be measured at the location where the object to be measured 24 is placed in the scanning area every time a predetermined condition is satisfied. It is also possible to configure In this case, the actual measurement position for determining the object to be measured 24t #l and the reference dimension measurement position for measuring the dimensions of the reference body 50 match, so even if there is a problem with beam parallelism, there will be no adverse effect. do not have.

又、前記実施例においてに、基準体50の材質が、被測
定物24の材質と同一とされてい九が。
Furthermore, in the embodiment described above, the material of the reference body 50 is the same as that of the object to be measured 24.

基準体の材質はこれに限定されず、温度特性が既知の他
の材質とすることも可能である。
The material of the reference body is not limited to this, and other materials with known temperature characteristics can also be used.

更に、前記実施例においては、一定時間経過毎に基準寸
法を測定するようにしていたが、基準寸法を測定する方
法はこれに限定されず1例えば、装置本体温度又は周囲
温度が一定値変化する毎に基準寸法を測定するようにし
たり、或いは、被側定物24t−所定個数測定する毎に
基準寸法を測定するようにしたり、或いは、被測定物2
4の寸株測定値が所定値以上変化した場合に基準寸法を
測定するようにすることも可能である。
Further, in the above embodiment, the reference dimensions were measured every time a certain period of time elapsed, but the method of measuring the reference dimensions is not limited to this. Alternatively, the reference dimensions may be measured every time a predetermined number of objects to be measured 24t are measured.
It is also possible to measure the reference dimension when the dimension measurement value of No. 4 changes by a predetermined value or more.

前記実施例においては、経時変化による寸法一定値の変
化を補正するようにされていたが、温度特性が既知の基
準体を用いた場合には、該基準体の寸法槻定値から、予
め設定された基準温度1例えば20℃との温度偏差を求
め、該温度偏差に応じて、被測定物の寸法測定値を補正
することによって、基準温度における被測定物24の温
度をデジタル表示器38に表示するように構成するとと
も可能である。
In the embodiment described above, changes in the constant dimension values due to changes over time were corrected, but when a reference body with known temperature characteristics is used, the preset dimension values are corrected based on the constant dimension values of the reference body. The temperature of the measured object 24 at the reference temperature is displayed on the digital display 38 by determining the temperature deviation from the reference temperature 1, for example 20° C., and correcting the measured dimensions of the measured object according to the temperature deviation. This is possible if configured to do so.

以上説明し九通り1本発明によれば、一連の測定におい
て、測定中の温度変化等の外乱に拘らず、高精度の測定
値を容易に得ることができるという優れた効果を有する
As explained above, the present invention has the excellent effect of easily obtaining highly accurate measured values in a series of measurements, regardless of disturbances such as temperature changes during measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1凶は、従来の高速度レーザ測長機の構成を示すブロ
ック線図、第2図に1本発明に係る光学式寸法測定装曾
の実施例の構成を示すブロック線図、第3図は、前記実
施例で用いられている。メインプログラムを示す流れ図
、第4図は、同じく。 自動補正プログラムを示す流れ図、第5図は、同じく前
記実施例における、走査領域中の被測定物及び基準体の
位置と、プリアンプ出力1乎動選択器出力、ゲート回路
出力、自動選択器出力の関係の一例を示す線図である。 lO・・・レーザ光源、14・・・固定ミラー。 16・・・回転ミラー、18・・・コリメータレンズ。 20・・・平行走査光線ビーム、22・・・集光レンズ
、24・・・被測定物、26・・・受光素子、28・・
・プリアン1,30・・・セグメント選択回路、31・
・・手動選択器、32・・・ゲート回路、34・・・ク
ロックパルス発振器、36・・・計数回路、38・・・
デジタル表示器。 40・・・同期正弦波発振器、42・・・パワーアンプ
、44・・・同期モータ、50・・・基準体、52・・
・自動選択器、54・・・補正回路。 代理人  高 矢   論 (ほか1名) 第3図     第4図 第5図
The first problem is a block diagram showing the configuration of a conventional high-speed laser length measuring machine. is used in the above example. The flow chart showing the main program, Figure 4, is the same. FIG. 5 is a flowchart showing the automatic correction program, which also shows the positions of the object to be measured and the reference object in the scanning area, the preamplifier output 1, the motion selector output, the gate circuit output, and the automatic selector output in the above embodiment. It is a diagram showing an example of a relationship. lO...Laser light source, 14...Fixed mirror. 16...Rotating mirror, 18...Collimator lens. 20... Parallel scanning light beam, 22... Condensing lens, 24... Measured object, 26... Light receiving element, 28...
・Preamplifier 1, 30...Segment selection circuit, 31・
...Manual selector, 32...Gate circuit, 34...Clock pulse oscillator, 36...Counting circuit, 38...
Digital display. 40...Synchronized sine wave oscillator, 42...Power amplifier, 44...Synchronous motor, 50...Reference body, 52...
- Automatic selector, 54...correction circuit. Agent Takaya Ron (and 1 other person) Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 感知して電気信号とする受光素子と、前記平行走査光線
ビーム発生装置と受光素子との間に配置した被測定物に
より、前記平行走査光線ビームが迩ぎられて生じる暗部
又は明部のうちから、測定対象となる暗部又は明部を選
択するためのセグメント選択回路とを有し、#i紀被測
定物により前記平行走査光線ビームが蓮ぎられて生じる
暗部又は明部の時間の長さから被測定物の寸法を測定す
るようにした光学式測定装置において、前記平行走査光
線ビームの走査領域内に基準体を配置すると共に、所定
条件成立毎に前記セグメント選択回路を自動的に切換え
て骸基準体の寸法を測定し、測定結果に応じて1Ilr
記被測定物の寸法測定値を補正するようにしたことを特
徴とする光学式測定装置。 (2)前記基準体が、走査領域内の被測定物が配置され
ない場所に、常時配置されている特許請求の範11項に
記載の光学式測定装置。 (3)  前記基準体が、前記所定条件成立毎に、走査
領域内の被測定物が配置される場所に、被測定物の代り
に導入配置されるものである特許請求の範囲第1項に記
載の光学式測定装置。 (4)前記基準体の材質が、前記被測定物の材質と同一
とされている特許請求の範囲llX1項乃至第3項のい
ずれか一項に記載の光学式測定装置。 (5)  #配所定条件が、一定時間経過毎に成立する
ようにされている特許請求の範囲第1項乃至菖4項のい
ずれか一項に記載の光学式測定装置。 (sJ  fEti記所定条件が、装置本体温度又は周
囲温度が一定値変化する毎に成立するようにされている
特許請求の範囲第1項乃至IJII4項のいずれか一項
に記載の光学式測定装置。
[Scope of Claims] A dark area generated when the parallel scanning light beam passes through a light receiving element that senses and generates an electric signal, and an object to be measured placed between the parallel scanning light beam generator and the light receiving element. or a segment selection circuit for selecting a dark part or a bright part to be measured from the bright part, and the dark part or the bright part is generated when the parallel scanning light beam is deflected by the object to be measured. In the optical measuring device, the dimension of the object to be measured is measured based on the length of time. Automatically switches to measure the dimensions of the skeleton reference body, and depending on the measurement results, 1Ilr
An optical measuring device characterized in that the dimensional measurement value of the object to be measured is corrected. (2) The optical measuring device according to claim 11, wherein the reference body is always placed in a location where the object to be measured is not placed in the scanning area. (3) The reference body is introduced and placed in place of the object to be measured at a location within the scanning area where the object to be measured is placed each time the predetermined condition is satisfied. The optical measuring device described. (4) The optical measuring device according to any one of claims 11 to 3, wherein the reference body is made of the same material as the object to be measured. (5) The optical measuring device according to any one of claims 1 to 4, wherein the #distribution predetermined condition is established every predetermined period of time. (The optical measuring device according to any one of Claims 1 to IJII4, wherein the predetermined condition sJ fEti is satisfied every time the device main body temperature or the ambient temperature changes by a certain value. .
JP4607582A 1982-03-23 1982-03-23 Optical measuring device Pending JPS58162804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4607582A JPS58162804A (en) 1982-03-23 1982-03-23 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4607582A JPS58162804A (en) 1982-03-23 1982-03-23 Optical measuring device

Publications (1)

Publication Number Publication Date
JPS58162804A true JPS58162804A (en) 1983-09-27

Family

ID=12736867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4607582A Pending JPS58162804A (en) 1982-03-23 1982-03-23 Optical measuring device

Country Status (1)

Country Link
JP (1) JPS58162804A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628006A (en) * 1985-07-03 1987-01-16 Hokuyo Automatic Co Optical apparatus for measuring outer shape
JPS6236507A (en) * 1985-08-09 1987-02-17 Mitsubishi Electric Corp Measuring device for film thickness
EP0345984A2 (en) * 1988-06-07 1989-12-13 Contrologic, Incorporated Non-contact optical gauge
JPH0231102A (en) * 1988-07-21 1990-02-01 Ando Electric Co Ltd Optical dimension measuring device
JPH0661694A (en) * 1992-08-07 1994-03-04 Yamaha Motor Co Ltd Method and machine for mounting component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469465A (en) * 1977-11-09 1979-06-04 Spindler & Hoyer Kg Method of and device for measuring linear distance without contact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469465A (en) * 1977-11-09 1979-06-04 Spindler & Hoyer Kg Method of and device for measuring linear distance without contact

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628006A (en) * 1985-07-03 1987-01-16 Hokuyo Automatic Co Optical apparatus for measuring outer shape
JPS6236507A (en) * 1985-08-09 1987-02-17 Mitsubishi Electric Corp Measuring device for film thickness
EP0345984A2 (en) * 1988-06-07 1989-12-13 Contrologic, Incorporated Non-contact optical gauge
JPH0231102A (en) * 1988-07-21 1990-02-01 Ando Electric Co Ltd Optical dimension measuring device
JPH0661694A (en) * 1992-08-07 1994-03-04 Yamaha Motor Co Ltd Method and machine for mounting component

Similar Documents

Publication Publication Date Title
US4521112A (en) Optical measuring device with position indicator
JPH0257642B2 (en)
US3744915A (en) Photoelectric length measuring apparatus
JPS58162804A (en) Optical measuring device
US4521113A (en) Optical measuring device
US4778271A (en) Photoeletric type measuring method and device
JPS6341484B2 (en)
US3590255A (en) Analysis system
US4847687A (en) Video ranging system
JPH03155484A (en) Automatic tool diameter correcting method for laser beam machine
US3866053A (en) Apparatus for detecting the condition of an opaque band-shaped material travelling on a delivery system
Rockholt et al. A television scanner for the ultracentrifuge: II. Multiple cell operation
JP3120438B2 (en) Film thickness measuring device
JP2904556B2 (en) Laser processing equipment
US3441739A (en) Width gage which generates pulse width proportional to deviation from desired width
JPS61118606A (en) Optical dimension measuring machine
JP2943011B2 (en) Outer diameter measuring device
JPH0419455Y2 (en)
JP2857515B2 (en) Optical position measuring device
JPS59226802A (en) Edge detector of optical measuring equipment
JPS58218604A (en) Method and apparatus for photoelectric type measurement
JPS6132518A (en) Positioning control device
JPS6177709A (en) Surface roughness tester
JPH0257643B2 (en)
JPH0227607B2 (en) ICHISOKUTEISOCHI