JPH03155484A - Automatic tool diameter correcting method for laser beam machine - Google Patents

Automatic tool diameter correcting method for laser beam machine

Info

Publication number
JPH03155484A
JPH03155484A JP1291163A JP29116389A JPH03155484A JP H03155484 A JPH03155484 A JP H03155484A JP 1291163 A JP1291163 A JP 1291163A JP 29116389 A JP29116389 A JP 29116389A JP H03155484 A JPH03155484 A JP H03155484A
Authority
JP
Japan
Prior art keywords
machining conditions
conditions
correction quantity
standard
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1291163A
Other languages
Japanese (ja)
Other versions
JP2747060B2 (en
Inventor
Hitoshi Nakada
仁 中田
Takashi Igarashi
五十嵐 貴志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP1291163A priority Critical patent/JP2747060B2/en
Publication of JPH03155484A publication Critical patent/JPH03155484A/en
Application granted granted Critical
Publication of JP2747060B2 publication Critical patent/JP2747060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50063Probe, measure, verify workpiece, feedback measured values
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50213Grooving of different forms or parallel to each other, grooving cycle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50334Tool offset, diameter correction

Abstract

PURPOSE:To perform machining with high accuracy by inputting automatically a value obtained by overriding the tool diameter by reference conditions every time machining conditions are changed. CONSTITUTION:The detector side measures a groove width of a cut groove cut by the reference machining conditions based on a measuring command from the NC device side on a plate to be product-machined and obtains the reference correction quantity of the beam diameter from this and stores it in a memory on the NC device side. An NC control part of the NC device side reads optional machining conditions from a program statement and compares this with the reference machining conditions at an arithmetic processing part to obtain the correction quantity for the reference machining conditions. Meanwhile, the reference correction quantity stored in the memory is taken out and the value obtained by overriding the above-mentioned correction quantity on this reference correction quantity is transferred to the NC control part. Thus, the beam diameter corresponding to the optional machining conditions is corrected automatically.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明はレーザ加工機の自動工具径補正方法に関する
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to an automatic tool diameter correction method for a laser processing machine.

(従来の技術) 従来の工具径補正の設定方法は、NCプログラム文に、
補正を切断径路に対して左右どちらにオフセットするか
を設定し、次に、加工条件に対応しテ予めセツティング
パラメータに設定されている補正量を、番号で選択する
ことによって行なっていた。
(Prior art) The conventional method for setting tool diameter compensation is to include the following in the NC program statement:
This is done by setting which direction to offset the cutting path to the left or right, and then selecting a correction amount, which is set in advance in the setting parameters in accordance with the machining conditions, by number.

セツティングパラメータに予め補正量を設定する場合、
工具径に相当するレーザビーム径が、炭酸ガスレーザの
場合には、不可視光であるため、直接的な測定が不可能
であることから、−度テスト加工を行ない、製品をノギ
ス等で測定し、その測定値から算出して入力する必要が
あった。 また、工具径(ビーム径)は、板厚、材質や
レーザ出力、パルスデューティ比、速度などの加工条件
により変化するため、同一形状のプログラムでも板厚、
材質、加工条件が変ると、再度テストカットを行ない寸
法を測定して、データを入力しなおす必要があった。
When setting the correction amount in the setting parameter in advance,
In the case of a carbon dioxide laser, the laser beam diameter, which corresponds to the tool diameter, cannot be directly measured due to invisible light. It was necessary to calculate and input the measured values. In addition, the tool diameter (beam diameter) changes depending on the machining conditions such as plate thickness, material, laser output, pulse duty ratio, and speed.
If the material or processing conditions changed, it was necessary to perform a test cut again, measure the dimensions, and re-enter the data.

(発明が解決しようとする課題) 一般に加工形状のある部分の補正値が、NCプログラム
文のどの部分に対応しているのか、作業者が判断するこ
とはむつかしく、また、補正量をセツティングパラメー
タというNCプログラム文以外の画面で設定しなければ
ならないことから、操作が複雑であった。更に、レーザ
ビームは真円とはかぎらないのでX、Y方向の補正量が
同一でない場合があり、この場合の補正量は作業者の勘
と経験に頼る部分が多かった。
(Problem to be Solved by the Invention) Generally, it is difficult for an operator to judge which part of the NC program statement the correction value of a certain part of the machined shape corresponds to, and The operation was complicated because settings had to be made on a screen other than the NC program statement. Furthermore, since the laser beam is not necessarily a perfect circle, the amount of correction in the X and Y directions may not be the same, and in this case, the amount of correction largely depends on the operator's intuition and experience.

この発明は、このような点に着目して創案されたもので
、ある基本条件で切断した板材の切断幅をn1定し、そ
の値を基にして出力、パルスデューティ比、速度などの
加工条件により、前記基準条件による工具径にオーバー
ライドをかけた値を、加工条件がかわるたびに自動的に
入力し、作業者が工具径補正を気にせずとも、高精度の
加工のできるレーザ加工機の自動工具補正方法を提供す
ることを目的とするものである。
This invention was created by focusing on these points, and the cutting width of a plate cut under certain basic conditions is determined by n1, and processing conditions such as output, pulse duty ratio, and speed are determined based on that value. This enables a laser processing machine that automatically inputs a value obtained by overriding the tool diameter based on the standard conditions each time the machining conditions change, allowing high-precision machining without the operator having to worry about tool diameter correction. The object is to provide an automatic tool correction method.

[発明の構成] (課題を解決するための手段) 前記の目的を達成するために、この発明は、予め、製品
加工を行なう板材について、基準加工条件により切断を
行ない、その切断溝幅からビーム径ヲ求め、これに基づ
いて基準補正量をメモリに格納し、任意の加工条件の場
合、前記基準加工条件と比較し、その補正量を前記基準
補正量にオーバライドすることにより、加工条件に対応
したビーム径の補正を自動的に行なうようにしたもので
ある。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention cuts a plate material to be processed into a product in advance under standard processing conditions, and calculates the width of the beam from the cutting groove width. Determine the diameter, store the standard correction amount in memory based on this, and in the case of arbitrary machining conditions, compare it with the standard machining conditions and override the correction amount to the standard correction amount to correspond to the machining conditions. The beam diameter is automatically corrected.

(作用) このように構成されているので、予め基準加工条件に対
応したビーム径が実測され、これに基づいて算出したビ
ーム軌跡の基準補正量がメモリに格納される。したがっ
て、任意の加工条件の場合には、基準加工条件と比較し
、基準加工条件に対する補正量を求め、これを前記のメ
モリに格納された基準補正量にオーバライドすることに
より任意の加工条件の場合のビーム径(工具径)の補正
量が自動的に求められる。
(Function) With this configuration, the beam diameter corresponding to the reference processing conditions is actually measured in advance, and the reference correction amount of the beam trajectory calculated based on this is stored in the memory. Therefore, in the case of arbitrary machining conditions, by comparing with the standard machining conditions, determining the amount of correction for the standard machining conditions, and overriding this with the standard correction amount stored in the memory, The amount of correction for the beam diameter (tool diameter) is automatically determined.

(実施例) 次に、この発明の実施例について図面に基づいて説明す
る。第1図はこの発明の方法を実施した装置のブロック
図である。図示のように、検出装置側とNC装置側から
構成されている。検出装置側はCCDカメラ等からなる
光学的検出装置、画像処理部、検出装置制御部及び切断
幅測定処理部等からなっている。この検出装置側は、予
め、製品加工を行なう板材について、NC装置側のl−
1定指令に基づき基準加工条件により切断された切断溝
の溝幅を測定し、これからビーム径の基準補正量を求め
て、これをNC装置側のメモリへ格納するものである。
(Example) Next, an example of the present invention will be described based on the drawings. FIG. 1 is a block diagram of an apparatus implementing the method of the invention. As shown, it is composed of a detection device side and an NC device side. The detection device side includes an optical detection device such as a CCD camera, an image processing section, a detection device control section, a cutting width measurement processing section, and the like. This detection device side detects in advance the l-
The groove width of a cutting groove cut under standard processing conditions based on a constant command is measured, a standard correction amount for the beam diameter is calculated from this, and this is stored in the memory on the NC device side.

NC装置側はNC制御部、演算処理部及びメモリ等から
なっている。NC制御部は任意の加工条件をプログラム
文より読み、これを演算処理部において基準加工条件と
比較し、基準加工条件に対する補正量を求め、一方メモ
リに格納された基準補正量を取り出し、この基準補正量
に前記補正量をオーバライドした値をNC制御部へ転送
する。
The NC device side consists of an NC control section, an arithmetic processing section, a memory, etc. The NC control unit reads arbitrary machining conditions from the program statement, compares them with the standard machining conditions in the arithmetic processing unit, calculates the amount of correction for the standard machining conditions, and retrieves the standard correction amount stored in the memory and uses this standard. A value obtained by overriding the correction amount is transferred to the NC control section.

このようにして、任意の加工条件に対応したビーム径の
補正が自動的に行なわれる。
In this way, beam diameter correction corresponding to arbitrary processing conditions is automatically performed.

第2図は基準補正量の測定方法の一例をフローチャート
で示したものである。即ち、ステ・ツブ(以下Sと略称
する)1で、測定を開始し、Slで、製品加工を行なう
板材をレーザ加工機ヘセ、ソトし、S3で、操作盤上の
自動工具補正プログラムモードを選択する。
FIG. 2 is a flowchart showing an example of a method for measuring the reference correction amount. That is, step 1 (hereinafter abbreviated as S) starts measurement, step SL places the plate material to be processed into the laser processing machine, and step S3 sets the automatic tool correction program mode on the operation panel. select.

S4で、基準加工条件により、レーザビームが真円でな
いことを考慮して、それぞれX、Y方向へ切断し、S5
で、切断溝の溝幅をCCDカメラでIIP+定し、S6
で、X、Y方向の溝幅の平均値を算出し、S7で、前記
の溝幅の平均値から基準補正量を求め、これをNC装置
の補正量の変数に格納して、S8で終了する。
In S4, taking into account that the laser beam is not a perfect circle due to the standard processing conditions, cutting is performed in the X and Y directions, respectively, and S5
Then, the groove width of the cutting groove was determined by IIP+ using a CCD camera, and S6
Then, the average value of the groove widths in the X and Y directions is calculated, and in S7, the standard correction amount is determined from the average value of the groove widths, and this is stored in the correction amount variable of the NC device, and the process ends in S8. do.

第3図は加ニブログラム実行時をフローチャートで示し
たものである。即ち、Slで、加工を開始し、Slで、
自動工具補正の有無を判断し、自動工具補正を行なう場
合は、S3に進み、行なわない場合は、以下のプログラ
ムを実行しないでS7に進み終了する。
FIG. 3 is a flowchart showing the execution of the Canadian program. That is, processing starts at Sl, and at Sl,
It is determined whether or not automatic tool correction is to be performed, and if automatic tool correction is to be performed, the process proceeds to S3; if not, the process proceeds to S7 and ends without executing the following program.

S3でNCプログラム文から加工条件を読み込み、S4
で、予めメモリに格納されている基準加玉条件と、S3
で読み込んだ加工条件を比較し、その補正量を算出する
。S5で予めメモリに格納されている基準加工条件に対
する基準補正量に、S3で算出された補正量をオーバラ
イドする。
In S3, read the machining conditions from the NC program statement, and in S4
Then, the standard addition conditions stored in memory in advance and S3
Compare the machining conditions read in and calculate the amount of correction. In S5, the correction amount calculated in S3 is overridden by the reference correction amount for the reference machining conditions stored in the memory in advance.

S6で、自動工具補正を行なう加工が終了したか否かを
調べ、自動工具補正を行なう加工が有る場合には、引続
きS3から86までを繰り返す。
In S6, it is checked whether machining for which automatic tool correction is to be performed has been completed, and if there is machining for which automatic tool correction is to be performed, steps S3 to S86 are repeated.

S6で加工が終了すればS7へ進む。When the machining is completed in S6, the process advances to S7.

このように、板材の材質、板厚が変わらないときは種々
の加工条件において、基準補正量に加工条件の補正量を
オーバライドすることにより、自動的に加工を進めるこ
とができる。更に、板材の材質、板厚についても加工条
件と同様に補正するようにすれば、基準補正量は一つで
も済むことになる。
In this way, when the material and thickness of the plate material do not change, processing can be automatically proceeded by overriding the standard correction amount with the correction amount of the processing conditions under various processing conditions. Furthermore, if the material and thickness of the plate material are corrected in the same way as the processing conditions, only one standard correction amount is sufficient.

[発明の効果] 以上の説明から理解されるように、この発明は特許請求
の範囲に記載の構成を備えているので、現場作業者によ
るNCプログラムや工具補正量設定画面等の変更の必要
がなくなり、従来のような勘や経験を必要とせず、した
がって、レーザによる切断加工を高精度で、また速やか
に行なうことができる。
[Effects of the Invention] As can be understood from the above description, since the present invention has the configuration described in the claims, there is no need for field workers to change the NC program, tool correction amount setting screen, etc. This eliminates the need for intuition and experience as required in the past, and therefore, laser cutting can be performed quickly and with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法を実施した装置のブロック図、
第2図は基準補正量の測定方法のフローチャート、第3
図は加ニブログラム実行時のフローチャートである。
FIG. 1 is a block diagram of an apparatus implementing the method of the present invention;
Figure 2 is a flowchart of the method for measuring the reference correction amount;
The figure is a flowchart when the Canadian program is executed.

Claims (1)

【特許請求の範囲】[Claims] 予め製品加工を行なう板材について、基準加工条件によ
り切断を行ない、その切断溝幅からビーム径を求め、こ
れに基づいて基準補正量をメモリに格納し、任意の加工
条件の場合、前記基準加工条件と比較し、その補正量を
前記基準補正量にオーバライドすることにより、加工条
件に対応したビーム径の補正を自動的に行なうことを特
徴とするレーザ加工機の自動工具径補正方法。
The plate material to be processed into a product is cut in advance according to standard processing conditions, the beam diameter is determined from the width of the cutting groove, the standard correction amount is stored in memory based on this, and in the case of arbitrary processing conditions, the standard processing conditions are An automatic tool diameter correction method for a laser processing machine, characterized in that the beam diameter is automatically corrected in accordance with processing conditions by comparing the correction amount with the reference correction amount.
JP1291163A 1989-11-10 1989-11-10 Automatic tool diameter compensation method for laser beam machine Expired - Lifetime JP2747060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291163A JP2747060B2 (en) 1989-11-10 1989-11-10 Automatic tool diameter compensation method for laser beam machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291163A JP2747060B2 (en) 1989-11-10 1989-11-10 Automatic tool diameter compensation method for laser beam machine

Publications (2)

Publication Number Publication Date
JPH03155484A true JPH03155484A (en) 1991-07-03
JP2747060B2 JP2747060B2 (en) 1998-05-06

Family

ID=17765261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291163A Expired - Lifetime JP2747060B2 (en) 1989-11-10 1989-11-10 Automatic tool diameter compensation method for laser beam machine

Country Status (1)

Country Link
JP (1) JP2747060B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154681A (en) * 1991-09-26 1993-06-22 Fanuc Ltd Optical path length fixing device in laser beam machine
US20140190946A1 (en) * 2011-03-22 2014-07-10 Carl Zeiss Microscopy Gmbh Laser Microdissection Method and Laser Microdissection Device
JP6087483B1 (en) * 2016-05-19 2017-03-01 三菱電機株式会社 Laser processing machine, correction value calculation device, and program
CN110039201A (en) * 2019-06-05 2019-07-23 杭州幕林眼镜有限公司 A kind of method of application laser cutting and calibration of workpieces
WO2020008778A1 (en) * 2018-07-06 2020-01-09 株式会社アマダホールディングス Cutting machine and cutting method
WO2020008780A1 (en) * 2018-07-06 2020-01-09 株式会社アマダホールディングス Cutting machine and cutting method
WO2020008779A1 (en) * 2018-07-06 2020-01-09 株式会社アマダホールディングス Cutting machine and cutting method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154681A (en) * 1991-09-26 1993-06-22 Fanuc Ltd Optical path length fixing device in laser beam machine
US20140190946A1 (en) * 2011-03-22 2014-07-10 Carl Zeiss Microscopy Gmbh Laser Microdissection Method and Laser Microdissection Device
US9664599B2 (en) * 2011-03-22 2017-05-30 Carl Zeiss Microscopy Gmbh Laser microdissection method and laser microdissection device
JP6087483B1 (en) * 2016-05-19 2017-03-01 三菱電機株式会社 Laser processing machine, correction value calculation device, and program
WO2017199410A1 (en) * 2016-05-19 2017-11-23 三菱電機株式会社 Laser cutting machine, correction value computing device, and program
WO2020008778A1 (en) * 2018-07-06 2020-01-09 株式会社アマダホールディングス Cutting machine and cutting method
WO2020008780A1 (en) * 2018-07-06 2020-01-09 株式会社アマダホールディングス Cutting machine and cutting method
WO2020008779A1 (en) * 2018-07-06 2020-01-09 株式会社アマダホールディングス Cutting machine and cutting method
JP6667735B1 (en) * 2018-07-06 2020-03-18 株式会社アマダホールディングス Cutting machine and cutting method
JP6670983B1 (en) * 2018-07-06 2020-03-25 株式会社アマダホールディングス Cutting machine and cutting method
EP3819068A4 (en) * 2018-07-06 2021-09-08 Amada Co., Ltd. Cutting machine and cutting method
US11537098B2 (en) 2018-07-06 2022-12-27 Amada Co., Ltd. Cutting machine and cutting method including tool radius compensation relative to a laser path
CN110039201A (en) * 2019-06-05 2019-07-23 杭州幕林眼镜有限公司 A kind of method of application laser cutting and calibration of workpieces

Also Published As

Publication number Publication date
JP2747060B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
US7039493B2 (en) Numerical control apparatus
JPH02125414A (en) Lithographic process analytic system
KR100486941B1 (en) Numerical control device
JP3399419B2 (en) Numerical control simulation device
JP2747060B2 (en) Automatic tool diameter compensation method for laser beam machine
JP3269405B2 (en) Automatic measuring device for numerically controlled machine tools
JPS62104088A (en) Laser output controller
JPH05301196A (en) Robot control system parameter regulating device
JPH0852621A (en) Wire squareness control method
US5063281A (en) Weaving welding method
JPH0373253A (en) Tool wear correction method
JP2002307263A (en) Method for utilizing measuring result of processed work in nc machine tool
JPS61173842A (en) Numerical control device
JPH0342561A (en) Automatic temperature control type x-ray diffraction apparatus
JPH0952187A (en) Laser beam machine system
JPH01228759A (en) Processing situation indication method
JP2780446B2 (en) Electric discharge machine
JPS6288549A (en) Measured amount compensating control device
RU2023536C1 (en) Method of multipass mechanical treatment
EP0579841A1 (en) Method of creating nc program for cutting corner
JP2733925B2 (en) Production ratio control method and apparatus based on production results
JPH07287612A (en) Numerical control information preparing device
JPH04352006A (en) Method and device for calculating working dimension
JPS6010306A (en) Numerical controller
KR100188262B1 (en) Tool path compensation method of numerical control system