WO2017199410A1 - Laser cutting machine, correction value computing device, and program - Google Patents

Laser cutting machine, correction value computing device, and program Download PDF

Info

Publication number
WO2017199410A1
WO2017199410A1 PCT/JP2016/064943 JP2016064943W WO2017199410A1 WO 2017199410 A1 WO2017199410 A1 WO 2017199410A1 JP 2016064943 W JP2016064943 W JP 2016064943W WO 2017199410 A1 WO2017199410 A1 WO 2017199410A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
correction value
head
position information
cut surface
Prior art date
Application number
PCT/JP2016/064943
Other languages
French (fr)
Japanese (ja)
Inventor
響 山本
隆典 宮▲崎▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/064943 priority Critical patent/WO2017199410A1/en
Priority to JP2016567283A priority patent/JP6087483B1/en
Publication of WO2017199410A1 publication Critical patent/WO2017199410A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a laser processing machine, a correction value calculation device, and a program for processing a workpiece.
  • the width of the cutting groove formed by laser processing is taken into consideration, and the processing head and the workpiece are relatively moved along a path corrected by half the width of the cutting groove. It is necessary to irradiate with laser light.
  • a dimension that is half the width of the cutting groove is called a tool radius correction value.
  • a general laser beam machine can set a tool radius correction value, which is half the width of the cutting groove, to an arbitrary value.
  • the processing conditions of the laser processing machine are determined by the output of the laser beam, the frequency of the laser beam, the duty of the laser beam, the pressure of the laser gas, and the focal position.
  • the laser processing machine needs to calculate a tool radius correction value every time the machining conditions change because the width of the cutting groove changes when the machining conditions are changed.
  • the current laser processing machine is configured by measuring the actual dimensions of the part using a measuring device after forming a part of the set dimension from the workpiece. Calculated from the difference between the dimensions and actual dimensions.
  • this method requires a measuring instrument, and requires a lot of time and man-hours to calculate the tool radius correction value.
  • a laser processing machine that includes a CCD (Charge-Coupled Device) camera and includes an optical device that measures the width of a cutting groove (see Patent Document 1).
  • the laser processing machine disclosed in Patent Document 1 includes an expensive optical device, and performs image processing on an image captured by the optical device to calculate a tool diameter correction value, which increases the cost. .
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a laser processing machine capable of calculating a tool diameter correction value in a short time without increasing cost.
  • the present invention irradiates a laser beam onto a workpiece, processes the workpiece, and forms a cut surface on the workpiece. It is.
  • the laser processing machine includes a processing head that irradiates a processing target with laser light, and a correction value calculation device that calculates a tool diameter correction value during processing using the cut surface.
  • the correction value calculation device includes processing position information indicating the position of the processing head with respect to the processing target when the cutting surface is formed on the processing target, and the processing head of the processing head with respect to the processing target when the processing head contacts the cutting surface.
  • a tool radius correction value is calculated based on the contact position information indicating the position.
  • the processing head is brought close to the cut surface along the surface from the state where the tip of the processing head is positioned closer to the back surface of the processing target than the surface of the processing target, and contacts the cutting surface.
  • the laser beam machine according to the present invention has an effect that the tool radius correction value can be calculated in a short time without cost increase.
  • FIG. 1 The figure which shows the structure of the laser beam machine which concerns on Embodiment 1.
  • FIG. The perspective view which shows an example of the process target object cut
  • the flowchart which shows the process in which the control apparatus of the laser beam machine which concerns on Embodiment 1 calculates a tool diameter correction value.
  • FIG. 1 The perspective view which shows the state which made the front-end
  • Sectional drawing which shows the state which the front-end
  • Sectional drawing which shows the state which the front-end
  • the flowchart which shows the process in which the control apparatus of the laser beam machine which concerns on Embodiment 5 calculates a tool diameter correction value.
  • the perspective view which shows the state by which the front-end
  • FIG. 1 The perspective view which shows the state which made the front-end
  • the figure which shows an example of the structure of the hardware of the control apparatus of the laser beam machine which concerns on each embodiment
  • FIG. 1 is a diagram illustrating a configuration of a laser beam machine according to the first embodiment.
  • FIG. 2 is a perspective view showing an example of a workpiece to be cut into parts and a remaining material by the laser processing machine shown in FIG.
  • the laser processing machine 1 shown in FIG. 1 processes the processing target object W by irradiating the processing target object W with the laser beam L.
  • the laser beam machine 1 irradiates the workpiece W with the laser light L, and forms the cutting groove CD in the workpiece W as shown in FIG. Is a device for cutting the part PT and the remaining material BM.
  • the workpiece W to be cut into the part PT and the remaining material BM by the laser processing machine 1 is made of metal and is formed in a flat plate shape. That is, the workpiece W is a sheet metal.
  • the part PT is cut from the workpiece W and subjected to at least one of bending processing, welding processing, and painting processing in a later process than the laser processing machine 1 and assembled into a product.
  • the remaining material BM is discarded without being assembled into a product.
  • the cutting groove CD formed in the workpiece W by the laser beam machine 1 is a groove that penetrates the workpiece W and separates the workpiece W into a part PT and a remaining material BM.
  • the cutting groove CD is formed outside the outer edge of the part PT. Since the cutting groove CD is formed by irradiating the laser beam L with the laser beam machine 1, it is thin but has a width.
  • the information on the part PT input to the laser beam machine 1 indicates the position of the outer edge of the part PT on the workpiece W.
  • the laser processing machine 1 forms the cutting groove CD along the position of the outer edge of the input part PT, the outer edge of the part PT is cut by the half of the width DW of the cutting groove CD. It is necessary to form the cutting groove CD outside the outer edge of the part PT by the half of the width DW of the cutting groove CD.
  • the laser processing machine 1 includes a processing target support unit 10 that supports the processing target W, a processing head 20 that irradiates the processing target W with laser light L, and a processing target support unit 10.
  • a relative movement unit 30 that can relatively move the machining head 20, a contact detection unit 50 that detects contact between the workpiece W and the machining head 20, and a control device 40 that is a correction value calculation device; Is provided.
  • the processing object support unit 10 supports the processing object W on which the processing object W is placed.
  • the processing object support unit 10 suppresses the movement of the supported processing object W by supporting the processing object W in a posture parallel to the horizontal direction.
  • the machining head 20 irradiates the workpiece W with the laser light L, and forms a cutting groove CD in the workpiece W to cut the workpiece W.
  • the machining head 20 cuts the workpiece W into a part PT and a remaining material BM.
  • the tip 21 of the machining head 20 that faces the workpiece W is formed with a smaller diameter as it approaches the workpiece W.
  • the tip 21 of the processing head 20 includes a laser through hole 22 through which the laser light L passes.
  • the relative movement unit 30 relatively moves the machining head 20 and the workpiece support 10.
  • the relative moving unit 30 moves the processing head 20, but the processing target support unit 10 may be moved, and both the processing head 20 and the processing target support unit 10 are moved. Also good.
  • the relative movement unit 30 relatively moves the machining head 20 and the workpiece support unit 10 along the X direction that is the surface direction along the surface WS of the workpiece W facing the machining head 20.
  • a direction moving unit 31 is provided.
  • the relative movement unit 30 is a surface direction along the surface WS of the workpiece W and moves in the Y direction to relatively move the machining head 20 and the workpiece support unit 10 along the Y direction intersecting the X direction.
  • the unit 32 is provided.
  • the relative movement unit 30 includes a Z-direction movement unit 33 that relatively moves the machining head 20 and the workpiece support unit 10 along the Z direction that is the thickness direction of the workpiece W.
  • the X direction is the first linear direction
  • the Y direction is the second linear direction.
  • the X direction, the Y direction, and the Z direction are orthogonal to each other.
  • the X direction moving unit 31 moves the processing head 20 in the X direction
  • the Y direction moving unit 32 moves the processing head 20 in the Y direction
  • the Z direction moving unit 33 sets the processing head 20. Is moved in the Z direction.
  • the X-direction moving unit 31, the Y-direction moving unit 32, and the Z-direction moving unit 33 include a motor, a lead screw that moves the machining head 20 by the rotational driving force of the motor, and a linear guide that guides the movement direction of the machining head 20. Is done.
  • the configuration of the X-direction moving unit 31, the Y-direction moving unit 32, and the Z-direction moving unit 33 is not limited to the configuration using a motor, a lead screw, and a linear guide.
  • the contact detection unit 50 detects that the machining head 20 and the workpiece W are in contact with each other.
  • the contact detection unit 50 applies a voltage to the machining head 20 and the workpiece W, and a current flowing between the machining head 20 and the workpiece W or the machining head 20 and the workpiece W. Is detected as a contact between the machining head 20 and the workpiece W.
  • the contact detection unit 50 outputs the detection result to the control device 40.
  • the laser beam machine 1 also includes a distance measuring unit 60 that measures the distance between the machining head 20 and the workpiece W.
  • the distance measuring unit 60 measures the capacitance according to the distance between the machining head 20 and the workpiece W.
  • the electrostatic capacitance between the machining head 20 and the workpiece W measured by the distance measuring unit 60 changes according to the distance between the machining head 20 and the workpiece W. That is, when the distance between the machining head 20 and the workpiece W changes, the capacitance between the machining head 20 and the workpiece W changes.
  • the distance measuring unit 60 outputs the capacitance between the machining head 20 and the workpiece W to the control device 40.
  • the distance measuring unit 60 is a capacitance type sensor that measures the capacitance between the machining head 20 and the workpiece W, but may be an optical sensor.
  • the control device 40 is a computer.
  • the control device 40 controls the relative moving unit 30 and the processing head 20 to form the cutting groove CD in the processing target object W, and cuts a part of the processing target object W.
  • the inner surface of the cutting groove CD formed in the workpiece W becomes a cutting surface CS for cutting the part PT and the remaining material BM.
  • the control device 40 laser-processes the workpiece W and cuts the part PT and the remaining material BM
  • the control device 20 relatively moves the workpiece head 20 and the workpiece W along the X and Y directions. While moving, based on the measurement result of the distance measurement part 60, the distance between the process head 20 and the process target object W is maintained at the set distance.
  • control device 40 moves the processing head 20 and the processing target W relative to the relative movement unit 30 based on the measurement result of the distance measuring unit 60, and the processing target W and the processing head 20. This is a copying portion that keeps the distance to the constant.
  • the control device 40 is connected to an input device 41 for inputting information on each part PT in the workpiece W, a program PG at the time of machining, and machining conditions.
  • the processing conditions include the output of the laser light L, the frequency of the laser light L, the duty of the laser light L, the pressure of the laser gas, the focal position of the laser light L, and the distance between the processing head 20 and the processing target W during processing. It is.
  • the control device 40 is connected to a display device 42 that displays information on each part PT in the workpiece W.
  • the control device 40 includes a storage unit 43 that stores information on each part PT, a program PG, and processing conditions, a control unit 44 that controls the relative movement unit 30 and the processing head 20 during processing, and laser processing using the cut surface CS.
  • a correction value calculation unit 45 that measures half the width DW of the cutting groove CD formed according to the previously input machining conditions and calculates tool diameter correction values ⁇ X and ⁇ Y at the time of machining is provided.
  • the correction value calculation unit 45 of the control device 40 calculates tool radius correction values ⁇ X and ⁇ Y in the X direction and the Y direction, respectively.
  • the storage unit 43 stores the shape of the machining head 20.
  • the program PG stored in the storage unit 43 includes a program PG1 for calculating tool radius correction values ⁇ X and ⁇ Y.
  • the tool diameter correction values ⁇ X and ⁇ Y are half the width DW of the cutting groove CD.
  • the tool diameter correction values ⁇ X and ⁇ Y are processed with the machining head 20 positioned outside each part PT by the half of the width DW of the cutting groove CD rather than the outer edge of each part PT indicated by the information of each part PT. Is the value of The laser beam L is emitted from the machining head 20 in a state where the machining head 20 is positioned on the outside of each part PT by the half of the width DW of the cutting groove CD than the outer edge of each part PT indicated by the information of each part PT. Then, the part PT is formed inside the cutting groove CD.
  • the tool diameter correction values ⁇ X and ⁇ Y are positioned outside the outer edge of the part PT indicated by the information of each part PT and the outer edge of each part PT.
  • the distance between the optical axis LP of the laser beam L irradiated from the processing head 20 to be applied is shown.
  • FIG. 3 is a flowchart illustrating a process in which the control device for the laser beam machine according to the first embodiment calculates a tool radius correction value.
  • FIG. 4 is a perspective view showing the object to be processed in which the punched hole is formed in step ST1 shown in FIG.
  • FIG. 5 is a diagram for explaining the coordinates of the cut surface formed on the inner surface of the punched hole formed in the workpiece shown in FIG. 4.
  • FIG. 6 is a perspective view showing a state in which the tip of the machining head has entered the inside of the punched hole in step ST2 shown in FIG.
  • FIG. 4 is a perspective view showing the object to be processed in which the punched hole is formed in step ST1 shown in FIG.
  • FIG. 5 is a diagram for explaining the coordinates of the cut surface formed on the inner surface of the punched hole formed in the workpiece shown in FIG. 4.
  • FIG. 6 is a perspective view showing a state in which the tip of the machining head has entered the inside of the punched hole in step ST2
  • FIG. 7 is a perspective view showing a state where the tip of the machining head is in contact with the cut surface of the punched hole in step ST3 shown in FIG.
  • FIG. 8 is a cross-sectional view of the workpiece and the tip of the machining head shown in FIG.
  • the correction value calculation unit 45 calculates the tool radius correction values ⁇ X and ⁇ Y in the X direction and the Y direction before the control unit 44 performs laser processing.
  • the control device 40 is a position where the punch hole 100 shown in FIG. 4 for calculating the tool diameter correction values ⁇ X and ⁇ Y of the workpiece W from the input device 41 is formed. Is entered.
  • the position where the hole 100 for calculating the tool diameter correction values ⁇ X and ⁇ Y is formed is a position that becomes the remaining material BM when the workpiece W is cut into the part PT and the remaining material BM.
  • the control device 40 receives processing conditions when performing laser processing from the input device 41.
  • the control device 40 irradiates the processing object W with the laser light L from the processing head 20 according to the processing conditions while moving the processing head 20 relative to the processing object W, and cuts a part of the processing object W.
  • the cut surface CS is formed on the workpiece W (step ST1).
  • the control device 40 cuts a part of the workpiece W into a rectangular shape and forms a hole 100 at a position where the remaining material BM is formed.
  • the cut surface CS is formed on the inner surface of 100, the shape of cutting a part of the workpiece W is not limited to a rectangular shape.
  • the punch hole 100 formed in the first embodiment has a long direction parallel to the X direction and a short side direction parallel to the Y direction.
  • the cut surface CS formed on the inner surface of the punched hole 100 is a first X direction cut surface CSX1 parallel to the X direction, and a second X direction cut surface parallel to the X direction.
  • CSX2 a first Y-direction cut surface CSY1 parallel to the Y direction, and a second Y-direction cut surface CSY2 parallel to the Y direction.
  • FIG. 5 of the machining head 20 shows the relative machining position of the machining head 20 with respect to the workpiece W when the cut surfaces CSX1, CSX2, CSY1, CSY2 of the punch hole 100 are formed in step ST1.
  • the coordinates (X1, Y1) of the corner P1 of the movement path K1 shown in FIG. 2, the coordinates (X2, Y1) of the corner P2, the coordinates (X1, Y2) of the corner P3, and the coordinates (X2, Y2) of the corner P4 are calculated. get.
  • the coordinates (X1, Y1) of the corner P1 of the movement path K1, the coordinates (X2, Y1) of the corner P2, the coordinates (X1, Y2) of the corner P3, and the coordinates (X2, Y2) of the corner P4 are the X direction and Y
  • the distances in the X direction and the Y direction from the preset origin on the plane defined by the direction are shown.
  • the coordinates X1, X2, Y1, Y2 of the movement path K1 are machining position information. That is, step ST1 is a processing position information calculation step for calculating the coordinates X1, X2, Y1, Y2 of the movement path K1.
  • the control device 40 inserts the tip 21 of the machining head 20 inside the hole 100, and the tip 21 of the machining head 20 is placed on the surface of the workpiece W rather than the surface WS of the workpiece W. Positioned near the back surface WR on the back side of WS, that is, below the surface WS of the workpiece W (step ST2).
  • the control device 40 brings the machining head 20 close to the cut surfaces CSX1, CSX2, CSY1, and CSY2 in order along the surface WS of the relative moving unit 30, and as shown in FIG. 7, the cut surfaces CSX1, CSX2, CSY1, and so on.
  • the tip 21 of the machining head 20 is brought into contact with CSY2 in order (step ST3).
  • step ST3 the control device 40 moves the machining head 20 along the surface WS from the state in which the tip 21 of the machining head 20 is positioned closer to the back surface WR than the surface WS of the workpiece W, and cuts the cut surfaces CSX1, CSX2, CSY1. , CSY2 in order.
  • the control device 40 Based on the detection result of the contact detection unit 50 and the amount of movement of the processing head 20 by the X-direction moving unit 31 and the Y-direction moving unit 32 of the relative moving unit 30, the control device 40 causes the cutting head 20 to move each cutting plane CSX1. , CSX2, CSY1, and CSY2 are calculated and obtained coordinates X3 ′, X4 ′, Y3 ′, and Y4 ′ that indicate the position of the machining head 20 with respect to the workpiece W when contacting.
  • the Y-direction coordinate of the first X-direction cut surface CSX1 is Y3, and corresponds to the Y-direction coordinate Y3 ′ of the machining head 20 when it contacts the first X-direction cut surface CSX1.
  • the coordinate in the Y direction of the second X-direction cut surface CSX2 is Y4, and corresponds to the coordinate Y4 ′ in the Y direction of the machining head 20 when contacting the second X-direction cut surface CSX2.
  • the X-direction coordinate of the first Y-direction cut surface CSY1 is X3, and corresponds to the X-direction coordinate X3 ′ of the machining head 20 when it contacts the first Y-direction cut surface CSY1.
  • the X-direction coordinate of the second Y-direction cut surface CSY2 is X4, and corresponds to the X-direction coordinate X4 ′ of the machining head 20 when it contacts the second Y-direction cut surface
  • the coordinates X3 ′, X4 ′, Y3 ′, and Y4 ′ indicating the position of the machining head 20 with respect to the workpiece W when the machining head 20 comes into contact with the respective cut surfaces CSX1, CSX2, CSY1, and CSY2 are position information at the time of contact. is there.
  • step ST3 the Y-direction coordinate Y3 ′ of the machining head 20 when contacting the first X-direction cut surface CSX1, the Y-direction coordinate Y4 ′ of the machining head 20 when contacting the second X-direction cutting surface CSX2,
  • This is an information calculation step.
  • the control device 40 determines the distance in the Z direction between the surface WS of the workpiece W shown in FIG. 8 and the tip 21 of the machining head 20 based on the amount of movement of the machining head 20 by the Z direction moving unit 33 in step ST2. LA is calculated. Based on the distance LA and the shape of the tip 21 of the machining head 20 stored in the storage unit 43, the control device 40 determines the laser light L in the machining head 20 when the machining head 20 contacts each cut surface CS.
  • Step ST4 The distance d between the optical axis LP and the position of the cutting surface CSX1, CSX2, CSY1, CSY2 where the tip 21 of the machining head 20 contacts is calculated, and the position of each cutting surface CSX1, CSX2, CSY1, CSY2 is calculated. (Step ST4).
  • the coordinates X3, X4, Y3, Y4 of each cutting plane CSX1, CSX2, CSY1, CSY2 calculated by the control device 40 are cutting plane position information indicating the position of each cutting plane CSX1, CSX2, CSY1, CSY2.
  • the control device 40 determines the tool diameter based on the coordinates X1, X2, Y1, Y2 of the movement path K1, which is position information at the time of machining, and the coordinates Y3 ′, Y4 ′, X3 ′, X4 ′, which are position information at the time of contact. Correction values ⁇ X and ⁇ Y are calculated (step ST5), and the flowchart shown in FIG. 3 is terminated. In step ST5, the control device 40 determines the tool diameter based on the coordinates X1, X2, Y1, and Y2 of the movement path K1 that is position information during processing and the coordinates Y3, Y4, X3, and X4 that are cutting surface position information. Correction values ⁇ X and ⁇ Y are calculated.
  • Coordinates X1, X2, Y1, and Y2, which are position information at the time of processing, indicate the position of the moving path K1 of the optical axis LP of the laser beam L emitted from the processing head 20, that is, the processing head 20, when forming the punch hole 100.
  • the coordinates Y3, Y4, X3, and X4, which are cut surface position information, indicate the positions of the cut surfaces CSX1, CSX2, CSY1, and CSY2.
  • the tool radius correction value ⁇ X which is a half dimension of the width DW of the cutting groove CD in the X direction, can be calculated using the following formula 1, and is half of the width DW of the cutting groove CD in the Y direction.
  • the tool radius correction value ⁇ Y that is the dimension of can be calculated using Equation 2 below.
  • step ST5 the control device 40 calculates the tool radius correction values ⁇ X and ⁇ Y using Equations 1 and 2. That is, the step ST5 is based on the coordinates X1, X2, Y1, Y2 of the movement path K1, which is position information at the time of machining, and the coordinates Y3 ′, Y4 ′, X3 ′, X4 ′, which are position information at the time of contact.
  • This is a tool radius correction value calculation step for calculating the radius correction values ⁇ X and ⁇ Y.
  • the program PG1 stored in the storage unit 43 of the control device 40 causes the control device 40, which is a computer, to execute steps ST1, ST3, and ST5, and calculates tool radius correction values ⁇ X and ⁇ Y at the time of machining. It is a program to do.
  • the laser beam machine 1 uses the tool radius correction values ⁇ X and ⁇ Y when machining the workpiece W.
  • the laser processing machine 1, the control device 40, and the program PG1 are processing position information indicating the position of the processing head 20 when the cut surfaces CSX1, CSX2, CSY1, and CSY2 are formed on the processing target W. Coordinates X1, X2, Y1, Y2, and coordinates X3 ′, X4 ′, Y3 ′, which are position information at the time of showing the position of the machining head 20 when the tip 21 of the machining head 20 is brought into contact with the cut surface CS, Based on Y4 ′, tool radius correction values ⁇ X and ⁇ Y are calculated.
  • the laser processing machine 1, the control device 40, and the program PG1 can calculate the tool diameter correction values ⁇ X and ⁇ Y by providing the laser processing machine 1 with the contact detection unit 50. It is not necessary to use a measuring instrument to calculate ⁇ X and ⁇ Y, and it is not necessary to provide an expensive optical instrument. As a result, the laser beam machine 1, the control device 40, and the program PG1 can calculate the tool radius correction values ⁇ X and ⁇ Y in a short time without increasing costs.
  • the laser beam machine 1, the control device 40, and the program PG1 determine the position of the machining head 20 when the tip 21 of the machining head 20 is brought into contact with the cut surfaces CSX1, CSX2, CSY1, and CSY2.
  • Each cutting based on the coordinates X3 ′, X4 ′, Y3 ′, Y4 ′, which are positional information at the time of contact, and the distance d when the machining head 20 contacts each of the cutting surfaces CSX1, CSX2, CSY1, CSY2 Coordinates X3, X4, Y3, and Y4, which are cut surface position information indicating the positions of the surfaces CSX1, CSX2, CSY1, and CSY2, are calculated.
  • the laser beam machine 1, the control device 40, and the program PG1 include coordinates X1, X2, Y1, and Y2 that are position information during processing, and coordinates X3, X4, Y3, and Y4 that are cutting surface position information. Since the tool radius correction values ⁇ X and ⁇ Y are calculated based on the above, the tool radius correction values ⁇ X and ⁇ Y can be accurately calculated.
  • the laser beam machine 1, the control device 40, and the program PG1 calculate the tool diameter correction value ⁇ X in the X direction and the tool diameter correction value ⁇ Y in the Y direction, Even if the shape differs from the Y direction, the part PT can be accurately cut from the workpiece W.
  • FIG. 9 is a diagram for explaining coordinates of a cut surface formed on the inner surface of the punched hole formed by the laser beam machine according to the second embodiment.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the laser beam machine 1 according to the second embodiment is different from the second embodiment except that a round hole 100-2 is formed in the workpiece W in order to calculate the tool radius correction value ⁇ D. 1 and the same processing as in the first embodiment is executed.
  • the machining head 20 is applied to the cut surface CS formed on the inner surface of the punch hole 100-2 at every predetermined angle ⁇ set around the center of the punch hole 100-2.
  • the position of the cut surface CS is calculated by bringing the tip 21 into contact.
  • the laser beam machine 1 according to the second embodiment calculates the position of the cutting plane CS and calculates tool diameter correction values ⁇ D1, ⁇ D2, ⁇ D3... ⁇ DN for each predetermined angle ⁇ .
  • the laser beam machine 1, the control device 40, and the program PG1 contact the tip 21 of the machining head 20 with the cut surface CS formed on the inner surface of the punch hole 100-2.
  • the tool diameter correction values ⁇ D1, ⁇ D2, ⁇ D3,..., DN for each predetermined angle ⁇ , it is necessary to use a measuring device to calculate the tool diameter correction values ⁇ D1, ⁇ D2, ⁇ D3,. There is no need to provide expensive optical equipment.
  • the laser beam machine 1, the control device 40, and the program PG1 can calculate the tool diameter correction values ⁇ D1, ⁇ D2, ⁇ D3,... ⁇ DN in a short time without increasing costs.
  • the laser beam machine 1, the control device 40, and the program PG1 form a circular punch hole 100-2 and provide tool diameter correction values ⁇ D1, ⁇ D2, ⁇ D3,... At each predetermined angle ⁇ . Since ⁇ DN is calculated, the part PT can be accurately cut from the workpiece W even if the laser light L has an asymmetric shape with respect to the optical axis LP.
  • FIG. 10 is a cross-sectional view showing a state in which the tip of the machining head of the laser beam machine according to Embodiment 3 is in contact with the cut surface of the punched hole.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the laser beam machine 1 according to the third embodiment has the same configuration as the first embodiment and executes the same processing as the first embodiment except that the shape of the tip 21 of the machining head 20-3 is different from that of the first embodiment. To do. As shown in FIG. 10, in the laser beam machine 1 according to the third embodiment, the width of the portion closer to the base end of the machining head 20-3 than the tip 21 of the machining head 20-3 is such that the machining head 20-3 It is formed narrower than the width of the tip 21.
  • the distal end 21 of the machining head 20-3 of the laser beam machine 1 according to Embodiment 3 is provided with a wide portion 23 that is formed wider than a portion near the proximal end. As shown in FIG.
  • the laser beam machine 1 causes the wide portion 23 provided at the tip 21 of the machining head 20-3 to come into contact with the cut surface CS formed on the inner surface of the punch hole 100. Then, the position of the cutting plane CS is calculated, and the tool radius correction values ⁇ X and ⁇ Y are calculated.
  • the laser beam machine 1, the control device 40, and the program PG1 bring the tip 21 of the machining head 20-3 into contact with the cutting surface CS, and position the cutting surface CS.
  • the laser beam machine 1, the control device 40, and the program PG1 can calculate the tool radius correction values ⁇ X and ⁇ Y in a short time without increasing costs.
  • the wide portion 23 is provided at the tip 21 of the machining head 20-3, the wide portion of the tip 21 of the machining head 20-3 is provided. 23 can be brought into contact with the cut surface CS, and the position of the cut surface CS can be accurately calculated.
  • FIG. 11 is a cross-sectional view showing a state in which the tip of the machining head of the laser beam machine according to Embodiment 4 is in contact with a portion of the cut surface near the surface of the workpiece.
  • FIG. 12 is a cross-sectional view showing a state in which the tip of the machining head of the laser beam machine according to Embodiment 4 is in contact with a portion of the cut surface near the back surface of the workpiece. 11 and 12, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the laser beam machine 1 according to the fourth embodiment has the same configuration as that of the first embodiment except that the shape of the tip of the machining head 20-4 is different from that of the first embodiment. The same process as in the first mode is executed.
  • the laser beam machine 1 according to the fourth embodiment is provided with a wide portion 23 at the tip 21 of the machining head 20-4 as shown in FIGS.
  • the surface WS of the workpiece W is a surface irradiated with the laser light L from the machining head 20-4, and the back surface WR of the workpiece W is processed by the laser light L penetrating the workpiece W. It is a surface that is ejected from the object W.
  • the laser beam machine 1 according to Embodiment 4 contacts the wide portion 23 provided at the tip of the machining head 20-4 with a portion of the cutting surface CS near the surface WS of the workpiece W.
  • the position of the cut surface CS is calculated, and the tool radius correction values ⁇ X and ⁇ Y near the surface WS of the workpiece W are calculated.
  • the laser beam machine 1 according to the fourth embodiment has a wide portion 23 provided at the tip 21 of the machining head 20-4 at a location near the back surface WR of the workpiece W on the cut surface CS.
  • the position of the cut surface CS is calculated by making contact, and the tool diameter correction values ⁇ X and ⁇ Y near the back surface WR of the workpiece W are calculated.
  • the tool radius correction values ⁇ X and ⁇ Y near the front surface WS of the workpiece W and the tool radius near the back surface WR of the workpiece W are processed.
  • An average value of the correction values ⁇ X and ⁇ Y is used.
  • the laser beam machine 1, the control device 40, and the program PG1 bring the tip 21 of the machining head 20-4 into contact with the cutting surface CS, and position the cutting surface CS.
  • the laser beam machine 1, the control device 40, and the program PG1 can calculate the tool radius correction values ⁇ X and ⁇ Y in a short time without increasing costs.
  • the part PT can be accurately cut from the workpiece W. it can.
  • the cut surface CS is inclined so that the planar shape of the punch hole 100 on the surface WS side of the workpiece W is larger than the planar shape of the punch hole 100 on the back surface WR side.
  • the cut surface CS may be inclined so that the planar shape of the hole 100 on the front surface WS side of the workpiece W is smaller than the planar shape of the hole 100 on the rear surface WR side.
  • FIG. 13 is a flowchart illustrating a process in which the control device for a laser beam machine according to the fifth embodiment calculates a tool radius correction value.
  • FIG. 14 is a diagram for explaining the coordinates of the cut surface formed on the inner surface of the punched hole formed in the workpiece in step ST1 shown in FIG.
  • FIG. 15 is a perspective view showing a state in which the tip of the machining head is opposed to the surface of the workpiece on which the hole is formed in step ST2-5 shown in FIG. 16 is a cross-sectional view of the workpiece and the tip of the machining head shown in FIG.
  • FIG. 17 is a perspective view showing a state in which the tip of the machining head has entered the inside of the punched hole in step ST3-5 shown in FIG. 18 is a cross-sectional view of the workpiece and the tip of the machining head shown in FIG.
  • the laser beam machine 1 according to the fifth embodiment uses the function as a copying unit of the control device 40 in place of the contact detection unit 50 of the laser beam machine 1 according to the first embodiment, and uses the cut surfaces CSX1, CSX2, and the like. Except for detecting the positions of CSY1 and CSY2, the same configuration as in the first embodiment and the same processing as in the first embodiment are executed.
  • the control device 40 of the laser beam machine 1 according to the fifth embodiment is the same as the first embodiment when the correction value calculation unit 45 calculates the respective tool diameter correction values ⁇ X and ⁇ Y in the X direction and the Y direction.
  • a part of the workpiece W is cut to form a rectangular punched hole 100 at a position where the workpiece WB becomes the remaining material BM (step ST1).
  • the control device 40 of the laser beam machine 1 according to the fifth embodiment like the first embodiment, coordinates X1, X2, Y1, Y2 of the movement path K1, which is position information at the time of processing shown in FIG. Is calculated and acquired.
  • the control device 40 causes the tip 21 of the machining head 20 to face the surface WS where the punch hole 100 of the workpiece W is not formed (step ST2-5).
  • the control device 40 sets the distance LB between the surface WS of the workpiece W and the tip 21 of the machining head 20 to a distance determined by the machining conditions by the function of the copying portion. To do.
  • the control device 40 moves the machining head 21 from the position where the tip 21 faces the surface WS of the workpiece W to the hole 100 along the surface WS, and moves the machining head 20 to each of the cut surfaces CSX1, CSX2, CSY1, and so on. It approaches CSY2 in order (step ST3-5).
  • the control device 40 uses the function of the copying unit based on the measurement result of the distance measurement unit 60, as shown in FIGS.
  • the workpiece W is moved relative to the workpiece W in the Z direction, and the machining head 20 enters the inside of the punch hole 100.
  • the distance LB between the tip 21 of the machining head 20 and each of the cut surfaces CSX1, CSX2, CSY1, CSY2 is maintained at a distance determined by the machining conditions.
  • the control device 40 uses the function of the copying unit and the machining head 20 and the workpiece. Calculate and obtain coordinates X3 ′′, X4 ′′, Y3 ′′, Y4 ′′ of the machining head 20 indicating the position of the machining head 20 with respect to the workpiece W when the W moves relative to the Z direction. To do.
  • the coordinate in the Y direction of the first X-direction cut surface CSX1 is Y3, and corresponds to the Y-direction coordinate Y3 '' of the machining head 20 when approaching the first X-direction cut surface CSX1.
  • the coordinate in the Y direction of the second X-direction cut surface CSX2 is Y4, and corresponds to the coordinate Y4 ′′ in the Y direction of the machining head 20 when approaching the second X-direction cut surface CSX2.
  • the X-direction coordinate of the first Y-direction cut surface CSY1 is X3, and corresponds to the X-direction coordinate X3 ′′ of the machining head 20 when approaching the first Y-direction cut surface CSY1.
  • the X-direction coordinate of the second Y-direction cut surface CSY2 is X4 and corresponds to the X-direction coordinate X4 '' of the machining head 20 when approaching the second Y-direction cut surface CS
  • Coordinates X3 ′′, X4 ′′, Y3 ′′, Y4 ′′ indicating the position of the processing head 20 with respect to the processing object W when the processing head 20 approaches each cut surface CSX1, CSX2, CSY1, CSY2 are: It is position information at the time of movement. That is, in step ST3-5, the Y-direction coordinate Y3 ′′ of the machining head 20 when approaching the first X-direction cutting plane CSX1, and the Y-direction coordinate of the machining head 20 when approaching the second X-direction cutting plane CSX2.
  • the control device 40 Based on the movement amount of the machining head 20 by the X-direction moving unit 31, the Y-direction moving unit 32, and the Z-direction moving unit 33 of the relative moving unit 30 in Step ST3-5, the control device 40 performs the processing object shown in FIG. A distance LC in the Z direction between the surface WS of the W and the tip 21 of the machining head 20, and a distance between the optical axis LP of the laser beam L in the machining head 20 and each of the cut surfaces CSX1, CSX2, CSY1, CSY2 d5 is calculated, and the positions of the cutting planes CSX1, CSX2, CSY1, CSY2 are calculated (step ST4-5).
  • step ST4-5 the control device 40 determines the Y direction of the first X-direction cut surface CSX1 based on the Y-direction coordinate Y3 ′′ of the machining head 20 and the distance d5 when approaching the first X-direction cut surface CSX1.
  • the coordinate Y3 is calculated.
  • the control device 40 determines the Y-direction coordinate Y4 ′′ of the machining head 20 when approaching the second X-direction cutting plane CSX2, and the machining head when approaching the first Y-direction cutting plane CSY1. 20 based on the X direction coordinate X3 ′′, the X direction coordinate X4 ′′ of the machining head 20 when approaching the second Y direction cut surface CSY2, and the distance d5, the Y direction of the second X direction cut surface CSX2 The coordinate Y4, the X-direction coordinate X3 of the first Y-direction cut surface CSY1, and the X-direction coordinate X4 of the second Y-direction cut surface CSY2 are calculated.
  • the coordinates X3, X4, Y3, and Y4 of the cut surfaces CSX1, CSX2, CSY1, and CSY2 by the control device 40 are cut surface position information.
  • the control device 40 is based on the coordinates X1, X2, Y1, Y2 of the movement path K1 that is position information at the time of processing, and the coordinates X3 ′′, X4 ′′, Y3 ′′, Y4 ′′ that are position information at the time of movement. Then, the tool radius correction values ⁇ X and ⁇ Y are calculated (step ST5-5), and the process of the flowchart shown in FIG. 13 is ended.
  • step ST5-5 the control device 40, based on the coordinates X1, X2, Y1, Y2 of the movement path K1 that is position information during processing and the coordinates X3, X4, Y3, Y4 that are cutting surface position information, Similarly to the first embodiment described above, the tool radius correction values ⁇ X and ⁇ Y are calculated using Equations 1 and 2.
  • step ST5-5 the coordinates X1, X2, Y1, and Y2 of the movement path K1 that is position information at the time of processing, and the coordinates X3 ′′, X4 ′′, Y3 ′′, and Y4 ′′ that are position information at the time of movement.
  • a tool radius correction value calculating step for calculating tool radius correction values ⁇ X and ⁇ Y based on the above.
  • the program PG1 stored in the storage unit 43 of the control device 40 is a program for causing the control device 40, which is a computer, to execute step ST1, step ST3-5, and step ST5-5.
  • the laser beam machine 1 uses the tool radius correction values ⁇ X and ⁇ Y when machining the workpiece W.
  • the laser processing machine 1, the control device 40, and the program PG1 according to the fifth embodiment are processing position information indicating the position of the processing head 20 when the cut surfaces CSX1, CSX2, CSY1, and CSY2 are formed on the processing target W. And coordinates X3 ′′, X4 ′′, Y3 ′′, Y4 which are position information at the time of movement indicating the position of the machining head 20 when the machining head 20 moves in the Z direction. Based on ′′, tool radius correction values ⁇ X and ⁇ Y are calculated.
  • the laser processing machine 1, the control device 40, and the program PG1 can calculate the tool radius correction values ⁇ X and ⁇ Y when the control device 40 functions as a copying unit, the tool radius correction values ⁇ X, It is not necessary to use a measuring instrument to calculate ⁇ Y, and it is not necessary to provide an expensive optical instrument. As a result, the laser beam machine 1, the control device 40, and the program PG1 can calculate the tool radius correction values ⁇ X and ⁇ Y in a short time without increasing costs.
  • the laser beam machine 1, the control device 40, and the program PG1 have coordinates X3 ′′, which are position information at the time of movement indicating the position of the machining head 20 when the machining head 20 moves in the Z direction. Cut surface position information indicating the positions of the cut surfaces CSX1, CSX2, CSY1, CSY2 based on X4 ′′, Y3 ′′, Y4 ′′ and the distance d5 when the machining head 20 moves in the Z direction. Certain coordinates X3, X4, Y3, and Y4 are calculated.
  • the laser beam machine 1, the control device 40, and the program PG1 include coordinates X1, X2, Y1, and Y2 that are position information during processing, and coordinates X3, X4, Y3, and Y4 that are cutting surface position information. Since the tool radius correction values ⁇ X and ⁇ Y are calculated based on the above, the tool radius correction values ⁇ X and ⁇ Y can be accurately calculated.
  • the laser beam machine 1, the control device 40, and the program PG1 calculate the tool radius correction value ⁇ X in the X direction and the tool radius correction value ⁇ Y in the Y direction. Even if the shape differs from the Y direction, the part PT can be accurately cut from the workpiece W.
  • FIG. 19 is a diagram illustrating an example of a hardware configuration of a control device for a laser beam machine according to each embodiment.
  • the control device 40 receives information on each part PT on the workpiece W and machining conditions from an input device 41 connected to the input / output interface 441 shown in FIG.
  • the input device 41 is configured by a touch panel, a keyboard, a mouse, a trackball, or a combination thereof.
  • the control device 40 displays information on each part PT in the workpiece W on the display device 42 connected to the input / output interface 441.
  • the display device 42 is a liquid crystal display device, but is not limited to a liquid crystal display device.
  • the control device 40 is a computer including a CPU (Central Processing Unit) 443, a memory 444, and an input / output interface 441.
  • the memory 444 stores software, firmware, or a combination of software and firmware as a program PG.
  • the program PG stored in the memory 444 includes a program PG1 for calculating tool radius correction values ⁇ X, ⁇ Y, ⁇ D.
  • the memory 444 stores information on the parts PT in the workpiece W input from the input device 41 and the processing conditions.
  • the memory 444 is configured by a nonvolatile or volatile semiconductor memory, a magnetic disk, an optical disk, or a magneto-optical disk.
  • Non-volatile or volatile semiconductor memory uses RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read-Only Memory) It is done.
  • the CPU 443 executes the program PG stored in the memory 444 to realize the functions of the control unit 44 and the correction value calculation unit 45.
  • the control device 40 realizes the function of the storage unit 43 by the memory 444.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

A laser cutting machine (1) irradiates a target object (W) with laser light (L) to cut the target object (W) and form a cutting surface (CS) on the target object (W). The laser cutting machine (1) includes a target object support unit (10) that supports the target object (W), a cutting head (20) that irradiates the target object (W) with laser light (L), and a relative movement unit (30) that can move the cutting head (20) in the X direction, Y direction, and Z direction. The laser cutting machine (1) includes a contact detection unit (50) that detects contact of the target object (W) with the cutting head (20), and a control device (40) that uses the cutting surface (CS) to compute a tool diameter correction value during cutting. The control device (40) computes the tool diameter correction value on the basis of cutting-time position information that indicates a position of the cutting head (20) when the cutting surface (CS) is formed on the target object (W) and on the basis of contact-time position information that indicates a position of the cutting head (20) when the cutting head (20) contacts the cutting surface (CS).

Description

レーザ加工機、補正値算出装置及びプログラムLaser processing machine, correction value calculation device, and program
 本発明は、加工対象物を加工するレーザ加工機、補正値算出装置及びプログラムに関する。 The present invention relates to a laser processing machine, a correction value calculation device, and a program for processing a workpiece.
 レーザ加工を高精度で実施するためには、レーザ加工によって形成される切断溝の幅を考慮し、切断溝の幅の半分の寸法分補正した経路に沿って加工ヘッドと加工対象物を相対的に移動させて、レーザ光を照射する必要がある。切断溝の幅の半分の寸法は、工具径補正値と言われる。一般的なレーザ加工機は、切断溝の幅の半分の寸法である工具径補正値を、任意の値に設定可能である。 In order to carry out laser processing with high accuracy, the width of the cutting groove formed by laser processing is taken into consideration, and the processing head and the workpiece are relatively moved along a path corrected by half the width of the cutting groove. It is necessary to irradiate with laser light. A dimension that is half the width of the cutting groove is called a tool radius correction value. A general laser beam machine can set a tool radius correction value, which is half the width of the cutting groove, to an arbitrary value.
 また、レーザ加工機の加工条件は、レーザ光の出力、レーザ光の周波数、レーザ光のデューティ、レーザガスの圧力、及び焦点位置により定められる。レーザ加工機は、加工条件が変化させられると、切断溝の幅が変化するため、加工条件が変化する度に、工具径補正値を算出する必要がある。 Further, the processing conditions of the laser processing machine are determined by the output of the laser beam, the frequency of the laser beam, the duty of the laser beam, the pressure of the laser gas, and the focal position. The laser processing machine needs to calculate a tool radius correction value every time the machining conditions change because the width of the cutting groove changes when the machining conditions are changed.
 現状のレーザ加工機は、工具径補正値を算出するためには、設定された寸法のパーツを加工対象物から形成した後、測定機器を用いてパーツの実際の寸法を測定し、設定された寸法と実際の寸法との差異から算出する。しかし、この方法は、測定機器が必要であり、工具径補正値を算出するためには、多くの時間と工数を要する。CCD(Charge-Coupled Device)カメラにより構成され、かつ切断溝の幅を測定する光学機器を備えるレーザ加工機が提案されている(特許文献1参照)。 In order to calculate the tool radius correction value, the current laser processing machine is configured by measuring the actual dimensions of the part using a measuring device after forming a part of the set dimension from the workpiece. Calculated from the difference between the dimensions and actual dimensions. However, this method requires a measuring instrument, and requires a lot of time and man-hours to calculate the tool radius correction value. There has been proposed a laser processing machine that includes a CCD (Charge-Coupled Device) camera and includes an optical device that measures the width of a cutting groove (see Patent Document 1).
特開平10-258384号公報JP-A-10-258384
 特許文献1に示されたレーザ加工機は、高価な光学機器を備え、光学機器が撮像した画像に画像処理を施して、工具径補正値を算出するので、コストが高騰するという問題があった。 The laser processing machine disclosed in Patent Document 1 includes an expensive optical device, and performs image processing on an image captured by the optical device to calculate a tool diameter correction value, which increases the cost. .
 本発明は、上記に鑑みてなされたものであって、コストが高騰することなく、短時間で工具径補正値を算出することができるレーザ加工機を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a laser processing machine capable of calculating a tool diameter correction value in a short time without increasing cost.
 上述した課題を解決し、目的を達成するために、本発明は、加工対象物にレーザ光を照射して、加工対象物を加工するとともに、前記加工対象物に切断面を形成するレーザ加工機である。レーザ加工機は、加工対象物にレーザ光を照射する加工ヘッドと、前記切断面を用いて加工時の工具径補正値を算出する補正値算出装置と、を備える。補正値算出装置は、加工対象物に切断面を形成した時の加工対象物に対する加工ヘッドの位置を示す加工時位置情報と、切断面に加工ヘッドが接触した時の加工対象物に対する加工ヘッドの位置を示す接触時位置情報と、に基づいて工具径補正値を算出する。加工ヘッドは、加工ヘッドの先端を加工対象物の表面よりも加工対象物の裏面寄りに位置付けた状態から表面に沿って切断面に近付けられて、切断面に接触する。 In order to solve the above-described problems and achieve the object, the present invention irradiates a laser beam onto a workpiece, processes the workpiece, and forms a cut surface on the workpiece. It is. The laser processing machine includes a processing head that irradiates a processing target with laser light, and a correction value calculation device that calculates a tool diameter correction value during processing using the cut surface. The correction value calculation device includes processing position information indicating the position of the processing head with respect to the processing target when the cutting surface is formed on the processing target, and the processing head of the processing head with respect to the processing target when the processing head contacts the cutting surface. A tool radius correction value is calculated based on the contact position information indicating the position. The processing head is brought close to the cut surface along the surface from the state where the tip of the processing head is positioned closer to the back surface of the processing target than the surface of the processing target, and contacts the cutting surface.
 本発明に係るレーザ加工機は、コストが高騰することなく、短時間で工具径補正値を算出することができる、という効果を奏する。 The laser beam machine according to the present invention has an effect that the tool radius correction value can be calculated in a short time without cost increase.
実施の形態1に係るレーザ加工機の構成を示す図The figure which shows the structure of the laser beam machine which concerns on Embodiment 1. FIG. 図1に示されたレーザ加工機によりパーツと残材とに切断された加工対象物の一例を示す斜視図The perspective view which shows an example of the process target object cut | disconnected by parts and the remaining material with the laser processing machine shown by FIG. 実施の形態1に係るレーザ加工機の制御装置が工具径補正値を算出する過程を示すフローチャートThe flowchart which shows the process in which the control apparatus of the laser beam machine which concerns on Embodiment 1 calculates a tool diameter correction value. 図3に示されたステップST1において抜き穴が形成された加工対象物を示す斜視図The perspective view which shows the processing target object in which the punch hole was formed in step ST1 shown by FIG. 図4に示された加工対象物に形成された抜き穴の内面に形成された切断面の座標を説明する図The figure explaining the coordinate of the cut surface formed in the inner surface of the punch hole formed in the workpiece shown by FIG. 図3に示されたステップST2において抜き穴の内側に加工ヘッドの先端を進入させた状態を示す斜視図The perspective view which shows the state which made the front-end | tip of the process head approach the inside of a punch hole in step ST2 shown by FIG. 図3に示されたステップST3において抜き穴の切断面に加工ヘッドの先端を接触させた状態を示す斜視図The perspective view which shows the state which made the front-end | tip of the process head contact the cut surface of a punch hole in step ST3 shown by FIG. 図7に示された加工対象物と加工ヘッドの先端の断面図Sectional view of the workpiece and the tip of the machining head shown in FIG. 実施の形態2に係るレーザ加工機が形成した抜き穴の内面に形成された切断面の座標を説明する図The figure explaining the coordinate of the cut surface formed in the inner surface of the punch hole which the laser beam machine concerning Embodiment 2 formed 実施の形態3に係るレーザ加工機の加工ヘッドの先端が抜き孔の切断面に接触した状態を示す断面図Sectional drawing which shows the state which the front-end | tip of the processing head of the laser beam machine concerning Embodiment 3 contacted the cut surface of the punching hole. 実施の形態4に係るレーザ加工機の加工ヘッドの先端が切断面の加工対象物の表面寄りの箇所に接触した状態を示す断面図Sectional drawing which shows the state which the front-end | tip of the processing head of the laser beam machine concerning Embodiment 4 contacted the location near the surface of the workpiece of a cut surface. 実施の形態4に係るレーザ加工機の加工ヘッドの先端が切断面の加工対象物の裏面寄りの箇所に接触した状態を示す断面図Sectional drawing which shows the state which the front-end | tip of the processing head of the laser beam machine concerning Embodiment 4 contacted the location near the back surface of the workpiece of a cut surface. 実施の形態5に係るレーザ加工機の制御装置が工具径補正値を算出する過程を示すフローチャートThe flowchart which shows the process in which the control apparatus of the laser beam machine which concerns on Embodiment 5 calculates a tool diameter correction value. 図13に示されたステップST1において加工対象物に形成された抜き穴の内面に形成された切断面の座標を説明する図The figure explaining the coordinate of the cut surface formed in the inner surface of the punch hole formed in the workpiece in step ST1 shown in FIG. 図13に示されたステップST2-5において抜き穴が形成された加工対象物の表面に加工ヘッドの先端が対向させられた状態を示す斜視図The perspective view which shows the state by which the front-end | tip of the process head was made to oppose the surface of the process target object in which the hole was formed in step ST2-5 shown by FIG. 図15に示された加工対象物と加工ヘッドの先端の断面図Sectional view of the workpiece and the tip of the machining head shown in FIG. 図13に示されたステップST3-5において抜き穴の内側に加工ヘッドの先端を進入させた状態を示す斜視図The perspective view which shows the state which made the front-end | tip of the process head approach the inside of a punch hole in step ST3-5 shown by FIG. 図17に示された加工対象物と加工ヘッドの先端の断面図Sectional drawing of the workpiece and the tip of the machining head shown in FIG. 各実施の形態に係るレーザ加工機の制御装置のハードウェアの構成の一例を示す図The figure which shows an example of the structure of the hardware of the control apparatus of the laser beam machine which concerns on each embodiment
 以下に、本発明の実施の形態に係るレーザ加工機、補正値算出装置及びプログラムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a laser beam machine, a correction value calculation device, and a program according to an embodiment of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、実施の形態1に係るレーザ加工機の構成を示す図である。図2は、図1に示されたレーザ加工機によりパーツと残材とに切断された加工対象物の一例を示す斜視図である。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a laser beam machine according to the first embodiment. FIG. 2 is a perspective view showing an example of a workpiece to be cut into parts and a remaining material by the laser processing machine shown in FIG.
 図1に示すレーザ加工機1は、加工対象物Wにレーザ光Lを照射して、加工対象物Wを加工するものである。実施の形態1において、レーザ加工機1は、加工対象物Wにレーザ光Lを照射して、図2に示すように、加工対象物Wに切断溝CDを形成することにより、加工対象物WをパーツPTと残材BMとに切断するための装置である。実施の形態1において、レーザ加工機1によりパーツPTと残材BMとに切断される加工対象物Wは、金属により構成され、平板状に形成されている。即ち、加工対象物Wは、板金である。 The laser processing machine 1 shown in FIG. 1 processes the processing target object W by irradiating the processing target object W with the laser beam L. In the first embodiment, the laser beam machine 1 irradiates the workpiece W with the laser light L, and forms the cutting groove CD in the workpiece W as shown in FIG. Is a device for cutting the part PT and the remaining material BM. In the first embodiment, the workpiece W to be cut into the part PT and the remaining material BM by the laser processing machine 1 is made of metal and is formed in a flat plate shape. That is, the workpiece W is a sheet metal.
 パーツPTは、加工対象物Wから切断されて、レーザ加工機1よりも後工程において、曲げ加工、溶接加工、及び塗装加工のうちの少なくとも1つの加工が施されて、製品に組み立てられる。残材BMは、製品に組み立てられることなく、廃棄される。レーザ加工機1が、加工対象物Wに形成する切断溝CDは、加工対象物Wを貫通して、加工対象物WをパーツPTと残材BMとに分離する溝である。切断溝CDは、パーツPTの外縁の外側に形成される。切断溝CDは、レーザ加工機1によりレーザ光Lが照射されて形成されるために、細いながらも幅を有している。レーザ加工機1に入力されるパーツPTの情報は、加工対象物WにおけるパーツPTの外縁の位置を示す。レーザ加工機1は、入力されたパーツPTの外縁の位置に沿って切断溝CDを形成すると、切断溝CDの幅DWの半分の寸法分、パーツPTの外縁部を切断してしまうために、切断溝CDの幅DWの半分の寸法分、パーツPTの外縁よりも外側に切断溝CDを形成する必要がある。 The part PT is cut from the workpiece W and subjected to at least one of bending processing, welding processing, and painting processing in a later process than the laser processing machine 1 and assembled into a product. The remaining material BM is discarded without being assembled into a product. The cutting groove CD formed in the workpiece W by the laser beam machine 1 is a groove that penetrates the workpiece W and separates the workpiece W into a part PT and a remaining material BM. The cutting groove CD is formed outside the outer edge of the part PT. Since the cutting groove CD is formed by irradiating the laser beam L with the laser beam machine 1, it is thin but has a width. The information on the part PT input to the laser beam machine 1 indicates the position of the outer edge of the part PT on the workpiece W. When the laser processing machine 1 forms the cutting groove CD along the position of the outer edge of the input part PT, the outer edge of the part PT is cut by the half of the width DW of the cutting groove CD. It is necessary to form the cutting groove CD outside the outer edge of the part PT by the half of the width DW of the cutting groove CD.
 レーザ加工機1は、図1に示すように、加工対象物Wを支持する加工対象物支持部10と、加工対象物Wにレーザ光Lを照射する加工ヘッド20と、加工対象物支持部10と加工ヘッド20とを相対的に移動可能な相対移動部30と、加工対象物Wと加工ヘッド20とが接触したことを検出する接触検出部50と、補正値算出装置である制御装置40とを備える。 As shown in FIG. 1, the laser processing machine 1 includes a processing target support unit 10 that supports the processing target W, a processing head 20 that irradiates the processing target W with laser light L, and a processing target support unit 10. A relative movement unit 30 that can relatively move the machining head 20, a contact detection unit 50 that detects contact between the workpiece W and the machining head 20, and a control device 40 that is a correction value calculation device; Is provided.
 加工対象物支持部10は、加工対象物Wが置かれて、加工対象物Wを支持する。加工対象物支持部10は、加工対象物Wを水平方向と平行になる姿勢で支持することにより、支持した加工対象物Wの移動を抑制する。 The processing object support unit 10 supports the processing object W on which the processing object W is placed. The processing object support unit 10 suppresses the movement of the supported processing object W by supporting the processing object W in a posture parallel to the horizontal direction.
 加工ヘッド20は、加工対象物Wにレーザ光Lを照射して、加工対象物Wを切断する切断溝CDを加工対象物Wに形成する。加工ヘッド20は、加工対象物WをパーツPTと残材BMとに切断する。実施の形態1において、加工ヘッド20の加工対象物Wに対向する先端21は、加工対象物Wに近付くのにしたがって小径に形成されている。また、加工ヘッド20の先端21は、レーザ光Lを通すレーザ通し孔22を備える。 The machining head 20 irradiates the workpiece W with the laser light L, and forms a cutting groove CD in the workpiece W to cut the workpiece W. The machining head 20 cuts the workpiece W into a part PT and a remaining material BM. In the first embodiment, the tip 21 of the machining head 20 that faces the workpiece W is formed with a smaller diameter as it approaches the workpiece W. Further, the tip 21 of the processing head 20 includes a laser through hole 22 through which the laser light L passes.
 相対移動部30は、加工ヘッド20と加工対象物支持部10とを相対的に移動させる。実施の形態1において、相対移動部30は、加工ヘッド20を移動させるが、加工対象物支持部10を移動させても良く、加工ヘッド20と加工対象物支持部10との双方を移動させても良い。 The relative movement unit 30 relatively moves the machining head 20 and the workpiece support 10. In the first embodiment, the relative moving unit 30 moves the processing head 20, but the processing target support unit 10 may be moved, and both the processing head 20 and the processing target support unit 10 are moved. Also good.
 また、相対移動部30は、加工対象物Wの加工ヘッド20に対向する表面WSに沿う表面方向であるX方向に沿って加工ヘッド20と加工対象物支持部10とを相対的に移動させるX方向移動部31を備える。相対移動部30は、加工対象物Wの表面WSに沿う表面方向でありかつX方向に交差するY方向に沿って加工ヘッド20と加工対象物支持部10とを相対的に移動させるY方向移動部32を備える。相対移動部30は、加工対象物Wの厚み方向であるZ方向に沿って加工ヘッド20と加工対象物支持部10とを相対的に移動させるZ方向移動部33を備える。X方向は、第1の直線方向であり、Y方向は、第2の直線方向である。実施の形態1において、X方向とY方向とZ方向とは、互いに直交している。実施の形態1において、X方向移動部31は、加工ヘッド20をX方向に移動させ、Y方向移動部32は、加工ヘッド20をY方向に移動させ、Z方向移動部33は、加工ヘッド20をZ方向に移動させる。 In addition, the relative movement unit 30 relatively moves the machining head 20 and the workpiece support unit 10 along the X direction that is the surface direction along the surface WS of the workpiece W facing the machining head 20. A direction moving unit 31 is provided. The relative movement unit 30 is a surface direction along the surface WS of the workpiece W and moves in the Y direction to relatively move the machining head 20 and the workpiece support unit 10 along the Y direction intersecting the X direction. The unit 32 is provided. The relative movement unit 30 includes a Z-direction movement unit 33 that relatively moves the machining head 20 and the workpiece support unit 10 along the Z direction that is the thickness direction of the workpiece W. The X direction is the first linear direction, and the Y direction is the second linear direction. In the first embodiment, the X direction, the Y direction, and the Z direction are orthogonal to each other. In the first embodiment, the X direction moving unit 31 moves the processing head 20 in the X direction, the Y direction moving unit 32 moves the processing head 20 in the Y direction, and the Z direction moving unit 33 sets the processing head 20. Is moved in the Z direction.
 X方向移動部31、Y方向移動部32及びZ方向移動部33は、モータ、モータの回転駆動力により加工ヘッド20を移動させるリードスクリュー、及び加工ヘッド20の移動方向を案内するリニアガイドにより構成される。X方向移動部31、Y方向移動部32及びZ方向移動部33の構成は、モータ、リードスクリュー、及びリニアガイドによる構成に限定されない。 The X-direction moving unit 31, the Y-direction moving unit 32, and the Z-direction moving unit 33 include a motor, a lead screw that moves the machining head 20 by the rotational driving force of the motor, and a linear guide that guides the movement direction of the machining head 20. Is done. The configuration of the X-direction moving unit 31, the Y-direction moving unit 32, and the Z-direction moving unit 33 is not limited to the configuration using a motor, a lead screw, and a linear guide.
 接触検出部50は、加工ヘッド20と、加工対象物Wとが接触したことを検出するものである。実施の形態1において、接触検出部50は、加工ヘッド20と加工対象物Wとに電圧を印加し、加工ヘッド20と加工対象物Wとの間に流れる電流又は加工ヘッド20と加工対象物Wとの間の電位差を検出することにより、加工ヘッド20と加工対象物Wとが接触したことを検出する。接触検出部50は、検出結果を制御装置40に出力する。 The contact detection unit 50 detects that the machining head 20 and the workpiece W are in contact with each other. In the first embodiment, the contact detection unit 50 applies a voltage to the machining head 20 and the workpiece W, and a current flowing between the machining head 20 and the workpiece W or the machining head 20 and the workpiece W. Is detected as a contact between the machining head 20 and the workpiece W. The contact detection unit 50 outputs the detection result to the control device 40.
 また、レーザ加工機1は、加工ヘッド20と加工対象物Wとの間の距離を測定する距離測定部60を備える。実施の形態1において、距離測定部60は、加工ヘッド20と加工対象物Wとの間の距離に応じた静電容量を測定する。距離測定部60が測定する加工ヘッド20と加工対象物Wとの間の静電容量は、加工ヘッド20と加工対象物Wとの間の距離に応じて変化する。即ち、加工ヘッド20と加工対象物Wとの間の距離が変化すると、加工ヘッド20と加工対象物Wとの間の静電容量が変化する。距離測定部60は、加工ヘッド20と加工対象物Wとの間の静電容量を制御装置40に出力する。実施の形態1において、距離測定部60は、加工ヘッド20と加工対象物Wとの間の静電容量を測定する静電容量式のセンサであるが、光学式のセンサでも良い。 The laser beam machine 1 also includes a distance measuring unit 60 that measures the distance between the machining head 20 and the workpiece W. In the first embodiment, the distance measuring unit 60 measures the capacitance according to the distance between the machining head 20 and the workpiece W. The electrostatic capacitance between the machining head 20 and the workpiece W measured by the distance measuring unit 60 changes according to the distance between the machining head 20 and the workpiece W. That is, when the distance between the machining head 20 and the workpiece W changes, the capacitance between the machining head 20 and the workpiece W changes. The distance measuring unit 60 outputs the capacitance between the machining head 20 and the workpiece W to the control device 40. In the first embodiment, the distance measuring unit 60 is a capacitance type sensor that measures the capacitance between the machining head 20 and the workpiece W, but may be an optical sensor.
 制御装置40は、コンピュータである。制御装置40は、相対移動部30と加工ヘッド20とを制御して加工対象物Wに切断溝CDを形成して、加工対象物Wの一部を切断する。加工対象物Wに形成された切断溝CDの内面は、パーツPTと残材BMとを切断する切断面CSとなる。制御装置40は、加工対象物Wをレーザ加工して、パーツPTと残材BMとに切断する際に、加工ヘッド20と加工対象物WとをX方向とY方向とに沿って相対的に移動させるとともに、距離測定部60の測定結果に基づいて、加工ヘッド20と加工対象物Wとの間の距離を設定された距離に維持する。このために、制御装置40は、距離測定部60の測定結果に基づいて、相対移動部30に加工ヘッド20と加工対象物Wとを相対的に移動させて、加工対象物Wと加工ヘッド20との距離を一定に維持する倣い部である。 The control device 40 is a computer. The control device 40 controls the relative moving unit 30 and the processing head 20 to form the cutting groove CD in the processing target object W, and cuts a part of the processing target object W. The inner surface of the cutting groove CD formed in the workpiece W becomes a cutting surface CS for cutting the part PT and the remaining material BM. When the control device 40 laser-processes the workpiece W and cuts the part PT and the remaining material BM, the control device 20 relatively moves the workpiece head 20 and the workpiece W along the X and Y directions. While moving, based on the measurement result of the distance measurement part 60, the distance between the process head 20 and the process target object W is maintained at the set distance. For this purpose, the control device 40 moves the processing head 20 and the processing target W relative to the relative movement unit 30 based on the measurement result of the distance measuring unit 60, and the processing target W and the processing head 20. This is a copying portion that keeps the distance to the constant.
 制御装置40は、加工対象物Wにおける各パーツPTの情報、加工時のプログラムPG、及び加工条件を入力する入力装置41が接続している。加工条件は、レーザ光Lの出力、レーザ光Lの周波数、レーザ光Lのデューティ、レーザガスの圧力、レーザ光Lの焦点位置、及び加工時の加工ヘッド20と加工対象物Wとの間の距離である。また、制御装置40は、加工対象物Wにおける各パーツPTの情報を表示する表示装置42が接続している。 The control device 40 is connected to an input device 41 for inputting information on each part PT in the workpiece W, a program PG at the time of machining, and machining conditions. The processing conditions include the output of the laser light L, the frequency of the laser light L, the duty of the laser light L, the pressure of the laser gas, the focal position of the laser light L, and the distance between the processing head 20 and the processing target W during processing. It is. The control device 40 is connected to a display device 42 that displays information on each part PT in the workpiece W.
 制御装置40は、各パーツPTの情報、プログラムPG及び加工条件を記憶する記憶部43と、加工時に相対移動部30及び加工ヘッド20を制御する制御部44と、切断面CSを用いてレーザ加工前に入力された加工条件により形成される切断溝CDの幅DWの半分の寸法を測定して、加工時の工具径補正値ΔX,ΔYを算出する補正値算出部45とを備える。実施の形態1において、制御装置40の補正値算出部45は、X方向とY方向とのそれぞれの工具径補正値ΔX,ΔYを算出する。また、記憶部43は、加工ヘッド20の形状を記憶している。記憶部43が記憶したプログラムPGは、工具径補正値ΔX,ΔYを算出するプログラムPG1を含む。 The control device 40 includes a storage unit 43 that stores information on each part PT, a program PG, and processing conditions, a control unit 44 that controls the relative movement unit 30 and the processing head 20 during processing, and laser processing using the cut surface CS. A correction value calculation unit 45 that measures half the width DW of the cutting groove CD formed according to the previously input machining conditions and calculates tool diameter correction values ΔX and ΔY at the time of machining is provided. In the first embodiment, the correction value calculation unit 45 of the control device 40 calculates tool radius correction values ΔX and ΔY in the X direction and the Y direction, respectively. The storage unit 43 stores the shape of the machining head 20. The program PG stored in the storage unit 43 includes a program PG1 for calculating tool radius correction values ΔX and ΔY.
 工具径補正値ΔX,ΔYは、切断溝CDの幅DWの半分の寸法である。工具径補正値ΔX,ΔYは、各パーツPTの情報が示す各パーツPTの外縁よりも切断溝CDの幅DWの半分の寸法分、加工ヘッド20を各パーツPTの外側に位置付けて加工するための値である。各パーツPTの情報が示す各パーツPTの外縁よりも切断溝CDの幅DWの半分の寸法分、加工ヘッド20を各パーツPTの外側に位置付けた状態で、加工ヘッド20からレーザ光Lを照射すると、切断溝CDの内側にパーツPTが形成されることとなる。即ち、工具径補正値ΔX,ΔYは、各パーツPTの情報通りに各パーツPTを形成するために、各パーツPTの情報が示すパーツPTの外縁と、各パーツPTの外縁よりも外側に位置付けられる加工ヘッド20から照射されるレーザ光Lの光軸LPと、の間の距離を示す。 The tool diameter correction values ΔX and ΔY are half the width DW of the cutting groove CD. The tool diameter correction values ΔX and ΔY are processed with the machining head 20 positioned outside each part PT by the half of the width DW of the cutting groove CD rather than the outer edge of each part PT indicated by the information of each part PT. Is the value of The laser beam L is emitted from the machining head 20 in a state where the machining head 20 is positioned on the outside of each part PT by the half of the width DW of the cutting groove CD than the outer edge of each part PT indicated by the information of each part PT. Then, the part PT is formed inside the cutting groove CD. That is, in order to form each part PT according to the information of each part PT, the tool diameter correction values ΔX and ΔY are positioned outside the outer edge of the part PT indicated by the information of each part PT and the outer edge of each part PT. The distance between the optical axis LP of the laser beam L irradiated from the processing head 20 to be applied is shown.
 次に、実施の形態1に係るレーザ加工機1が工具径補正値ΔX,ΔYを算出する過程を説明する。図3は、実施の形態1に係るレーザ加工機の制御装置が工具径補正値を算出する過程を示すフローチャートである。図4は、図3に示されたステップST1において抜き穴が形成された加工対象物を示す斜視図である。図5は、図4に示された加工対象物に形成された抜き穴の内面に形成された切断面の座標を説明する図である。図6は、図3に示されたステップST2において抜き穴の内側に加工ヘッドの先端を進入させた状態を示す斜視図である。図7は、図3に示されたステップST3において抜き穴の切断面に加工ヘッドの先端を接触させた状態を示す斜視図である。図8は、図7に示された加工対象物と加工ヘッドの先端の断面図である。 Next, the process in which the laser beam machine 1 according to Embodiment 1 calculates the tool radius correction values ΔX and ΔY will be described. FIG. 3 is a flowchart illustrating a process in which the control device for the laser beam machine according to the first embodiment calculates a tool radius correction value. FIG. 4 is a perspective view showing the object to be processed in which the punched hole is formed in step ST1 shown in FIG. FIG. 5 is a diagram for explaining the coordinates of the cut surface formed on the inner surface of the punched hole formed in the workpiece shown in FIG. 4. FIG. 6 is a perspective view showing a state in which the tip of the machining head has entered the inside of the punched hole in step ST2 shown in FIG. FIG. 7 is a perspective view showing a state where the tip of the machining head is in contact with the cut surface of the punched hole in step ST3 shown in FIG. FIG. 8 is a cross-sectional view of the workpiece and the tip of the machining head shown in FIG.
 制御装置40は、制御部44がレーザ加工を行う前に、補正値算出部45がX方向とY方向とのそれぞれの工具径補正値ΔX,ΔYを算出する。工具径補正値ΔX,ΔYを算出する際、制御装置40は、入力装置41から加工対象物Wの工具径補正値ΔX,ΔYを算出するための図4に示す抜き孔100が形成される位置が入力される。工具径補正値ΔX,ΔYを算出するための抜き孔100が形成される位置は、加工対象物WがパーツPTと残材BMとに切断された際に残材BMとなる位置である。また、制御装置40は、レーザ加工を行う際の加工条件が入力装置41から入力される。 In the control device 40, the correction value calculation unit 45 calculates the tool radius correction values ΔX and ΔY in the X direction and the Y direction before the control unit 44 performs laser processing. When calculating the tool diameter correction values ΔX and ΔY, the control device 40 is a position where the punch hole 100 shown in FIG. 4 for calculating the tool diameter correction values ΔX and ΔY of the workpiece W from the input device 41 is formed. Is entered. The position where the hole 100 for calculating the tool diameter correction values ΔX and ΔY is formed is a position that becomes the remaining material BM when the workpiece W is cut into the part PT and the remaining material BM. In addition, the control device 40 receives processing conditions when performing laser processing from the input device 41.
 制御装置40は、加工ヘッド20を加工対象物Wに対して移動させながら加工条件にしたがってレーザ光Lを加工ヘッド20から加工対象物Wに照射させて、加工対象物Wの一部を切断して、加工対象物Wに切断面CSを形成する(ステップST1)。実施の形態1において、制御装置40は、図4に示すように、加工対象物Wの一部を矩形状に切断して、残材BMとなる位置に抜き孔100を形成して、抜き孔100の内面に切断面CSを形成するが、加工対象物Wの一部を切断する形状は、矩形状に限定されない。 The control device 40 irradiates the processing object W with the laser light L from the processing head 20 according to the processing conditions while moving the processing head 20 relative to the processing object W, and cuts a part of the processing object W. Thus, the cut surface CS is formed on the workpiece W (step ST1). In the first embodiment, as shown in FIG. 4, the control device 40 cuts a part of the workpiece W into a rectangular shape and forms a hole 100 at a position where the remaining material BM is formed. Although the cut surface CS is formed on the inner surface of 100, the shape of cutting a part of the workpiece W is not limited to a rectangular shape.
 実施の形態1において形成される抜き孔100は、図4に示すように、長手方向がX方向と平行で、かつ短手方向がY方向と平行である。このために、抜き孔100の内面に形成された切断面CSは、図4及び図5に示すように、X方向と平行な第1X方向切断面CSX1、X方向と平行な第2X方向切断面CSX2、Y方向と平行な第1Y方向切断面CSY1、及びY方向と平行な第2Y方向切断面CSY2である。 As shown in FIG. 4, the punch hole 100 formed in the first embodiment has a long direction parallel to the X direction and a short side direction parallel to the Y direction. For this reason, as shown in FIGS. 4 and 5, the cut surface CS formed on the inner surface of the punched hole 100 is a first X direction cut surface CSX1 parallel to the X direction, and a second X direction cut surface parallel to the X direction. CSX2, a first Y-direction cut surface CSY1 parallel to the Y direction, and a second Y-direction cut surface CSY2 parallel to the Y direction.
 制御装置40は、ステップST1において、抜き孔100の切断面CSX1,CSX2,CSY1,CSY2を形成した際の加工対象物Wに対する加工ヘッド20の相対的な加工時位置を示す加工ヘッド20の図5に示す移動経路K1の隅P1の座標(X1,Y1)、隅P2の座標(X2,Y1)、隅P3の座標(X1,Y2)、及び隅P4の座標(X2,Y2)を算出し、取得する。移動経路K1の隅P1の座標(X1,Y1)、隅P2の座標(X2,Y1)、隅P3の座標(X1,Y2)、及び隅P4の座標(X2,Y2)は、X方向とY方向とにより規定された平面において予め設定された原点からのX方向及びY方向の距離を示している。移動経路K1の座標X1,X2,Y1,Y2は、加工時位置情報である。即ち、ステップST1は、移動経路K1の座標X1,X2,Y1,Y2を算出する加工時位置情報算出ステップである。 FIG. 5 of the machining head 20 shows the relative machining position of the machining head 20 with respect to the workpiece W when the cut surfaces CSX1, CSX2, CSY1, CSY2 of the punch hole 100 are formed in step ST1. The coordinates (X1, Y1) of the corner P1 of the movement path K1 shown in FIG. 2, the coordinates (X2, Y1) of the corner P2, the coordinates (X1, Y2) of the corner P3, and the coordinates (X2, Y2) of the corner P4 are calculated. get. The coordinates (X1, Y1) of the corner P1 of the movement path K1, the coordinates (X2, Y1) of the corner P2, the coordinates (X1, Y2) of the corner P3, and the coordinates (X2, Y2) of the corner P4 are the X direction and Y The distances in the X direction and the Y direction from the preset origin on the plane defined by the direction are shown. The coordinates X1, X2, Y1, Y2 of the movement path K1 are machining position information. That is, step ST1 is a processing position information calculation step for calculating the coordinates X1, X2, Y1, Y2 of the movement path K1.
 制御装置40は、図6に示すように、抜き孔100の内側に加工ヘッド20の先端21を挿入し、加工ヘッド20の先端21を加工対象物Wの表面WSよりも加工対象物Wの表面WSの裏側の裏面WR寄り、即ち、加工対象物Wの表面WSよりも下方に位置付ける(ステップST2)。制御装置40は、相対移動部30に表面WSに沿って加工ヘッド20を各切断面CSX1,CSX2,CSY1,CSY2に順に近付けて、図7に示すように、各切断面CSX1,CSX2,CSY1,CSY2に加工ヘッド20の先端21を順に接触させる(ステップST3)。制御装置40は、ステップST3において、加工ヘッド20の先端21を加工対象物Wの表面WSよりも裏面WR寄りに位置付けた状態から加工ヘッド20を表面WSに沿って各切断面CSX1,CSX2,CSY1,CSY2に順に近付ける。 As shown in FIG. 6, the control device 40 inserts the tip 21 of the machining head 20 inside the hole 100, and the tip 21 of the machining head 20 is placed on the surface of the workpiece W rather than the surface WS of the workpiece W. Positioned near the back surface WR on the back side of WS, that is, below the surface WS of the workpiece W (step ST2). The control device 40 brings the machining head 20 close to the cut surfaces CSX1, CSX2, CSY1, and CSY2 in order along the surface WS of the relative moving unit 30, and as shown in FIG. 7, the cut surfaces CSX1, CSX2, CSY1, and so on. The tip 21 of the machining head 20 is brought into contact with CSY2 in order (step ST3). In step ST3, the control device 40 moves the machining head 20 along the surface WS from the state in which the tip 21 of the machining head 20 is positioned closer to the back surface WR than the surface WS of the workpiece W, and cuts the cut surfaces CSX1, CSX2, CSY1. , CSY2 in order.
 制御装置40は、接触検出部50の検出結果と、相対移動部30のX方向移動部31及びY方向移動部32による加工ヘッド20の移動量とに基づいて、加工ヘッド20が各切断面CSX1,CSX2,CSY1,CSY2に接触した時の加工対象物Wに対する加工ヘッド20の位置を示す座標X3´,X4´,Y3´,Y4´を算出し、取得する。また、第1X方向切断面CSX1のY方向の座標は、Y3であり、かつ第1X方向切断面CSX1に接触した時の加工ヘッド20のY方向の座標Y3´に対応している。第2X方向切断面CSX2のY方向の座標は、Y4であり、かつ第2X方向切断面CSX2に接触した時の加工ヘッド20のY方向の座標Y4´に対応している。第1Y方向切断面CSY1のX方向の座標は、X3であり、かつ第1Y方向切断面CSY1に接触した時の加工ヘッド20のX方向の座標X3´に対応している。第2Y方向切断面CSY2のX方向の座標は、X4であり、かつ第2Y方向切断面CSY2に接触した時の加工ヘッド20のX方向の座標X4´に対応している。 Based on the detection result of the contact detection unit 50 and the amount of movement of the processing head 20 by the X-direction moving unit 31 and the Y-direction moving unit 32 of the relative moving unit 30, the control device 40 causes the cutting head 20 to move each cutting plane CSX1. , CSX2, CSY1, and CSY2 are calculated and obtained coordinates X3 ′, X4 ′, Y3 ′, and Y4 ′ that indicate the position of the machining head 20 with respect to the workpiece W when contacting. Further, the Y-direction coordinate of the first X-direction cut surface CSX1 is Y3, and corresponds to the Y-direction coordinate Y3 ′ of the machining head 20 when it contacts the first X-direction cut surface CSX1. The coordinate in the Y direction of the second X-direction cut surface CSX2 is Y4, and corresponds to the coordinate Y4 ′ in the Y direction of the machining head 20 when contacting the second X-direction cut surface CSX2. The X-direction coordinate of the first Y-direction cut surface CSY1 is X3, and corresponds to the X-direction coordinate X3 ′ of the machining head 20 when it contacts the first Y-direction cut surface CSY1. The X-direction coordinate of the second Y-direction cut surface CSY2 is X4, and corresponds to the X-direction coordinate X4 ′ of the machining head 20 when it contacts the second Y-direction cut surface CSY2.
 加工ヘッド20が各切断面CSX1,CSX2,CSY1,CSY2に接触した時の加工対象物Wに対する加工ヘッド20の位置を示す座標X3´,X4´,Y3´,Y4´は、接触時位置情報である。即ち、ステップST3は、第1X方向切断面CSX1に接触した時の加工ヘッド20のY方向の座標Y3´、第2X方向切断面CSX2に接触した時の加工ヘッド20のY方向の座標Y4´、第1Y方向切断面CSY1に接触した時の加工ヘッド20のX方向の座標X3´、及び第2Y方向切断面CSY2に接触した時の加工ヘッド20のX方向の座標X4´を算出する接触時位置情報算出ステップである。 The coordinates X3 ′, X4 ′, Y3 ′, and Y4 ′ indicating the position of the machining head 20 with respect to the workpiece W when the machining head 20 comes into contact with the respective cut surfaces CSX1, CSX2, CSY1, and CSY2 are position information at the time of contact. is there. That is, in step ST3, the Y-direction coordinate Y3 ′ of the machining head 20 when contacting the first X-direction cut surface CSX1, the Y-direction coordinate Y4 ′ of the machining head 20 when contacting the second X-direction cutting surface CSX2, The contact position for calculating the X-direction coordinate X3 ′ of the machining head 20 when contacting the first Y-direction cut surface CSY1 and the X-direction coordinate X4 ′ of the machining head 20 when contacting the second Y-direction cutting surface CSY2. This is an information calculation step.
 制御装置40は、ステップST2におけるZ方向移動部33による加工ヘッド20の移動量に基づいて、図8に示す加工対象物Wの表面WSと加工ヘッド20の先端21との間のZ方向の距離LAを算出する。制御装置40は、距離LAと、記憶部43に記憶した加工ヘッド20の先端21の形状とに基づいて、加工ヘッド20が各切断面CSに接触した時の加工ヘッド20内のレーザ光Lの光軸LPと各切断面CSX1,CSX2,CSY1,CSY2の加工ヘッド20の先端21が接触する位置との間の距離dを算出して、各切断面CSX1,CSX2,CSY1,CSY2の位置を算出する(ステップST4)。 The control device 40 determines the distance in the Z direction between the surface WS of the workpiece W shown in FIG. 8 and the tip 21 of the machining head 20 based on the amount of movement of the machining head 20 by the Z direction moving unit 33 in step ST2. LA is calculated. Based on the distance LA and the shape of the tip 21 of the machining head 20 stored in the storage unit 43, the control device 40 determines the laser light L in the machining head 20 when the machining head 20 contacts each cut surface CS. The distance d between the optical axis LP and the position of the cutting surface CSX1, CSX2, CSY1, CSY2 where the tip 21 of the machining head 20 contacts is calculated, and the position of each cutting surface CSX1, CSX2, CSY1, CSY2 is calculated. (Step ST4).
 制御装置40は、ステップST4において、第1X方向切断面CSX1に接触した時の加工ヘッド20のY方向の座標Y3´と距離dとに基づいて、第1X方向切断面CSX1のY方向の座標Y3を算出する。実施の形態1において、制御装置40は、第1X方向切断面CSX1のY方向の座標Y3=Y3´-dであると算出する。 In step ST4, the control device 40 determines the Y-direction coordinate Y3 of the first X-direction cut surface CSX1 based on the Y-direction coordinate Y3 ′ and the distance d of the machining head 20 when it contacts the first X-direction cut surface CSX1. Is calculated. In the first embodiment, the control device 40 calculates that the Y-direction coordinate Y3 = Y3′−d of the first X-direction cut surface CSX1.
 制御装置40は、ステップST4において、第2X方向切断面CSX2に接触した時の加工ヘッド20のY方向の座標Y4´と距離dとに基づいて、第2X方向切断面CSX2のY方向の座標Y4を算出する。実施の形態1において、制御装置40は、第2X方向切断面CSX2のY方向の座標Y4=Y4´+dであると算出する。 In step ST4, the control device 40 determines the Y-direction coordinate Y4 of the second X-direction cut surface CSX2 based on the Y-direction coordinate Y4 ′ and the distance d of the machining head 20 when it contacts the second X-direction cut surface CSX2. Is calculated. In the first embodiment, the control device 40 calculates that the Y-direction coordinate Y4 = Y4 ′ + d of the second X-direction cut surface CSX2.
 制御装置40は、ステップST4において、第1Y方向切断面CSY1に接触した時の加工ヘッド20のX方向の座標X3´と距離dとに基づいて、第1Y方向切断面CSY1のX方向の座標X3を算出する。実施の形態1において、制御装置40は、第1Y方向切断面CSY1のX方向の座標X3=X3´-dであると算出する。 In step ST4, the control device 40 determines the X-direction coordinate X3 of the first Y-direction cut surface CSY1 based on the X-direction coordinate X3 ′ and the distance d of the machining head 20 when contacting the first Y-direction cut surface CSY1. Is calculated. In the first embodiment, the control device 40 calculates that the X-direction coordinate X3 = X3′−d of the first Y-direction cut surface CSY1.
 制御装置40は、ステップST4において、第2Y方向切断面CSY2に接触した時の加工ヘッド20のX方向の座標X4´と距離dとに基づいて、第2Y方向切断面CSY2のX方向の座標X4を算出する。実施の形態1において、制御装置40は、第2Y方向切断面CSY2のX方向の座標X4=X4´+dであると算出する。 In step ST4, the control device 40 determines the X-direction coordinate X4 of the second Y-direction cut surface CSY2 based on the X-direction coordinate X4 ′ and the distance d of the machining head 20 when contacting the second Y-direction cut surface CSY2. Is calculated. In the first embodiment, the control device 40 calculates that the X-direction coordinate X4 = X4 ′ + d of the second Y-direction cut surface CSY2.
 制御装置40が算出した各切断面CSX1,CSX2,CSY1,CSY2の座標X3,X4,Y3,Y4は、各切断面CSX1,CSX2,CSY1,CSY2の位置を示す切断面位置情報である。 The coordinates X3, X4, Y3, Y4 of each cutting plane CSX1, CSX2, CSY1, CSY2 calculated by the control device 40 are cutting plane position information indicating the position of each cutting plane CSX1, CSX2, CSY1, CSY2.
 制御装置40は、加工時位置情報である移動経路K1の座標X1,X2,Y1,Y2と、接触時位置情報である座標Y3´,Y4´,X3´,X4´とに基づいて、工具径補正値ΔX,ΔYを算出して(ステップST5)、図3に示すフローチャートを終了する。制御装置40は、ステップST5において、加工時位置情報である移動経路K1の座標X1,X2,Y1,Y2と、切断面位置情報である座標Y3,Y4,X3,X4とに基づいて、工具径補正値ΔX,ΔYを算出する。 The control device 40 determines the tool diameter based on the coordinates X1, X2, Y1, Y2 of the movement path K1, which is position information at the time of machining, and the coordinates Y3 ′, Y4 ′, X3 ′, X4 ′, which are position information at the time of contact. Correction values ΔX and ΔY are calculated (step ST5), and the flowchart shown in FIG. 3 is terminated. In step ST5, the control device 40 determines the tool diameter based on the coordinates X1, X2, Y1, and Y2 of the movement path K1 that is position information during processing and the coordinates Y3, Y4, X3, and X4 that are cutting surface position information. Correction values ΔX and ΔY are calculated.
 加工時位置情報である座標X1,X2,Y1,Y2は、抜き孔100を形成する際の加工ヘッド20、即ち加工ヘッド20から照射されるレーザ光Lの光軸LPの移動経路K1の位置を示すものであり、切断面位置情報である座標Y3,Y4,X3,X4は、各切断面CSX1,CSX2,CSY1,CSY2の位置を示すものである。このために、X方向の切断溝CDの幅DWの半分の寸法である工具径補正値ΔXは、以下の式1を用いて算出することができ、Y方向の切断溝CDの幅DWの半分の寸法である工具径補正値ΔYは、以下の式2を用いて算出することができる。 Coordinates X1, X2, Y1, and Y2, which are position information at the time of processing, indicate the position of the moving path K1 of the optical axis LP of the laser beam L emitted from the processing head 20, that is, the processing head 20, when forming the punch hole 100. The coordinates Y3, Y4, X3, and X4, which are cut surface position information, indicate the positions of the cut surfaces CSX1, CSX2, CSY1, and CSY2. For this reason, the tool radius correction value ΔX, which is a half dimension of the width DW of the cutting groove CD in the X direction, can be calculated using the following formula 1, and is half of the width DW of the cutting groove CD in the Y direction. The tool radius correction value ΔY that is the dimension of can be calculated using Equation 2 below.
 〔(X4-X3)-(X2-X1)〕/2=ΔX・・・式1
 〔(Y4-Y3)-(Y2-Y1)〕/2=ΔY・・・式2
[(X4-X3)-(X2-X1)] / 2 = ΔX Equation 1
[(Y4-Y3)-(Y2-Y1)] / 2 = ΔY Equation 2
 制御装置40は、ステップST5において、式1及び式2を用いて工具径補正値ΔX,ΔYを算出する。即ち、ステップST5は、加工時位置情報である移動経路K1の座標X1,X2,Y1,Y2と、接触時位置情報である座標Y3´,Y4´,X3´,X4´とに基づいて、工具径補正値ΔX,ΔYを算出する工具径補正値算出ステップである。また、制御装置40の記憶部43に記憶されたプログラムPG1は、コンピュータである制御装置40に、ステップST1とステップST3とステップST5を実行させて、加工時の工具径補正値ΔX,ΔYを算出するためのプログラムである。レーザ加工機1は、加工対象物Wを加工する際に、工具径補正値ΔX,ΔYを用いる。 In step ST5, the control device 40 calculates the tool radius correction values ΔX and ΔY using Equations 1 and 2. That is, the step ST5 is based on the coordinates X1, X2, Y1, Y2 of the movement path K1, which is position information at the time of machining, and the coordinates Y3 ′, Y4 ′, X3 ′, X4 ′, which are position information at the time of contact. This is a tool radius correction value calculation step for calculating the radius correction values ΔX and ΔY. The program PG1 stored in the storage unit 43 of the control device 40 causes the control device 40, which is a computer, to execute steps ST1, ST3, and ST5, and calculates tool radius correction values ΔX and ΔY at the time of machining. It is a program to do. The laser beam machine 1 uses the tool radius correction values ΔX and ΔY when machining the workpiece W.
 実施の形態1に係るレーザ加工機1、制御装置40及びプログラムPG1は、加工対象物Wに切断面CSX1,CSX2,CSY1,CSY2を形成した時の加工ヘッド20の位置を示す加工時位置情報である座標X1,X2,Y1,Y2と、加工ヘッド20の先端21を切断面CSに接触させた時の加工ヘッド20の位置を示す接触時位置情報である座標X3´,X4´,Y3´,Y4´とに基づいて、工具径補正値ΔX,ΔYを算出する。このために、レーザ加工機1、制御装置40及びプログラムPG1は、レーザ加工機1に接触検出部50を設けることにより、工具径補正値ΔX,ΔYを算出することができるので、工具径補正値ΔX,ΔYを算出するために測定機器を用いる必要がなく、高価な光学機器を設ける必要がない。その結果、レーザ加工機1、制御装置40及びプログラムPG1は、コストが高騰することなく、短時間で工具径補正値ΔX,ΔYを算出することができる。 The laser processing machine 1, the control device 40, and the program PG1 according to the first embodiment are processing position information indicating the position of the processing head 20 when the cut surfaces CSX1, CSX2, CSY1, and CSY2 are formed on the processing target W. Coordinates X1, X2, Y1, Y2, and coordinates X3 ′, X4 ′, Y3 ′, which are position information at the time of showing the position of the machining head 20 when the tip 21 of the machining head 20 is brought into contact with the cut surface CS, Based on Y4 ′, tool radius correction values ΔX and ΔY are calculated. Therefore, the laser processing machine 1, the control device 40, and the program PG1 can calculate the tool diameter correction values ΔX and ΔY by providing the laser processing machine 1 with the contact detection unit 50. It is not necessary to use a measuring instrument to calculate ΔX and ΔY, and it is not necessary to provide an expensive optical instrument. As a result, the laser beam machine 1, the control device 40, and the program PG1 can calculate the tool radius correction values ΔX and ΔY in a short time without increasing costs.
 また、実施の形態1に係るレーザ加工機1、制御装置40及びプログラムPG1は、加工ヘッド20の先端21を各切断面CSX1,CSX2,CSY1,CSY2に接触させた時の加工ヘッド20の位置を示す接触時位置情報である座標X3´,X4´,Y3´,Y4´と、加工ヘッド20が各切断面CSX1,CSX2,CSY1,CSY2に接触した時の距離dと、に基づいて、各切断面CSX1,CSX2,CSY1,CSY2の位置を示す切断面位置情報である座標X3,X4,Y3,Y4を算出する。実施の形態1に係るレーザ加工機1、制御装置40及びプログラムPG1は、加工時位置情報である座標X1,X2,Y1,Y2と、切断面位置情報である座標X3,X4,Y3,Y4とに基づいて工具径補正値ΔX,ΔYを算出するので、工具径補正値ΔX,ΔYを正確に算出することができる。 Further, the laser beam machine 1, the control device 40, and the program PG1 according to the first embodiment determine the position of the machining head 20 when the tip 21 of the machining head 20 is brought into contact with the cut surfaces CSX1, CSX2, CSY1, and CSY2. Each cutting based on the coordinates X3 ′, X4 ′, Y3 ′, Y4 ′, which are positional information at the time of contact, and the distance d when the machining head 20 contacts each of the cutting surfaces CSX1, CSX2, CSY1, CSY2 Coordinates X3, X4, Y3, and Y4, which are cut surface position information indicating the positions of the surfaces CSX1, CSX2, CSY1, and CSY2, are calculated. The laser beam machine 1, the control device 40, and the program PG1 according to the first embodiment include coordinates X1, X2, Y1, and Y2 that are position information during processing, and coordinates X3, X4, Y3, and Y4 that are cutting surface position information. Since the tool radius correction values ΔX and ΔY are calculated based on the above, the tool radius correction values ΔX and ΔY can be accurately calculated.
 また、実施の形態1に係るレーザ加工機1、制御装置40及びプログラムPG1は、X方向の工具径補正値ΔXとY方向の工具径補正値ΔYを算出するので、レーザ光LのX方向とY方向との形状が異なっても、正確にパーツPTを加工対象物Wから切断することができる。 Moreover, since the laser beam machine 1, the control device 40, and the program PG1 according to the first embodiment calculate the tool diameter correction value ΔX in the X direction and the tool diameter correction value ΔY in the Y direction, Even if the shape differs from the Y direction, the part PT can be accurately cut from the workpiece W.
実施の形態2.
 次に、本発明の実施の形態2に係るレーザ加工機1を図面に基づいて説明する。図9は、実施の形態2に係るレーザ加工機が形成した抜き穴の内面に形成された切断面の座標を説明する図である。図9において、実施の形態1と同一部分には、同一符号を付して説明を省略する。
Embodiment 2. FIG.
Next, a laser beam machine 1 according to Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 9 is a diagram for explaining coordinates of a cut surface formed on the inner surface of the punched hole formed by the laser beam machine according to the second embodiment. In FIG. 9, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 実施の形態2に係るレーザ加工機1は、図9に示すように、工具径補正値ΔDを算出するために加工対象物Wに丸形の抜き孔100-2を形成する以外、実施の形態1と同じ構成でありかつ実施の形態1と同じ処理を実行する。実施の形態2に係るレーザ加工機1は、抜き孔100-2の中心周りに予め設定された所定角度θ毎に、抜き孔100-2の内面に形成された切断面CSに加工ヘッド20の先端21を接触させて、切断面CSの位置を算出する。実施の形態2に係るレーザ加工機1は、切断面CSの位置を算出して、所定角度θ毎の工具径補正値ΔD1,ΔD2,ΔD3・・・ΔDNを算出する。 As shown in FIG. 9, the laser beam machine 1 according to the second embodiment is different from the second embodiment except that a round hole 100-2 is formed in the workpiece W in order to calculate the tool radius correction value ΔD. 1 and the same processing as in the first embodiment is executed. In the laser beam machine 1 according to the second embodiment, the machining head 20 is applied to the cut surface CS formed on the inner surface of the punch hole 100-2 at every predetermined angle θ set around the center of the punch hole 100-2. The position of the cut surface CS is calculated by bringing the tip 21 into contact. The laser beam machine 1 according to the second embodiment calculates the position of the cutting plane CS and calculates tool diameter correction values ΔD1, ΔD2, ΔD3... ΔDN for each predetermined angle θ.
 実施の形態2に係るレーザ加工機1、制御装置40及びプログラムPG1は、実施の形態1と同様に、抜き孔100-2の内面に形成された切断面CSに加工ヘッド20の先端21を接触させて、所定角度θ毎の工具径補正値ΔD1,ΔD2,ΔD3・・・ΔDNを算出するために、工具径補正値ΔD1,ΔD2,ΔD3・・・ΔDNを算出するために測定機器を用いる必要がなく、高価な光学機器を設ける必要がない。その結果、レーザ加工機1、制御装置40及びプログラムPG1は、コストが高騰することなく、短時間で工具径補正値ΔD1,ΔD2,ΔD3・・・ΔDNを算出することができる。 As in the first embodiment, the laser beam machine 1, the control device 40, and the program PG1 according to the second embodiment contact the tip 21 of the machining head 20 with the cut surface CS formed on the inner surface of the punch hole 100-2. In order to calculate the tool diameter correction values ΔD1, ΔD2, ΔD3,..., DN for each predetermined angle θ, it is necessary to use a measuring device to calculate the tool diameter correction values ΔD1, ΔD2, ΔD3,. There is no need to provide expensive optical equipment. As a result, the laser beam machine 1, the control device 40, and the program PG1 can calculate the tool diameter correction values ΔD1, ΔD2, ΔD3,... ΔDN in a short time without increasing costs.
 また、実施の形態2に係るレーザ加工機1、制御装置40及びプログラムPG1は、丸形の抜き孔100-2を形成し、所定角度θ毎に工具径補正値ΔD1,ΔD2,ΔD3・・・ΔDNを算出するので、レーザ光Lが光軸LPに関して非対称な形状であっても、正確にパーツPTを加工対象物Wから切断することができる。 Further, the laser beam machine 1, the control device 40, and the program PG1 according to the second embodiment form a circular punch hole 100-2 and provide tool diameter correction values ΔD1, ΔD2, ΔD3,... At each predetermined angle θ. Since ΔDN is calculated, the part PT can be accurately cut from the workpiece W even if the laser light L has an asymmetric shape with respect to the optical axis LP.
実施の形態3.
 次に、本発明の実施の形態3に係るレーザ加工機1を図面に基づいて説明する。図10は、実施の形態3に係るレーザ加工機の加工ヘッドの先端が抜き孔の切断面に接触した状態を示す断面図である。図10において、実施の形態1と同一部分には、同一符号を付して説明を省略する。
Embodiment 3 FIG.
Next, a laser beam machine 1 according to Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 10 is a cross-sectional view showing a state in which the tip of the machining head of the laser beam machine according to Embodiment 3 is in contact with the cut surface of the punched hole. In FIG. 10, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 実施の形態3に係るレーザ加工機1は、加工ヘッド20-3の先端21の形状が実施の形態1と異なる以外、実施の形態1と同じ構成でありかつ実施の形態1と同じ処理を実行する。実施の形態3に係るレーザ加工機1は、図10に示すように、加工ヘッド20-3の先端21よりも加工ヘッド20-3の基端寄りの箇所の幅が、加工ヘッド20-3の先端21の幅よりも狭く形成されている。実施の形態3に係るレーザ加工機1の加工ヘッド20-3の先端21は、基端寄りの箇所よりも幅が広く形成された幅広部23を設けている。実施の形態3に係るレーザ加工機1は、図10に示すように、加工ヘッド20-3の先端21に設けられた幅広部23を抜き孔100の内面に形成された切断面CSに接触させて、切断面CSの位置を算出し、工具径補正値ΔX,ΔYを算出する。 The laser beam machine 1 according to the third embodiment has the same configuration as the first embodiment and executes the same processing as the first embodiment except that the shape of the tip 21 of the machining head 20-3 is different from that of the first embodiment. To do. As shown in FIG. 10, in the laser beam machine 1 according to the third embodiment, the width of the portion closer to the base end of the machining head 20-3 than the tip 21 of the machining head 20-3 is such that the machining head 20-3 It is formed narrower than the width of the tip 21. The distal end 21 of the machining head 20-3 of the laser beam machine 1 according to Embodiment 3 is provided with a wide portion 23 that is formed wider than a portion near the proximal end. As shown in FIG. 10, the laser beam machine 1 according to the third embodiment causes the wide portion 23 provided at the tip 21 of the machining head 20-3 to come into contact with the cut surface CS formed on the inner surface of the punch hole 100. Then, the position of the cutting plane CS is calculated, and the tool radius correction values ΔX and ΔY are calculated.
 実施の形態3に係るレーザ加工機1、制御装置40及びプログラムPG1は、実施の形態1と同様に、加工ヘッド20-3の先端21を切断面CSに接触させて、切断面CSの位置を算出し、工具径補正値ΔX,ΔYを算出するために、工具径補正値ΔX,ΔYを算出するために測定機器を用いる必要がなく、高価な光学機器を設ける必要がない。その結果、レーザ加工機1、制御装置40及びプログラムPG1は、コストが高騰することなく、短時間で工具径補正値ΔX,ΔYを算出することができる。 As in the first embodiment, the laser beam machine 1, the control device 40, and the program PG1 according to the third embodiment bring the tip 21 of the machining head 20-3 into contact with the cutting surface CS, and position the cutting surface CS. In order to calculate and calculate the tool radius correction values ΔX and ΔY, it is not necessary to use a measuring instrument to calculate the tool radius correction values ΔX and ΔY, and it is not necessary to provide an expensive optical instrument. As a result, the laser beam machine 1, the control device 40, and the program PG1 can calculate the tool radius correction values ΔX and ΔY in a short time without increasing costs.
 また、実施の形態3に係るレーザ加工機1、制御装置40及びプログラムPG1は、加工ヘッド20-3の先端21に幅広部23を設けているので、加工ヘッド20-3の先端21の幅広部23を切断面CSに接触させることができ、切断面CSの位置を正確に算出することができる。 In the laser processing machine 1, the control device 40, and the program PG1 according to the third embodiment, since the wide portion 23 is provided at the tip 21 of the machining head 20-3, the wide portion of the tip 21 of the machining head 20-3 is provided. 23 can be brought into contact with the cut surface CS, and the position of the cut surface CS can be accurately calculated.
実施の形態4.
 次に、本発明の実施の形態4に係るレーザ加工機1を図面に基づいて説明する。図11は、実施の形態4に係るレーザ加工機の加工ヘッドの先端が切断面の加工対象物の表面寄りの箇所に接触した状態を示す断面図である。図12は、実施の形態4に係るレーザ加工機の加工ヘッドの先端が切断面の加工対象物の裏面寄りの箇所に接触した状態を示す断面図である。図11及び図12において、実施の形態1と同一部分には、同一符号を付して説明を省略する。
Embodiment 4 FIG.
Next, a laser beam machine 1 according to Embodiment 4 of the present invention will be described with reference to the drawings. FIG. 11 is a cross-sectional view showing a state in which the tip of the machining head of the laser beam machine according to Embodiment 4 is in contact with a portion of the cut surface near the surface of the workpiece. FIG. 12 is a cross-sectional view showing a state in which the tip of the machining head of the laser beam machine according to Embodiment 4 is in contact with a portion of the cut surface near the back surface of the workpiece. 11 and 12, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 実施の形態4に係るレーザ加工機1は、実施の形態3と同様に、加工ヘッド20-4の先端の形状が実施の形態1と異なる以外、実施の形態1と同じ構成でありかつ実施の形態1と同じ処理を実行する。実施の形態4に係るレーザ加工機1は、実施の形態3と同様に、図11及び図12に示すように、加工ヘッド20-4の先端21に幅広部23を設けている。なお、加工対象物Wの表面WSは、加工ヘッド20-4からレーザ光Lが照射される面であり、加工対象物Wの裏面WRは、加工対象物Wを貫通したレーザ光Lが加工対象物Wから射出する面である。 As in the third embodiment, the laser beam machine 1 according to the fourth embodiment has the same configuration as that of the first embodiment except that the shape of the tip of the machining head 20-4 is different from that of the first embodiment. The same process as in the first mode is executed. As in the third embodiment, the laser beam machine 1 according to the fourth embodiment is provided with a wide portion 23 at the tip 21 of the machining head 20-4 as shown in FIGS. The surface WS of the workpiece W is a surface irradiated with the laser light L from the machining head 20-4, and the back surface WR of the workpiece W is processed by the laser light L penetrating the workpiece W. It is a surface that is ejected from the object W.
 実施の形態4に係るレーザ加工機1は、図11に示すように、加工ヘッド20-4の先端に設けられた幅広部23を切断面CSの加工対象物Wの表面WS寄りの箇所に接触させて、切断面CSの位置を算出し、加工対象物Wの表面WS寄りの工具径補正値ΔX,ΔYを算出する。実施の形態4に係るレーザ加工機1は、図12に示すように、加工ヘッド20-4の先端21に設けられた幅広部23を切断面CSの加工対象物Wの裏面WR寄りの箇所に接触させて、切断面CSの位置を算出し、加工対象物Wの裏面WR寄りの工具径補正値ΔX,ΔYを算出する。実施の形態4に係るレーザ加工機1は、加工対象物Wを加工する際に、加工対象物Wの表面WS寄りの工具径補正値ΔX,ΔYと加工対象物Wの裏面WR寄りの工具径補正値ΔX,ΔYとの平均値を用いる。 As shown in FIG. 11, the laser beam machine 1 according to Embodiment 4 contacts the wide portion 23 provided at the tip of the machining head 20-4 with a portion of the cutting surface CS near the surface WS of the workpiece W. Thus, the position of the cut surface CS is calculated, and the tool radius correction values ΔX and ΔY near the surface WS of the workpiece W are calculated. As shown in FIG. 12, the laser beam machine 1 according to the fourth embodiment has a wide portion 23 provided at the tip 21 of the machining head 20-4 at a location near the back surface WR of the workpiece W on the cut surface CS. The position of the cut surface CS is calculated by making contact, and the tool diameter correction values ΔX and ΔY near the back surface WR of the workpiece W are calculated. When the laser beam machine 1 according to the fourth embodiment processes the workpiece W, the tool radius correction values ΔX and ΔY near the front surface WS of the workpiece W and the tool radius near the back surface WR of the workpiece W are processed. An average value of the correction values ΔX and ΔY is used.
 実施の形態4に係るレーザ加工機1、制御装置40及びプログラムPG1は、実施の形態1と同様に、加工ヘッド20-4の先端21を切断面CSに接触させて、切断面CSの位置を算出し、工具径補正値ΔX,ΔYを算出するために、工具径補正値ΔX,ΔYを算出するために測定機器を用いる必要がなく、高価な光学機器を設ける必要がない。その結果、レーザ加工機1、制御装置40及びプログラムPG1は、コストが高騰することなく、短時間で工具径補正値ΔX,ΔYを算出することができる。 As in the first embodiment, the laser beam machine 1, the control device 40, and the program PG1 according to the fourth embodiment bring the tip 21 of the machining head 20-4 into contact with the cutting surface CS, and position the cutting surface CS. In order to calculate and calculate the tool radius correction values ΔX and ΔY, it is not necessary to use a measuring instrument to calculate the tool radius correction values ΔX and ΔY, and it is not necessary to provide an expensive optical instrument. As a result, the laser beam machine 1, the control device 40, and the program PG1 can calculate the tool radius correction values ΔX and ΔY in a short time without increasing costs.
 また、実施の形態4に係るレーザ加工機1、制御装置40及びプログラムPG1は、工具径補正値ΔX,ΔYの平均値を算出するので、正確にパーツPTを加工対象物Wから切断することができる。 In addition, since the laser processing machine 1, the control device 40, and the program PG1 according to the fourth embodiment calculate the average value of the tool radius correction values ΔX and ΔY, the part PT can be accurately cut from the workpiece W. it can.
 なお、実施の形態4において、加工対象物Wの表面WS側の抜き孔100の平面形状が、裏面WR側の抜き孔100の平面形状よりも大きくなるように、切断面CSが傾斜している。本発明は、加工対象物Wの表面WS側の抜き孔100の平面形状が、裏面WR側の抜き孔100の平面形状よりも小さくなるように、切断面CSが傾斜しても良い。 In the fourth embodiment, the cut surface CS is inclined so that the planar shape of the punch hole 100 on the surface WS side of the workpiece W is larger than the planar shape of the punch hole 100 on the back surface WR side. . In the present invention, the cut surface CS may be inclined so that the planar shape of the hole 100 on the front surface WS side of the workpiece W is smaller than the planar shape of the hole 100 on the rear surface WR side.
実施の形態5.
 次に、本発明の実施の形態5に係るレーザ加工機1を図面に基づいて説明する。図13は、実施の形態5に係るレーザ加工機の制御装置が工具径補正値を算出する過程を示すフローチャートである。図14は、図13に示されたステップST1において加工対象物に形成された抜き穴の内面に形成された切断面の座標を説明する図である。図15は、図13に示されたステップST2-5において抜き穴が形成された加工対象物の表面に加工ヘッドの先端が対向させられた状態を示す斜視図である。図16は、図15に示された加工対象物と加工ヘッドの先端の断面図である。図17は、図13に示されたステップST3-5において抜き穴の内側に加工ヘッドの先端を進入させた状態を示す斜視図である。図18は、図17に示された加工対象物と加工ヘッドの先端の断面図である。
Embodiment 5 FIG.
Next, a laser beam machine 1 according to Embodiment 5 of the present invention will be described with reference to the drawings. FIG. 13 is a flowchart illustrating a process in which the control device for a laser beam machine according to the fifth embodiment calculates a tool radius correction value. FIG. 14 is a diagram for explaining the coordinates of the cut surface formed on the inner surface of the punched hole formed in the workpiece in step ST1 shown in FIG. FIG. 15 is a perspective view showing a state in which the tip of the machining head is opposed to the surface of the workpiece on which the hole is formed in step ST2-5 shown in FIG. 16 is a cross-sectional view of the workpiece and the tip of the machining head shown in FIG. FIG. 17 is a perspective view showing a state in which the tip of the machining head has entered the inside of the punched hole in step ST3-5 shown in FIG. 18 is a cross-sectional view of the workpiece and the tip of the machining head shown in FIG.
 実施の形態5に係るレーザ加工機1は、実施の形態1に係るレーザ加工機1の接触検出部50の代わりに制御装置40の倣い部としての機能を利用して、切断面CSX1,CSX2,CSY1,CSY2の位置を検出する以外、実施の形態1と同じ構成でありかつ実施の形態1と同じ処理を実行する。 The laser beam machine 1 according to the fifth embodiment uses the function as a copying unit of the control device 40 in place of the contact detection unit 50 of the laser beam machine 1 according to the first embodiment, and uses the cut surfaces CSX1, CSX2, and the like. Except for detecting the positions of CSY1 and CSY2, the same configuration as in the first embodiment and the same processing as in the first embodiment are executed.
 実施の形態5に係るレーザ加工機1の制御装置40は、補正値算出部45がX方向とY方向とのそれぞれの工具径補正値ΔX,ΔYを算出する際に、実施の形態1と同様に、加工対象物Wの一部を切断して、加工対象物Wの残材BMとなる位置に矩形状の抜き孔100を形成する(ステップST1)。実施の形態5に係るレーザ加工機1の制御装置40は、ステップST1において、実施の形態1と同様に、図14に示す加工時位置情報である移動経路K1の座標X1,X2,Y1,Y2を算出し、取得する。 The control device 40 of the laser beam machine 1 according to the fifth embodiment is the same as the first embodiment when the correction value calculation unit 45 calculates the respective tool diameter correction values ΔX and ΔY in the X direction and the Y direction. In addition, a part of the workpiece W is cut to form a rectangular punched hole 100 at a position where the workpiece WB becomes the remaining material BM (step ST1). In step ST1, the control device 40 of the laser beam machine 1 according to the fifth embodiment, like the first embodiment, coordinates X1, X2, Y1, Y2 of the movement path K1, which is position information at the time of processing shown in FIG. Is calculated and acquired.
 制御装置40は、図15に示すように、加工ヘッド20の先端21を加工対象物Wの抜き孔100が形成されていない表面WSに対向させる(ステップST2-5)。このとき、制御装置40は、図16に示すように、倣い部の機能により、加工対象物Wの表面WSと加工ヘッド20の先端21との間の距離LBを加工条件で定められた距離にする。制御装置40は、加工対象物Wの表面WSに先端21が対向する位置から加工ヘッド21を表面WSに沿って抜き孔100へ移動させて、加工ヘッド20を各切断面CSX1,CSX2,CSY1,CSY2に、順に近付ける(ステップST3-5)。加工ヘッド20が抜き孔100とZ方向に対向すると、制御装置40は、距離測定部60の測定結果に基づいて、倣い部の機能により、図17及び図18に示すように、加工ヘッド20と加工対象物Wとを相対的にZ方向に移動させて、加工ヘッド20を抜き孔100の内側に進入させる。そして、図18に示すように、加工ヘッド20の先端21と各切断面CSX1,CSX2,CSY1,CSY2との距離LBは、加工条件で定められた距離に維持される。 As shown in FIG. 15, the control device 40 causes the tip 21 of the machining head 20 to face the surface WS where the punch hole 100 of the workpiece W is not formed (step ST2-5). At this time, as shown in FIG. 16, the control device 40 sets the distance LB between the surface WS of the workpiece W and the tip 21 of the machining head 20 to a distance determined by the machining conditions by the function of the copying portion. To do. The control device 40 moves the machining head 21 from the position where the tip 21 faces the surface WS of the workpiece W to the hole 100 along the surface WS, and moves the machining head 20 to each of the cut surfaces CSX1, CSX2, CSY1, and so on. It approaches CSY2 in order (step ST3-5). When the machining head 20 faces the punch hole 100 in the Z direction, the control device 40 uses the function of the copying unit based on the measurement result of the distance measurement unit 60, as shown in FIGS. The workpiece W is moved relative to the workpiece W in the Z direction, and the machining head 20 enters the inside of the punch hole 100. As shown in FIG. 18, the distance LB between the tip 21 of the machining head 20 and each of the cut surfaces CSX1, CSX2, CSY1, CSY2 is maintained at a distance determined by the machining conditions.
 制御装置40は、相対移動部30のX方向移動部31、Y方向移動部32及びZ方向移動部33による加工ヘッド20の移動量に基づいて、倣い部の機能により加工ヘッド20と加工対象物WとがZ方向に相対的に移動した時の加工対象物Wに対する加工ヘッド20の位置を示す加工ヘッド20の座標X3´´,X4´´,Y3´´,Y4´´を算出し、取得する。また、第1X方向切断面CSX1のY方向の座標は、Y3であり、かつ第1X方向切断面CSX1に近付いた時の加工ヘッド20のY方向の座標Y3´´に対応している。第2X方向切断面CSX2のY方向の座標は、Y4であり、かつ第2X方向切断面CSX2に近付いた時の加工ヘッド20のY方向の座標Y4´´に対応している。第1Y方向切断面CSY1のX方向の座標は、X3であり、かつ第1Y方向切断面CSY1に近付いた時の加工ヘッド20のX方向の座標X3´´に対応している。第2Y方向切断面CSY2のX方向の座標は、X4であり、かつ第2Y方向切断面CSY2に近付いた時の加工ヘッド20のX方向の座標X4´´に対応している。 Based on the amount of movement of the machining head 20 by the X-direction movement unit 31, the Y-direction movement unit 32, and the Z-direction movement unit 33 of the relative movement unit 30, the control device 40 uses the function of the copying unit and the machining head 20 and the workpiece. Calculate and obtain coordinates X3 ″, X4 ″, Y3 ″, Y4 ″ of the machining head 20 indicating the position of the machining head 20 with respect to the workpiece W when the W moves relative to the Z direction. To do. The coordinate in the Y direction of the first X-direction cut surface CSX1 is Y3, and corresponds to the Y-direction coordinate Y3 '' of the machining head 20 when approaching the first X-direction cut surface CSX1. The coordinate in the Y direction of the second X-direction cut surface CSX2 is Y4, and corresponds to the coordinate Y4 ″ in the Y direction of the machining head 20 when approaching the second X-direction cut surface CSX2. The X-direction coordinate of the first Y-direction cut surface CSY1 is X3, and corresponds to the X-direction coordinate X3 ″ of the machining head 20 when approaching the first Y-direction cut surface CSY1. The X-direction coordinate of the second Y-direction cut surface CSY2 is X4 and corresponds to the X-direction coordinate X4 '' of the machining head 20 when approaching the second Y-direction cut surface CSY2.
 加工ヘッド20が、各切断面CSX1,CSX2,CSY1,CSY2に近付いた時の加工対象物Wに対する加工ヘッド20の位置を示す座標X3´´,X4´´,Y3´´,Y4´´は、移動時位置情報である。即ち、ステップST3-5は、第1X方向切断面CSX1に近付いた時の加工ヘッド20のY方向の座標Y3´´、第2X方向切断面CSX2に近付いた時の加工ヘッド20のY方向の座標Y4´´、第1Y方向切断面CSY1に近付いた時の加工ヘッド20のX方向の座標X3´´、及び第2Y方向切断面CSY2に近付いた時の加工ヘッド20のX方向の座標X4´´を算出する移動時位置情報算出ステップである。 Coordinates X3 ″, X4 ″, Y3 ″, Y4 ″ indicating the position of the processing head 20 with respect to the processing object W when the processing head 20 approaches each cut surface CSX1, CSX2, CSY1, CSY2 are: It is position information at the time of movement. That is, in step ST3-5, the Y-direction coordinate Y3 ″ of the machining head 20 when approaching the first X-direction cutting plane CSX1, and the Y-direction coordinate of the machining head 20 when approaching the second X-direction cutting plane CSX2. Y4 ″, X-direction coordinate X3 ″ of the machining head 20 when approaching the first Y-direction cutting plane CSY1, and X-direction coordinate X4 ″ of the machining head 20 when approaching the second Y-direction cutting plane CSY2. It is a position information calculation step at the time of movement for calculating.
 制御装置40は、ステップST3-5における相対移動部30のX方向移動部31、Y方向移動部32及びZ方向移動部33による加工ヘッド20の移動量に基づいて、図18に示す加工対象物Wの表面WSと加工ヘッド20の先端21との間のZ方向の距離LCと、加工ヘッド20内のレーザ光Lの光軸LPと各切断面CSX1,CSX2,CSY1,CSY2との間の距離d5を算出して、各切断面CSX1,CSX2,CSY1,CSY2の位置を算出する(ステップST4-5)。 Based on the movement amount of the machining head 20 by the X-direction moving unit 31, the Y-direction moving unit 32, and the Z-direction moving unit 33 of the relative moving unit 30 in Step ST3-5, the control device 40 performs the processing object shown in FIG. A distance LC in the Z direction between the surface WS of the W and the tip 21 of the machining head 20, and a distance between the optical axis LP of the laser beam L in the machining head 20 and each of the cut surfaces CSX1, CSX2, CSY1, CSY2 d5 is calculated, and the positions of the cutting planes CSX1, CSX2, CSY1, CSY2 are calculated (step ST4-5).
 制御装置40は、ステップST4-5において、第1X方向切断面CSX1に近付いた時の加工ヘッド20のY方向の座標Y3´´と距離d5とに基づいて、第1X方向切断面CSX1のY方向の座標Y3を算出する。実施の形態5において、制御装置40は、第1X方向切断面CSX1のY方向の座標Y3=Y3´´-d5であると算出する。 In step ST4-5, the control device 40 determines the Y direction of the first X-direction cut surface CSX1 based on the Y-direction coordinate Y3 ″ of the machining head 20 and the distance d5 when approaching the first X-direction cut surface CSX1. The coordinate Y3 is calculated. In the fifth embodiment, the control device 40 calculates that the Y-direction coordinate Y3 = Y3 ″ −d5 of the first X-direction cut surface CSX1.
 制御装置40は、ステップST4-5において、同様に、第2X方向切断面CSX2に近付いた時の加工ヘッド20のY方向の座標Y4´´、第1Y方向切断面CSY1に近付いた時の加工ヘッド20のX方向の座標X3´´、第2Y方向切断面CSY2に近付いた時の加工ヘッド20のX方向の座標X4´´、及び距離d5に基づいて、第2X方向切断面CSX2のY方向の座標Y4、第1Y方向切断面CSY1のX方向の座標X3、及び第2Y方向切断面CSY2のX方向の座標X4を算出する。 Similarly, in step ST4-5, the control device 40 determines the Y-direction coordinate Y4 ″ of the machining head 20 when approaching the second X-direction cutting plane CSX2, and the machining head when approaching the first Y-direction cutting plane CSY1. 20 based on the X direction coordinate X3 ″, the X direction coordinate X4 ″ of the machining head 20 when approaching the second Y direction cut surface CSY2, and the distance d5, the Y direction of the second X direction cut surface CSX2 The coordinate Y4, the X-direction coordinate X3 of the first Y-direction cut surface CSY1, and the X-direction coordinate X4 of the second Y-direction cut surface CSY2 are calculated.
 実施の形態5において、制御装置40は、第2X方向切断面CSX2のY方向の座標Y4=Y4´´+d5であると算出し、第1Y方向切断面CSY1のX方向の座標X3=X3´´-d5であると算出し、第2Y方向切断面CSY2のX方向の座標X4=X4´´+d5であると算出する。制御装置40が各切断面CSX1,CSX2,CSY1,CSY2の座標X3,X4,Y3,Y4は、切断面位置情報である。 In the fifth embodiment, the control device 40 calculates that the Y-direction coordinate Y4 = Y4 ″ + d5 of the second X-direction cut surface CSX2 and the X-direction coordinate X3 = X3 ″ of the first Y-direction cut surface CSY1. -D5 is calculated, and the X-direction coordinate X4 = X4 '' + d5 of the second Y-direction cut surface CSY2 is calculated. The coordinates X3, X4, Y3, and Y4 of the cut surfaces CSX1, CSX2, CSY1, and CSY2 by the control device 40 are cut surface position information.
 制御装置40は、加工時位置情報である移動経路K1の座標X1,X2,Y1,Y2と、移動時位置情報である座標X3´´,X4´´,Y3´´,Y4´´とに基づいて、工具径補正値ΔX,ΔYを算出して(ステップST5-5)、図13に示すフローチャートの処理を終了する。制御装置40は、ステップST5-5において、加工時位置情報である移動経路K1の座標X1,X2,Y1,Y2と、切断面位置情報である座標X3,X4,Y3,Y4とに基づいて、前述した実施の形態1と同様に、式1及び式2を用いて、工具径補正値ΔX,ΔYを算出する。 The control device 40 is based on the coordinates X1, X2, Y1, Y2 of the movement path K1 that is position information at the time of processing, and the coordinates X3 ″, X4 ″, Y3 ″, Y4 ″ that are position information at the time of movement. Then, the tool radius correction values ΔX and ΔY are calculated (step ST5-5), and the process of the flowchart shown in FIG. 13 is ended. In step ST5-5, the control device 40, based on the coordinates X1, X2, Y1, Y2 of the movement path K1 that is position information during processing and the coordinates X3, X4, Y3, Y4 that are cutting surface position information, Similarly to the first embodiment described above, the tool radius correction values ΔX and ΔY are calculated using Equations 1 and 2.
 即ち、ステップST5-5は、加工時位置情報である移動経路K1の座標X1,X2,Y1,Y2と、移動時位置情報である座標X3´´,X4´´,Y3´´,Y4´´とに基づいて、工具径補正値ΔX,ΔYを算出する工具径補正値算出ステップである。また、制御装置40の記憶部43に記憶されたプログラムPG1は、コンピュータである制御装置40に、ステップST1とステップST3-5とステップST5-5を実行させるためのプログラムである。レーザ加工機1は、加工対象物Wを加工する際に、工具径補正値ΔX,ΔYを用いる。 That is, in step ST5-5, the coordinates X1, X2, Y1, and Y2 of the movement path K1 that is position information at the time of processing, and the coordinates X3 ″, X4 ″, Y3 ″, and Y4 ″ that are position information at the time of movement. Is a tool radius correction value calculating step for calculating tool radius correction values ΔX and ΔY based on the above. The program PG1 stored in the storage unit 43 of the control device 40 is a program for causing the control device 40, which is a computer, to execute step ST1, step ST3-5, and step ST5-5. The laser beam machine 1 uses the tool radius correction values ΔX and ΔY when machining the workpiece W.
 実施の形態5に係るレーザ加工機1、制御装置40及びプログラムPG1は、加工対象物Wに各切断面CSX1,CSX2,CSY1,CSY2を形成した時の加工ヘッド20の位置を示す加工時位置情報である座標X1,X2,Y1,Y2と、加工ヘッド20がZ方向に移動した時の加工ヘッド20の位置を示す移動時位置情報である座標X3´´,X4´´,Y3´´,Y4´´とに基づいて、工具径補正値ΔX,ΔYを算出する。このために、レーザ加工機1、制御装置40及びプログラムPG1は、制御装置40が倣い部として機能することにより、工具径補正値ΔX,ΔYを算出することができるので、工具径補正値ΔX,ΔYを算出するために測定機器を用いる必要がなく、高価な光学機器を設ける必要がない。その結果、レーザ加工機1、制御装置40及びプログラムPG1は、コストが高騰することなく、短時間で工具径補正値ΔX,ΔYを算出することができる。 The laser processing machine 1, the control device 40, and the program PG1 according to the fifth embodiment are processing position information indicating the position of the processing head 20 when the cut surfaces CSX1, CSX2, CSY1, and CSY2 are formed on the processing target W. And coordinates X3 ″, X4 ″, Y3 ″, Y4 which are position information at the time of movement indicating the position of the machining head 20 when the machining head 20 moves in the Z direction. Based on ″, tool radius correction values ΔX and ΔY are calculated. For this reason, since the laser processing machine 1, the control device 40, and the program PG1 can calculate the tool radius correction values ΔX and ΔY when the control device 40 functions as a copying unit, the tool radius correction values ΔX, It is not necessary to use a measuring instrument to calculate ΔY, and it is not necessary to provide an expensive optical instrument. As a result, the laser beam machine 1, the control device 40, and the program PG1 can calculate the tool radius correction values ΔX and ΔY in a short time without increasing costs.
 また、実施の形態5に係るレーザ加工機1、制御装置40及びプログラムPG1は、加工ヘッド20がZ方向に移動した時の加工ヘッド20の位置を示す移動時位置情報である座標X3´´,X4´´,Y3´´,Y4´´と、加工ヘッド20がZ方向に移動した時の距離d5と、に基づいて、切断面CSX1,CSX2,CSY1,CSY2の位置を示す切断面位置情報である座標X3,X4,Y3,Y4を算出する。実施の形態1に係るレーザ加工機1、制御装置40及びプログラムPG1は、加工時位置情報である座標X1,X2,Y1,Y2と、切断面位置情報である座標X3,X4,Y3,Y4とに基づいて工具径補正値ΔX,ΔYを算出するので、工具径補正値ΔX,ΔYを正確に算出することができる。 Further, the laser beam machine 1, the control device 40, and the program PG1 according to the fifth embodiment have coordinates X3 ″, which are position information at the time of movement indicating the position of the machining head 20 when the machining head 20 moves in the Z direction. Cut surface position information indicating the positions of the cut surfaces CSX1, CSX2, CSY1, CSY2 based on X4 ″, Y3 ″, Y4 ″ and the distance d5 when the machining head 20 moves in the Z direction. Certain coordinates X3, X4, Y3, and Y4 are calculated. The laser beam machine 1, the control device 40, and the program PG1 according to the first embodiment include coordinates X1, X2, Y1, and Y2 that are position information during processing, and coordinates X3, X4, Y3, and Y4 that are cutting surface position information. Since the tool radius correction values ΔX and ΔY are calculated based on the above, the tool radius correction values ΔX and ΔY can be accurately calculated.
 また、実施の形態5に係るレーザ加工機1、制御装置40及びプログラムPG1は、X方向の工具径補正値ΔXとY方向の工具径補正値ΔYを算出するので、レーザ光LのX方向とY方向との形状が異なっても、正確にパーツPTを加工対象物Wから切断することができる。 Further, the laser beam machine 1, the control device 40, and the program PG1 according to the fifth embodiment calculate the tool radius correction value ΔX in the X direction and the tool radius correction value ΔY in the Y direction. Even if the shape differs from the Y direction, the part PT can be accurately cut from the workpiece W.
 次に、各実施の形態に係るレーザ加工機1の制御装置40の構成を説明する。図19は、各実施の形態に係るレーザ加工機の制御装置のハードウェアの構成の一例を示す図である。制御装置40は、図19に示す入出力インタフェース441に接続された入力装置41から加工対象物Wにおける各パーツPTの情報、及び加工条件が入力される。入力装置41は、タッチパネル、キーボード、マウス、トラックボール又はこれらの組み合わせにより構成される。制御装置40は、入出力インタフェース441に接続された表示装置42に加工対象物Wにおける各パーツPTの情報を表示する。各実施の形態において、表示装置42は、液晶表示装置であるが、液晶表示装置に限定されない。 Next, the configuration of the control device 40 of the laser beam machine 1 according to each embodiment will be described. FIG. 19 is a diagram illustrating an example of a hardware configuration of a control device for a laser beam machine according to each embodiment. The control device 40 receives information on each part PT on the workpiece W and machining conditions from an input device 41 connected to the input / output interface 441 shown in FIG. The input device 41 is configured by a touch panel, a keyboard, a mouse, a trackball, or a combination thereof. The control device 40 displays information on each part PT in the workpiece W on the display device 42 connected to the input / output interface 441. In each embodiment, the display device 42 is a liquid crystal display device, but is not limited to a liquid crystal display device.
 制御装置40は、図19に示すように、CPU(Central Processing Unit)443と、メモリ444と、入出力インタフェース441とを備えるコンピュータである。メモリ444は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせをプログラムPGとして格納する。メモリ444に記憶されたプログラムPGは、工具径補正値ΔX,ΔY,ΔDを算出するプログラムPG1を含む。また、メモリ444は、入力装置41から入力された加工対象物WにおけるパーツPTの情報、及び加工条件を記憶する。メモリ444は、不揮発性又は揮発性の半導体メモリ、磁気ディスク、光ディスク、又は光磁気ディスクにより構成される。不揮発性又は揮発性の半導体メモリとしては、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、又はEEPROM(Electrically Erasable Programmable Read-Only Memory)が用いられる。制御装置40は、メモリ444に格納されたプログラムPGをCPU443が実行して、制御部44及び補正値算出部45の機能を実現する。制御装置40は、メモリ444により記憶部43の機能を実現する。 As shown in FIG. 19, the control device 40 is a computer including a CPU (Central Processing Unit) 443, a memory 444, and an input / output interface 441. The memory 444 stores software, firmware, or a combination of software and firmware as a program PG. The program PG stored in the memory 444 includes a program PG1 for calculating tool radius correction values ΔX, ΔY, ΔD. In addition, the memory 444 stores information on the parts PT in the workpiece W input from the input device 41 and the processing conditions. The memory 444 is configured by a nonvolatile or volatile semiconductor memory, a magnetic disk, an optical disk, or a magneto-optical disk. Non-volatile or volatile semiconductor memory uses RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read-Only Memory) It is done. In the control device 40, the CPU 443 executes the program PG stored in the memory 444 to realize the functions of the control unit 44 and the correction value calculation unit 45. The control device 40 realizes the function of the storage unit 43 by the memory 444.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 レーザ加工機、10 加工対象物支持部、20,20-3,20-4 加工ヘッド、30 相対移動部、40 制御装置(補正値算出装置、倣い部、コンピュータ)、50 接触検出部、W 加工対象物、L レーザ光、CS,CSX1,CSX2,CSY1,CSY2 切断面、ΔX,ΔY,ΔD 工具径補正値、d,d5 距離、X 表面方向、第1の直線方向、Y 表面方向、第2の直線方向、Z 厚み方向、X1,X2,Y1,Y2 加工時位置情報、X3,X4,Y3,Y4 切断面位置情報、X3´,X4´,Y3´,Y4´ 接触時位置情報、X3´´,X4´´,Y3´´,Y4´´ 移動時位置情報、PG1 プログラム、ST1 加工時位置情報算出ステップ、ST3 接触時位置情報算出ステップ、ST5 工具径補正値算出ステップ。 1 laser processing machine, 10 workpiece support unit, 20, 20-3, 20-4 processing head, 30 relative movement unit, 40 control device (correction value calculation device, copying unit, computer), 50 contact detection unit, W Work object, L laser light, CS, CSX1, CSX2, CSY1, CSY2 cut surface, ΔX, ΔY, ΔD tool radius compensation value, d, d5 distance, X surface direction, first linear direction, Y surface direction, first 2 linear direction, Z thickness direction, X1, X2, Y1, Y2 machining position information, X3, X4, Y3, Y4 cut surface position information, X3 ′, X4 ′, Y3 ′, Y4 ′ contact position information, X3 ″ ″, X4 ″, Y3 ″, Y4 ″ Movement position information, PG1 program, ST1 machining position information calculation step, ST3 contact position information calculation step, ST5 tool radius correction value Out of step.

Claims (9)

  1.  加工対象物にレーザ光を照射して、前記加工対象物を加工するとともに、前記加工対象物に切断面を形成するレーザ加工機であって、
     前記加工対象物に前記レーザ光を照射する加工ヘッドと、
     前記切断面を用いて前記加工時の工具径補正値を算出する補正値算出装置と、を備え、
     前記補正値算出装置は、
     前記加工対象物に前記切断面を形成した時の前記加工対象物に対する前記加工ヘッドの位置を示す加工時位置情報と、
     前記加工ヘッドの先端を前記加工対象物の表面よりも前記加工対象物の裏面寄りに位置付けた状態から前記加工ヘッドを前記切断面に近付けて、前記切断面に前記加工ヘッドが接触した時の前記加工対象物に対する前記加工ヘッドの位置を示す接触時位置情報と、に基づいて前記工具径補正値を算出する
     ことを特徴とするレーザ加工機。
    A laser processing machine that irradiates a processing target with laser light to process the processing target and forms a cut surface on the processing target,
    A machining head for irradiating the workpiece with the laser beam;
    A correction value calculation device that calculates a tool radius correction value at the time of machining using the cut surface, and
    The correction value calculation device includes:
    Processing position information indicating the position of the processing head relative to the processing target when the cut surface is formed on the processing target;
    The processing head is brought close to the cutting surface from a state in which the tip of the processing head is positioned closer to the back surface of the processing object than the surface of the processing object, and the processing head comes into contact with the cutting surface. The laser processing machine, wherein the tool radius correction value is calculated on the basis of contact position information indicating a position of the processing head with respect to a processing target.
  2.  前記補正値算出装置は、
     前記接触時位置情報と、前記加工ヘッドが前記切断面に接触した時の前記レーザ光の光軸と前記加工ヘッドの前記切断面に接触する位置との距離と、に基づいて、前記切断面の位置を示す切断面位置情報を算出し、
     前記加工時位置情報と前記切断面位置情報とに基づいて前記工具径補正値を算出する
     ことを特徴とする請求項1に記載のレーザ加工機。
    The correction value calculation device includes:
    Based on the position information at the time of contact and the distance between the optical axis of the laser beam when the processing head contacts the cutting surface and the position at which the processing head contacts the cutting surface, the cutting surface Calculate cut surface position information indicating the position,
    The laser processing machine according to claim 1, wherein the tool radius correction value is calculated based on the processing position information and the cut surface position information.
  3.  加工対象物にレーザ光を照射して、前記加工対象物を加工するとともに、前記加工対象物に切断面を形成するレーザ加工機であって、
     前記加工対象物を支持する加工対象物支持部と、
     前記加工対象物に前記レーザ光を照射する加工ヘッドと、
     前記加工対象物の表面に沿う表面方向と、前記加工対象物の厚み方向と、に沿って前記加工ヘッドと前記加工対象物支持部とを相対的に移動可能な相対移動部と、
     前記相対移動部に前記加工ヘッドと前記加工対象物とを相対的位置に移動させて、前記加工対象物と前記加工ヘッドとの距離を一定に維持する倣い部と、
     前記切断面を用いて前記加工時の工具径補正値を算出する補正値算出装置と、を備え、
     前記補正値算出装置は、
     前記加工対象物の前記切断面を形成した時の前記加工対象物に対する前記加工ヘッドの位置を示す加工時位置情報と、
     前記加工対象物の表面に対向する位置から前記加工ヘッドを前記切断面に近付けて、前記倣い部により前記加工ヘッドと前記加工対象物とが相対的に前記厚み方向に移動した時の前記加工対象物に対する前記加工ヘッドの位置を示す移動時位置情報と、に基づいて前記工具径補正値を算出する
     ことを特徴とするレーザ加工機。
    A laser processing machine that irradiates a processing target with laser light to process the processing target and forms a cut surface on the processing target,
    A workpiece support section for supporting the workpiece,
    A machining head for irradiating the workpiece with the laser beam;
    A relative movement unit capable of relatively moving the processing head and the processing object support unit along the surface direction along the surface of the processing object and the thickness direction of the processing object;
    A copying unit that moves the processing head and the processing object to a relative position in the relative movement unit, and maintains a constant distance between the processing object and the processing head;
    A correction value calculation device that calculates a tool radius correction value at the time of machining using the cut surface, and
    The correction value calculation device includes:
    Processing position information indicating the position of the processing head relative to the processing target when the cut surface of the processing target is formed;
    The processing target when the processing head is moved closer to the cutting surface from a position facing the surface of the processing target, and the processing head and the processing target are relatively moved in the thickness direction by the copying unit. The tool diameter correction value is calculated based on position information at the time of movement indicating the position of the machining head with respect to an object.
  4.  前記補正値算出装置は、
     前記表面方向である第1の直線方向と、前記表面方向でありかつ前記第1の直線方向に交差する第2の直線方向とのそれぞれの前記工具径補正値を算出する
     ことを特徴とする請求項2又は請求項3に記載のレーザ加工機。
    The correction value calculation device includes:
    The tool radius correction value for each of the first linear direction that is the surface direction and the second linear direction that is the surface direction and intersects the first linear direction is calculated. Item 4. The laser beam machine according to item 2 or item 3.
  5.  加工ヘッドからレーザ光を照射させて加工対象物に切断面を形成するレーザ加工機の加工時の工具径補正値を算出する補正値算出装置であって、
     前記加工対象物に前記切断面を形成した時の前記加工対象物に対する前記加工ヘッドの位置を示す加工時位置情報と、
     前記加工ヘッドの先端を前記加工対象物の表面よりも前記加工対象物の裏面寄りに位置付けた状態から前記加工ヘッドを前記切断面に近付けて、前記切断面に前記加工ヘッドが接触した時の前記加工対象物に対する前記加工ヘッドの位置を示す接触時位置情報と、に基づいて前記工具径補正値を算出する
     ことを特徴とする補正値算出装置。
    A correction value calculation device for calculating a tool diameter correction value at the time of processing of a laser processing machine that irradiates a laser beam from a processing head to form a cut surface on a processing object,
    Processing position information indicating the position of the processing head relative to the processing target when the cut surface is formed on the processing target;
    The processing head is brought close to the cutting surface from a state in which the tip of the processing head is positioned closer to the back surface of the processing object than the surface of the processing object, and the processing head comes into contact with the cutting surface. The correction value calculation apparatus characterized in that the tool radius correction value is calculated based on position information at the time of contact indicating a position of the processing head with respect to a processing object.
  6.  前記接触時位置情報と、前記加工ヘッドが前記切断面に接触した時の前記レーザ光の光軸と前記加工ヘッドの前記切断面に接触する位置との距離と、に基づいて、前記切断面の位置を示す切断面位置情報を算出し、
     前記加工時位置情報と前記切断面位置情報とに基づいて前記工具径補正値を算出する
     ことを特徴とする請求項5に記載の補正値算出装置。
    Based on the position information at the time of contact and the distance between the optical axis of the laser beam when the processing head contacts the cutting surface and the position at which the processing head contacts the cutting surface, the cutting surface Calculate cut surface position information indicating the position,
    The correction value calculation apparatus according to claim 5, wherein the tool radius correction value is calculated based on the processing position information and the cut surface position information.
  7.  加工ヘッドからレーザ光を照射させて加工対象物に切断面を形成するレーザ加工機の加工時の工具径補正値を算出する補正値算出装置であって、
     前記加工対象物に前記切断面を形成した時の前記加工対象物に対する前記加工ヘッドの位置を示す加工時位置情報と、
     前記加工対象物の表面に対向する位置から前記加工ヘッドを前記切断面に近付けて、前記レーザ加工機の倣い部により前記加工ヘッドと前記加工対象物とが相対的に前記厚み方向に移動した時の前記加工対象物に対する前記加工ヘッドの位置を示す移動時位置情報と、に基づいて前記工具径補正値を算出する
     ことを特徴とする補正値算出装置。
    A correction value calculation device for calculating a tool diameter correction value at the time of processing of a laser processing machine that irradiates a laser beam from a processing head to form a cut surface on a processing object,
    Processing position information indicating the position of the processing head relative to the processing target when the cut surface is formed on the processing target;
    When the machining head is brought close to the cut surface from a position facing the surface of the workpiece, and the machining head and the workpiece are relatively moved in the thickness direction by the copying unit of the laser beam machine The tool radius correction value is calculated on the basis of the moving position information indicating the position of the machining head with respect to the machining object.
  8.  加工ヘッドからレーザ光を照射させて加工対象物に切断面を形成するレーザ加工機の加工時の工具径補正値を算出するプログラムであって、
     前記加工対象物に前記切断面を形成した時の前記加工対象物に対する前記加工ヘッドの位置を示す加工時位置情報を算出する加工時位置情報算出ステップと、
     前記加工ヘッドの先端を前記加工対象物の表面よりも前記加工対象物の裏面寄りに位置付けた状態から前記加工ヘッドを前記切断面に近付けて、前記切断面に前記加工ヘッドが接触した時の前記加工対象物に対する前記加工ヘッドの位置を示す接触時位置情報を算出する接触時位置情報算出ステップと、
     前記加工時位置情報と前記接触時位置情報に基づいて前記工具径補正値を算出する工具径補正値算出ステップと、
     をコンピュータに実行させるためのプログラム。
    A program for calculating a tool radius correction value at the time of processing of a laser processing machine that irradiates a laser beam from a processing head to form a cut surface on a processing object,
    Processing position information calculation step for calculating processing position information indicating the position of the processing head with respect to the processing object when the cut surface is formed on the processing object;
    The processing head is brought close to the cutting surface from a state in which the tip of the processing head is positioned closer to the back surface of the processing object than the surface of the processing object, and the processing head comes into contact with the cutting surface. A position information calculation step for contact that calculates position information for contact indicating the position of the processing head with respect to the processing object;
    A tool radius correction value calculating step for calculating the tool radius correction value based on the processing position information and the contact position information;
    A program that causes a computer to execute.
  9.  前記工具径補正値算出ステップは、
     前記接触時位置情報と、前記加工ヘッドが前記切断面に接触した時の前記レーザ光の光軸と前記加工ヘッドの前記切断面に接触する位置との距離と、に基づいて、前記切断面の位置を示す切断面位置情報を算出し、
     前記加工時位置情報と前記切断面位置情報とに基づいて前記工具径補正値を算出する
     ことを特徴とする請求項8に記載のプログラム。
    The tool radius correction value calculating step includes:
    Based on the position information at the time of contact and the distance between the optical axis of the laser beam when the processing head contacts the cutting surface and the position at which the processing head contacts the cutting surface, the cutting surface Calculate cut surface position information indicating the position,
    The program according to claim 8, wherein the tool radius correction value is calculated based on the processing position information and the cut surface position information.
PCT/JP2016/064943 2016-05-19 2016-05-19 Laser cutting machine, correction value computing device, and program WO2017199410A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/064943 WO2017199410A1 (en) 2016-05-19 2016-05-19 Laser cutting machine, correction value computing device, and program
JP2016567283A JP6087483B1 (en) 2016-05-19 2016-05-19 Laser processing machine, correction value calculation device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064943 WO2017199410A1 (en) 2016-05-19 2016-05-19 Laser cutting machine, correction value computing device, and program

Publications (1)

Publication Number Publication Date
WO2017199410A1 true WO2017199410A1 (en) 2017-11-23

Family

ID=58185971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064943 WO2017199410A1 (en) 2016-05-19 2016-05-19 Laser cutting machine, correction value computing device, and program

Country Status (2)

Country Link
JP (1) JP6087483B1 (en)
WO (1) WO2017199410A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210080919A1 (en) * 2018-03-12 2021-03-18 Amada Co., Ltd. Cutting processing machine and cutting processing method
US11433485B2 (en) * 2018-03-12 2022-09-06 Amada Co., Ltd. Cutting processing machine and cutting processing method
US11537098B2 (en) * 2018-07-06 2022-12-27 Amada Co., Ltd. Cutting machine and cutting method including tool radius compensation relative to a laser path

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018218A (en) * 2017-07-13 2019-02-07 トヨタ自動車株式会社 Cutting welding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155484A (en) * 1989-11-10 1991-07-03 Amada Co Ltd Automatic tool diameter correcting method for laser beam machine
JPH06161523A (en) * 1992-11-26 1994-06-07 Koike Sanso Kogyo Co Ltd Cutting width correcting method
JPH10258384A (en) * 1997-03-14 1998-09-29 Amada Co Ltd Automatic tool diameter correcting method of laser beam machine
JP2002001568A (en) * 2000-06-15 2002-01-08 Amada Wasino Co Ltd Parameter setting method for laser beam machining head of nc control three-dimensional laser beam machine and nc control three-dimensional laser beam machine
JP2003126980A (en) * 2001-10-24 2003-05-08 Matsushita Electric Ind Co Ltd Method for correction of processing position data of laser hole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155484A (en) * 1989-11-10 1991-07-03 Amada Co Ltd Automatic tool diameter correcting method for laser beam machine
JPH06161523A (en) * 1992-11-26 1994-06-07 Koike Sanso Kogyo Co Ltd Cutting width correcting method
JPH10258384A (en) * 1997-03-14 1998-09-29 Amada Co Ltd Automatic tool diameter correcting method of laser beam machine
JP2002001568A (en) * 2000-06-15 2002-01-08 Amada Wasino Co Ltd Parameter setting method for laser beam machining head of nc control three-dimensional laser beam machine and nc control three-dimensional laser beam machine
JP2003126980A (en) * 2001-10-24 2003-05-08 Matsushita Electric Ind Co Ltd Method for correction of processing position data of laser hole

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210080919A1 (en) * 2018-03-12 2021-03-18 Amada Co., Ltd. Cutting processing machine and cutting processing method
US11433485B2 (en) * 2018-03-12 2022-09-06 Amada Co., Ltd. Cutting processing machine and cutting processing method
US11953875B2 (en) * 2018-03-12 2024-04-09 Amada Co., Ltd. Cutting processing machine and cutting processing method
US11537098B2 (en) * 2018-07-06 2022-12-27 Amada Co., Ltd. Cutting machine and cutting method including tool radius compensation relative to a laser path

Also Published As

Publication number Publication date
JPWO2017199410A1 (en) 2018-05-31
JP6087483B1 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6087483B1 (en) Laser processing machine, correction value calculation device, and program
CN109070354B (en) Shaft alignment for beam processing machines
JP6289980B2 (en) Processing method
US11054253B2 (en) Gap measurement device and gap measurement method
US8924176B2 (en) Industrial machine
CN110560892B (en) Pipe identification method and device based on laser pipe cutting equipment
JP6198701B2 (en) Shape measuring apparatus and shape measuring method
JP5970267B2 (en) Work bending angle measuring device and press brake
KR20170007149A (en) Wire electrical discharge machine
JP4919334B2 (en) Measuring method and measuring jig for setting inclination angle of wire electrode
JP6316070B2 (en) Bending system, V-groove position measuring device and bending method
CN113052896B (en) Visual positioning method and device
KR20120069056A (en) The main axis heat displacement correction unit using tools measuring of cnc and method thereof
JP5351083B2 (en) Teaching point correction apparatus and teaching point correction method
WO2017094408A1 (en) Laser processing machine, calculating device, and processing method for workpiece
JP2009251621A (en) Reference position correction device for machine tool
KR101782377B1 (en) Cutting tools correctly installed equipment and installation normal method of using the same
JPH07116737A (en) Instrument for measuring bending angle
JP6705173B2 (en) Welding method and welding equipment
KR20140071534A (en) Method for measuring bar-like workpieces information of laser machining apparatus for machining bar-like workpieces
KR102016079B1 (en) Method for measuring bar-like workpieces radius of curvature of laser machining apparatus for machining bar-like workpieces
KR20140071531A (en) Method for measuring bar-like workpieces size of laser machining apparatus for machining bar-like workpieces
US20200246908A1 (en) Distance measuring device, friction stir welding apparatus, and friction stir welding method
JP2613739B2 (en) Position detecting method and device by wire touch sensing
JP2005181023A (en) Measuring device and method of height difference and tilt angle between planes

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016567283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902429

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902429

Country of ref document: EP

Kind code of ref document: A1