JPS58161253A - Manufacture of positive pole active substance for cell - Google Patents
Manufacture of positive pole active substance for cellInfo
- Publication number
- JPS58161253A JPS58161253A JP57044918A JP4491882A JPS58161253A JP S58161253 A JPS58161253 A JP S58161253A JP 57044918 A JP57044918 A JP 57044918A JP 4491882 A JP4491882 A JP 4491882A JP S58161253 A JPS58161253 A JP S58161253A
- Authority
- JP
- Japan
- Prior art keywords
- positive pole
- cr3o8
- active substance
- battery
- pure water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、電池とくに負極活物質にアルカリ金属、アル
カリ土類金属などの軽金属を、電解質に有機電解質を用
い、正極活物質にクロム中間酸化物であるC工。08を
用いる有機電解質電池の正極活物質の製造法に関するも
ので、高電圧、高エネルギー密度で、信頼性の高い電池
を提供することを目的とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a battery, particularly a battery using C technology, in which a light metal such as an alkali metal or an alkaline earth metal is used as a negative electrode active material, an organic electrolyte is used as an electrolyte, and a chromium intermediate oxide is used as a positive electrode active material. The present invention relates to a method for producing a positive electrode active material for an organic electrolyte battery using No. 08, and aims to provide a battery with high voltage, high energy density, and high reliability.
現在までに、各種金属酸化物が有機電解質電池の正極活
物質材料として、調量、検討が行なわれてきており、実
用化されたものだけでも、二酸化21・ 、゛
マンガン(MnO2)、クロム酸銀(A92cro4)
。To date, various metal oxides have been measured and studied as positive electrode active materials for organic electrolyte batteries, and the ones that have been put into practical use include 21.21.dioxide, manganese (MnO2), and chromic acid. Silver (A92cro4)
.
酸化銅(CuO)、三酸化ビスマス(B1203)。Copper oxide (CuO), bismuth trioxide (B1203).
ビスマス銅複合酸化物(B、2Cu04)等があり、い
ずれもリチウム負極と組み合わせ、リチウム電池として
知られているものである。There are bismuth copper composite oxides (B, 2Cu04), etc., which are all combined with a lithium negative electrode and are known as lithium batteries.
また、クロム酸化物に関しては、米国特許第3.415
,687号明細書に三酸化クロム(CrO3)を正極活
物質として、リチウム負極と組み合わせた場合、3.6
8Vの開路電圧を示すことが記載されており、ドイツ特
許第2 、341 、723号明細書には、黒鉛層間化
合物(C8Cr03)が、アルカリ金属と組み合わせら
れる二次電池用正極活物質として記載されている。さら
に、クロム中間酸化物であるCr3O8,Cr206は
、CrO3の単独あるいは黒鉛との熱分解生成物と七も
に、有機電解質系で、リチウム負極と組み合わせた場合
、非常に有用な一次、二次電池用正極活物質となること
が知られている。Regarding chromium oxide, U.S. Patent No. 3.415
, 687, when chromium trioxide (CrO3) is used as a positive electrode active material in combination with a lithium negative electrode, 3.6
It is described that it exhibits an open circuit voltage of 8V, and in German Patent No. 2,341,723, a graphite intercalation compound (C8Cr03) is described as a positive electrode active material for secondary batteries in combination with an alkali metal. ing. Furthermore, chromium intermediate oxides Cr3O8 and Cr206, together with thermal decomposition products of CrO3 alone or with graphite, are organic electrolyte systems, and when combined with a lithium negative electrode, are very useful in primary and secondary batteries. It is known that it can be used as a positive electrode active material.
本発明者らは、とくにクロム中間酸化物であるCr3O
8に関して、詳細に検討を行なった結果、3ペ ジ
正極製造法により、この系の電池の特性が大きく影響さ
れることを見い出しだ。すなわち、Cr3O8は一般に
三酸化クロム(CrO3)の熱分解によっで得られるが
、未反応の三酸化クロム(CrO3)が一部残留する。In particular, the present inventors have discovered that Cr3O, which is a chromium intermediate oxide,
As a result of a detailed study regarding No. 8, we found that the characteristics of this type of battery are greatly affected by the cathode manufacturing method. That is, Cr3O8 is generally obtained by thermal decomposition of chromium trioxide (CrO3), but some unreacted chromium trioxide (CrO3) remains.
このCrO3は非常に吸水性が強いだけでなく、毒性も
強いものである。アルカリ金属を対極とする有機電解質
電池において、水は電池の長期信頼性に関して大きな阻
害要因となり排除しなければならないものである。また
、CrO3は有機溶媒に対して、溶解度が犬であるため
、溶解した六価クロムイオン(C”)が、アルカリ金属
表面に析出する可能性が犬であり、電池の信頼性を損う
。本発明は、このCrO3を有効に除去する方法として
、純水またはアルコールを用いた洗浄による方法を選び
、かつ、洗浄後適切な150〜300′Cでの熱処理を
行なうことによって高電圧、高エネルギー密度で、信頼
性の高い電池を提供゛するものである。This CrO3 is not only highly water-absorbing, but also highly toxic. In organic electrolyte batteries using an alkali metal as a counter electrode, water is a major impediment to the long-term reliability of the battery and must be eliminated. Furthermore, since CrO3 has low solubility in organic solvents, there is a high possibility that dissolved hexavalent chromium ions (C'') will precipitate on the alkali metal surface, impairing the reliability of the battery. The present invention selects a cleaning method using pure water or alcohol as a method for effectively removing this CrO3, and performs a heat treatment at an appropriate temperature of 150 to 300'C after cleaning. It provides a battery with high density and high reliability.
1.型、下、本発明をその実施例により詳細に説明すス
′。1. The present invention will now be explained in detail by way of examples thereof.
正極活物質のCr3O8は、市販の三酸化クロム(Cr
03)を酸素圧20気圧、温度250″Cで12時間熱
処理を行なって調製した。得られたCr3O8はついで
第1表に示すような各処理を行なった。The positive electrode active material Cr3O8 is commercially available chromium trioxide (Cr
03) was prepared by heat treatment at an oxygen pressure of 20 atmospheres and a temperature of 250''C for 12 hours.The obtained Cr3O8 was then subjected to various treatments as shown in Table 1.
洗浄は、約10倍量の純水、アルコールール、エタノー
ル)中に浸漬攪拌し、約10〜20分後に濾過した。ア
ルコールの場合は、浸漬後直ちに茶褐色に変色すること
から、浸漬時間は約10分間とした。残留物は少し粘性
を生ずる。この変色は、アルコールのアルデヒドへの酸
化反応と、六価クロムイオン< c r6 + )の溶
解とによるものと考えられる。For washing, the sample was immersed and stirred in about 10 times the volume of pure water, alcohol, and ethanol, and filtered after about 10 to 20 minutes. In the case of alcohol, since the color changes to brown immediately after dipping, the dipping time was set to about 10 minutes. The residue becomes slightly sticky. This discoloration is thought to be due to the oxidation reaction of alcohol to aldehyde and the dissolution of hexavalent chromium ions < cr6 + ).
第1表
6ノぐ″
六価クロムイオンの溶解は、濾液であるアルコールに水
を添加すると黄味を生じることから確認された。一方、
純水の場合は、六価クロムイオンの溶解により、鮮黄色
に変色する。濾過残留物は、それぞれ浸漬液と同じ純水
かアルコールで洗浄した後、第1表に示す各温度で、そ
れぞれ12時間の熱処理を行なった。なお雰囲気は常圧
空気中とした。熱処理後のCr308の外観的な変化は
見られなかった。Table 1 6'' The dissolution of hexavalent chromium ions was confirmed by the fact that when water was added to the alcohol filtrate, a yellowish tint appeared.On the other hand,
In the case of pure water, the color changes to bright yellow due to the dissolution of hexavalent chromium ions. The filtration residues were each washed with the same pure water or alcohol as the immersion liquid, and then heat-treated at each temperature shown in Table 1 for 12 hours. The atmosphere was normal pressure air. No change in appearance of Cr308 was observed after heat treatment.
第1図は、評価のために用いた扁平型電池の断面図であ
る。図中、1は封目板、2は負極の金属リチウム、3は
ポリプロピレン不織布製セパレータ、4は合成樹脂ガス
ケットである。5は正極で、未処理あるいは第1表の処
理を施したCr3o8と、導電材としてのアセチレンブ
ランクと粘結材としてのフッ素樹脂とを、重量比で10
:1 :1の割合で混合したものを、直径14聰,厚さ
0.6団に加圧成型したものである。6は正極集電体、
7はケースである。電解液にはプロピレンカーボネイト
とデメトキンエタンとの重量比で1:1混合溶6ベージ
゛
媒に、電解質として過塩素酸リチウムを1モル/LV。FIG. 1 is a cross-sectional view of a flat battery used for evaluation. In the figure, 1 is a sealing plate, 2 is metal lithium as a negative electrode, 3 is a polypropylene nonwoven fabric separator, and 4 is a synthetic resin gasket. 5 is a positive electrode, which is composed of untreated or treated Cr3o8, an acetylene blank as a conductive material, and a fluororesin as a caking material in a weight ratio of 10.
:1:1 mixture was pressure-molded into a diameter of 14 mm and a thickness of 0.6 mm. 6 is a positive electrode current collector;
7 is a case. The electrolyte was a mixture of propylene carbonate and demethine ethane in a weight ratio of 1:1 in a six-base medium, and 1 mol/LV of lithium perchlorate was used as the electrolyte.
の割合で溶解させたものを用いた。A solution dissolved at the following ratio was used.
しだ。図中の記号1〜8は、第1表の処理例1〜8の各
Cr308に、それぞれ対応している。第2図より明ら
かなように、水洗浄後250’Cで熱処理を行なったC
r3084,およびアルコール洗浄後260″Cで熱処
理を行なったもの7,8は、組立直後においても、未処
理品1よりも優れた放電特性を示すことがわかる。15
0″Cの熱処理品3は、放電容量的には、やや劣るが良
好な特性を示す。3o○゛Cの熱処理品6では特性の劣
化が現われ、35o’C%処理品6では、より顕著に劣
化している。一方、低温1o○°Cでの処理品2は、は
とんど放電容量を示さなくなっている。また、4と7.
8の比較から、Cr03除去のだめの洗浄液としては、
純水が最も適していると考えられる。Shida. Symbols 1 to 8 in the figure correspond to each Cr308 of processing examples 1 to 8 in Table 1, respectively. As is clear from Figure 2, C
It can be seen that R3084 and Samples 7 and 8, which were heat treated at 260''C after alcohol cleaning, exhibit better discharge characteristics than untreated sample 1 even immediately after assembly.15
Product 3 heat-treated at 0''C shows good characteristics, although its discharge capacity is slightly inferior.Product 6 heat-treated at 3o'C shows deterioration in characteristics, and product 6 treated at 35o'C% shows a more pronounced deterioration. On the other hand, product 2 treated at a low temperature of 1o○°C hardly shows any discharge capacity.
From the comparison of 8, the cleaning solution for removing Cr03 is:
Pure water is considered the most suitable.
1アルコール洗浄では、CrO3の除去とともにアルl
古クルの酸化等の副反応が生じているため、ンス7ベー
ジ
テム的には不明であるが、容量面で水洗浄に比較して劣
っている。30o′C以上の熱処理で特性が劣化するの
は、クロムの低級酸化物であるCrO2等が生成してく
るためと考えられ、第2図に見られる2段曲線となって
いる放電特性も、この考え方と一致する。150〜30
0″Cの熱処理、とくに好ましくは250°Cでの熱処
理による放電性の改良原因は、不明であるが、X線回折
的には、C73o8の回折ピークが不明瞭となり、無定
形の幅広ピークを示していることから、C7308の場
合、無定形の構造の方が放電機構的に好ましいため、利
用率が向上すると考えられる。また、残存する未反応の
CrO3が、完全にCr3O8に分解し、純度が良くな
ったため、放電容量が増加したとも考えられる。1 Alcohol cleaning removes CrO3 and also removes alcohol.
Because side reactions such as oxidation of old chlorine occur, it is unclear in terms of cleaning system, but it is inferior to water cleaning in terms of capacity. The reason why the characteristics deteriorate with heat treatment above 30o'C is thought to be due to the formation of lower chromium oxides such as CrO2, and the discharge characteristics, which are the two-step curve shown in Figure 2, also deteriorate. This is consistent with this idea. 150-30
The reason for the improvement in discharge performance by heat treatment at 0''C, particularly preferably at 250°C, is unknown, but in terms of X-ray diffraction, the diffraction peak of C73o8 becomes unclear and amorphous broad peaks are formed. From the above, in the case of C7308, an amorphous structure is preferable in terms of discharge mechanism, so it is thought that the utilization rate will improve.In addition, the remaining unreacted CrO3 is completely decomposed into Cr3O8, increasing the purity. It is also thought that the discharge capacity increased because the discharge capacity improved.
電池の信頼性に関しては、e o ’02週間後の電池
総高の脹みから、電池内部のガス発生の程度を推測し、
また電池電圧および内部抵抗の異常なもpを中心とした
分解調査により、リチウム表面の少ロムイオンの析出に
よる変色を調べ、第2表にその結果を示した。Regarding the reliability of the battery, we estimated the degree of gas generation inside the battery from the swelling of the battery's total height after two weeks.
In addition, discoloration due to the precipitation of chromium-poor ions on the lithium surface was investigated through a decomposition investigation focusing on abnormal battery voltage and internal resistance, and the results are shown in Table 2.
第2表
水洗浄後1oO′Cで熱処理したもの2は明らかに多量
の水分が、正極中に含まれていたため、サンプル40個
の半数以上が電池内部でガス発生を生じていた。また、
未処理品1においても、約20チの電池が内部でガス発
生を生じていることがわかる。一方、洗浄後、160°
C以上の熱処理を施した3〜8では、電池の脹みは見ら
れず、脱水が十分に行なわれていることがわかる。さら
に電池のリチウム負極表面の変色は、3〜6及び7では
9 ハ・ ミ゛
全く認められず、それぞれのCr3O8を正極活物質と
した電池の電圧、内部抵抗ともに異常なものは見られず
、本発明により、CrO3が十分に除去され、信頼性が
高くなっていることがわかる。In case 2, which was heat-treated at 1 oO'C after the second surface water washing, a large amount of water was clearly contained in the positive electrode, and more than half of the 40 samples generated gas inside the battery. Also,
It can be seen that even in the untreated product 1, about 20 cells were generating gas internally. On the other hand, after cleaning, 160°
In Nos. 3 to 8, which were subjected to heat treatment of C or higher, no swelling of the battery was observed, indicating that dehydration was sufficiently performed. In addition, no discoloration of the surface of the lithium negative electrode of the batteries was observed in 9 H in Nos. 3 to 6 and No. 7, and no abnormalities were observed in the voltage or internal resistance of the batteries using Cr3O8 as the positive electrode active material. It can be seen that according to the present invention, CrO3 is sufficiently removed and reliability is high.
以上のように本発明の方法をとることにより、高電圧、
高エネルギー密度で、かつ信頼性の高い電池を提供する
ことができる。By adopting the method of the present invention as described above, high voltage,
A battery with high energy density and high reliability can be provided.
第1図は、本発明の特性評価のだめに用いた扁平形電池
の断面図、第2図は本発明による各処理を施したCr3
O8を正極に用いた電池の放電特性を示す図である。
2−負極、3− セパレータ、6・・・加圧成型した正
極。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
″E矢定符縫持聞(軒)Figure 1 is a cross-sectional view of a flat battery used to evaluate the characteristics of the present invention, and Figure 2 is a Cr3 battery that has been subjected to various treatments according to the present invention.
FIG. 3 is a diagram showing the discharge characteristics of a battery using O8 as a positive electrode. 2-negative electrode, 3- separator, 6...pressure-molded positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 ``E arrow mark stitching (eaves)
Claims (2)
5o〜300°Cの温度で熱処理することを特徴とする
電池の正極活物質製造法。(1) After cleaning Cr3O8, which is chromium intermediate oxide, 1
A method for producing a positive electrode active material for a battery, comprising heat treatment at a temperature of 5o to 300°C.
範囲第1項記載の電池の正極活物質製造法。(2) The method for producing a positive electrode active material for a battery according to claim 1, wherein the Cr3O8 cleaning liquid is pure water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57044918A JPS58161253A (en) | 1982-03-19 | 1982-03-19 | Manufacture of positive pole active substance for cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57044918A JPS58161253A (en) | 1982-03-19 | 1982-03-19 | Manufacture of positive pole active substance for cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58161253A true JPS58161253A (en) | 1983-09-24 |
JPH0363180B2 JPH0363180B2 (en) | 1991-09-30 |
Family
ID=12704840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57044918A Granted JPS58161253A (en) | 1982-03-19 | 1982-03-19 | Manufacture of positive pole active substance for cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58161253A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010048266A (en) * | 2008-08-19 | 2010-03-04 | Kawasaki Heavy Ind Ltd | Driving belt guiding structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS519099A (en) * | 1974-07-15 | 1976-01-24 | Nippon Chemical Ind | HACHISANSANKAKUROMUNO SEIZOHO |
JPS5295597A (en) * | 1976-02-09 | 1977-08-11 | Matsushita Electric Ind Co Ltd | Production of activated manganese dioxide |
JPS5364729A (en) * | 1976-11-19 | 1978-06-09 | Matsushita Electric Ind Co Ltd | Method of manufacturing silver oxide positive electrode |
-
1982
- 1982-03-19 JP JP57044918A patent/JPS58161253A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS519099A (en) * | 1974-07-15 | 1976-01-24 | Nippon Chemical Ind | HACHISANSANKAKUROMUNO SEIZOHO |
JPS5295597A (en) * | 1976-02-09 | 1977-08-11 | Matsushita Electric Ind Co Ltd | Production of activated manganese dioxide |
JPS5364729A (en) * | 1976-11-19 | 1978-06-09 | Matsushita Electric Ind Co Ltd | Method of manufacturing silver oxide positive electrode |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010048266A (en) * | 2008-08-19 | 2010-03-04 | Kawasaki Heavy Ind Ltd | Driving belt guiding structure |
Also Published As
Publication number | Publication date |
---|---|
JPH0363180B2 (en) | 1991-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1492177B1 (en) | Positive electrode active material and use thereof | |
JPH0824043B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material | |
US4243624A (en) | Method of making cathodes derived from ammonium-metal-chalcogen compounds | |
JPH05343066A (en) | Positive electrode active material for lithium secondary battery | |
JPS58161253A (en) | Manufacture of positive pole active substance for cell | |
CN113078310B (en) | Intercalation MnO 2 And method for preparing the same | |
JPS636496B2 (en) | ||
KR101418065B1 (en) | Positive composition for lithium secondary battery comprising lithium-manganese based metal oxide substituted other metal and preparation method thereof | |
JPS61264682A (en) | Organic electrolyte battery | |
JP2822659B2 (en) | Non-aqueous electrolyte secondary battery | |
JPS6155741B2 (en) | ||
JPS5991670A (en) | Manufacture of organic electrolyte battery | |
JPS59128765A (en) | Nonaqueous electrolyte battery | |
US1438086A (en) | High-voltage copper-oxide depolarizer | |
JP2000082468A (en) | Lithium thiolate for battery positive electrode and lithium secondary battery using the same | |
Rahmani et al. | Electrochemical Performance Analysis of Lead Dioxide Prepared from Intermediate Oxides | |
Iwai | The Degradation Mechanisms of Nickel Metal-Hydride Battery and Lead Acid Battery during Open Circuit | |
JPS59101773A (en) | Manufacture of lead dioxide for divalent silver oxide battery | |
JPH08315823A (en) | Manufacture of lithium-containing positive electrode active material | |
JPH0374061A (en) | Nonaqueous electrolyte secondary battery | |
JPH0383818A (en) | Manganese dioxide and its production | |
JPH01281671A (en) | Battery with nonaqueous electrolyte | |
KR20190091717A (en) | Nickel powder fabrication method | |
JPH04343B2 (en) | ||
JPS59224073A (en) | Nonaqueous electrolyte cell |