JPH05343066A - Positive electrode active material for lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery

Info

Publication number
JPH05343066A
JPH05343066A JP4173743A JP17374392A JPH05343066A JP H05343066 A JPH05343066 A JP H05343066A JP 4173743 A JP4173743 A JP 4173743A JP 17374392 A JP17374392 A JP 17374392A JP H05343066 A JPH05343066 A JP H05343066A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
secondary battery
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4173743A
Other languages
Japanese (ja)
Inventor
Seiji Fuchino
誠治 渕野
Masamoto Sasaki
正元 佐々木
Junichiro Tanaka
順一郎 田中
Hiroshi Shinkawa
弘 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP4173743A priority Critical patent/JPH05343066A/en
Publication of JPH05343066A publication Critical patent/JPH05343066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a positive electrode active material for a lithium secondary battery by which corrosion of a positive electrode current collecting body can be prevented by regulating the total content of sodium and potassium in not more than a specific quantity in composite oxide composed of lithium and transition metal of a specific ratio. CONSTITUTION:For example, lithium carbonate and so on and a single body of transition metal or the carbonate and oxide thereof are mixed together, and a heat treatment is carried out, and composite oxide shown by LixMO2 (x represents 0.3-1.2 and M represents transition metal) is prepared. At this time, cleaning of a raw material is repeated in pure water, or ethylene diamine tetraacetate is added to raw material aqueous solution, and the total content of sodium and potassium associated in the composite oxide is set not more than 1000ppm, or preferably, it is set not more than 200ppm. Thereby, a positive electorde active material to prevent effectively corrosion of a positive electrode current collecting body of a lithium secondary battery can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池用正
極活物質に関し、特に二次電池の正極集電体の腐食防止
を有効に達成し得るリチウム遷移金属複合酸化物からな
るリチウム二次電池用正極活物質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a lithium secondary battery, and particularly to a lithium secondary metal composite oxide which can effectively prevent corrosion of a positive electrode current collector of the secondary battery. The present invention relates to a positive electrode active material for batteries.

【0002】[0002]

【従来の技術】従来、リチウム二次電池用の正極活物質
としては、二硫化チタン、二硫化モリブデン等の硫化物
系等の材料が提案されており、既にこれらの一部につい
ては実用化がなされている。しかし、これらの硫化物系
の正極活物質を用いる場合、電池電圧が3.0V以下で
あるため、エネルギー密度の高い電池を得るという観点
からは電池電圧が低いという問題がある。
2. Description of the Related Art Hitherto, as a positive electrode active material for a lithium secondary battery, materials such as sulfide-based materials such as titanium disulfide and molybdenum disulfide have been proposed, and some of these have already been put to practical use. Has been done. However, when these sulfide-based positive electrode active materials are used, since the battery voltage is 3.0 V or less, there is a problem that the battery voltage is low from the viewpoint of obtaining a battery with high energy density.

【0003】そこで、エネルギー密度が高いリチウム二
次電池を得るために、コバルトリチウム複合酸化物(L
iCoO2)等のリチウムと遷移金属との複合酸化物を
正極活物質として用いることが検討され、これらについ
ても既に一部実用化されている。
Therefore, in order to obtain a lithium secondary battery having a high energy density, a cobalt lithium composite oxide (L
It has been studied to use a composite oxide of lithium and a transition metal such as iCoO 2 ) as a positive electrode active material, and some of these have already been put to practical use.

【0004】ところで、前述した正極活物質として、リ
チウムと遷移金属との複合酸化物を正極活物質として用
いる場合、正極集電体としてアルミニウム箔等を用いる
提案がなされ(特開平1−294372号公報参照)、
実用化が図られている。
By the way, when a composite oxide of lithium and a transition metal is used as the positive electrode active material described above, an aluminum foil or the like is proposed as a positive electrode current collector (Japanese Patent Laid-Open No. 1-294372). reference),
It is being put to practical use.

【0005】しかるに、前述した遷移金属との複合酸化
物を正極活物質に用いた場合、アルミニウム集電体がし
ばしば腐食され、電池特性を劣化させるという問題があ
り、このため腐食を生じない正極活物質を得るため、特
殊で、しかも煩雑な焼成方法等の工夫をせざるを得なか
ったが、それでも安定した正極活物質は得られていなか
った。
However, when the above-mentioned composite oxide with a transition metal is used as the positive electrode active material, there is a problem that the aluminum current collector is often corroded and the battery characteristics are deteriorated. Therefore, corrosion does not occur in the positive electrode active material. In order to obtain the substance, there was no choice but to devise a special and complicated firing method, etc., but still a stable positive electrode active material could not be obtained.

【0006】このように、正極活物質の製造は、単に電
池性能が優れていればよいというものではなく、他の電
池構成材料との適合性が重要であることは、池田等によ
る電池缶の腐食(電気化学45(5)、316(197
7))の報告でも明らかである。
As described above, the production of the positive electrode active material is not simply required to have excellent battery performance, and the importance of compatibility with other battery constituent materials is that the battery cans of Ikeda et al. Corrosion (electrochemistry 45 (5), 316 (197)
It is also clear in the report of 7)).

【0007】[0007]

【発明が解決しようとする課題】本発明は、以上述べた
事情に鑑み、正極集電体の腐食を防止し得るリチウム二
次電池用正極活物質を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the circumstances described above, an object of the present invention is to provide a positive electrode active material for a lithium secondary battery which can prevent corrosion of the positive electrode current collector.

【0008】[0008]

【課題を解決するための手段】本発明者等は、アルミニ
ウム集電体の腐食につき鋭意研究を重ねた結果、正極活
物質中のナトリウムおよびカリウムの含有量が多いと腐
食が促進されることを見い出した。従って、本発明の上
記目的は、正極活物質中に含まれるナトリウムおよびカ
リウムの含有量を制御することによって達成される。
Means for Solving the Problems As a result of intensive studies on the corrosion of an aluminum current collector, the inventors of the present invention have found that corrosion is promoted when the content of sodium and potassium in the positive electrode active material is large. I found it. Therefore, the above object of the present invention is achieved by controlling the contents of sodium and potassium contained in the positive electrode active material.

【0009】すなわち、本発明のリチウム二次電池用正
極活物質は、 LixMO2 … (1) (x:0.3〜1.2、Mは遷移金属)で示されるリチ
ウムと遷移金属の複合酸化物中のナトリウムおよびカリ
ウムの総含有率が1000ppm以下であることを特徴
とする。
That is, the positive electrode active material for a lithium secondary battery of the present invention comprises lithium and a transition metal represented by Li x MO 2 (1) (x: 0.3 to 1.2, M is a transition metal). The total content of sodium and potassium in the composite oxide is 1000 ppm or less.

【0010】以下、本発明をさらに詳細に説明する。本
発明において、 LixMO2 … (1) (x:0.3〜1.2、Mは遷移金属)で示されるリチ
ウムと遷移金属との複合酸化物は、リチウムの炭酸塩等
と遷移金属単体またはその炭酸塩、酸化物とを混合し、
熱処理することにより、容易に合成されるものである
(例えば、水島等によるMat,Res・Bull…、
15,783(1980))。
The present invention will be described in more detail below. In the present invention, a composite oxide of lithium and a transition metal represented by Li x MO 2 (1) (x: 0.3 to 1.2, M is a transition metal) is a lithium carbonate or a transition metal. Mixing simple substance or its carbonate, oxide,
It is easily synthesized by heat treatment (for example, Mat, Res. Bull by Mizushima, etc.,
15, 783 (1980)).

【0011】上記式中のxは0.30〜1.2の範囲に
ある。この範囲は複合酸化物であるLiMO2、Li0.5
MO2を合成する場合の化学量論組成からのずれを考慮
したものである。
In the above formula, x is in the range of 0.30 to 1.2. This range is a composite oxide of LiMO 2 and Li 0.5.
This is because the deviation from the stoichiometric composition when synthesizing MO 2 is taken into consideration.

【0012】ここに用いられる遷移金属(M)は特に限
定されないが、例えばコバルト、ニッケル、マンガン等
である。
The transition metal (M) used here is not particularly limited, but examples thereof include cobalt, nickel and manganese.

【0013】本発明において、前記複合酸化物中の随伴
成分としてのナトリウムおよびカリウムの総含有率が1
000ppm以下である必要があり、好ましくは500
ppm以下、さらに好ましくは200ppm以下であ
る。
In the present invention, the total content of sodium and potassium as associated components in the composite oxide is 1
It should be 000 ppm or less, preferably 500
ppm or less, more preferably 200 ppm or less.

【0014】これらの随伴成分が1000ppmを超え
る場合は、pHの上昇が見られ、正極集電体であるアル
ミニウム箔の腐食を生じ、電池特性を劣化させる。さら
に、これらの随伴成分が3000ppm以上になるとp
Hの上昇は顕著となり、アルミニウム箔の腐食の程度も
著しくなる。
When the amount of these accompanying components exceeds 1000 ppm, the pH rises, the aluminum foil as the positive electrode current collector is corroded, and the battery characteristics are deteriorated. Furthermore, when the amount of these accompanying components exceeds 3000 ppm, p
The increase in H becomes remarkable, and the degree of corrosion of the aluminum foil becomes remarkable.

【0015】このように、複合酸化物中の随伴成分とし
てのナトリウムおよびカリウムの総含有率を1000p
pm以下とするためには、製造原料中のナトリウムおよ
びカリウムの含有量を減少させることによって達成され
る。具体的には製造原料を純水中で洗浄を繰り返した
り、製造原料水溶液中にエチレンジアミン四酢酸(ED
TA)を添加すること等によってなされる。
Thus, the total content of sodium and potassium as an accompanying component in the complex oxide is 1000 p.
The pm or less can be achieved by reducing the contents of sodium and potassium in the raw materials for production. Specifically, the manufacturing raw material is repeatedly washed in pure water, and ethylenediaminetetraacetic acid (ED
TA) and the like.

【0016】上述のように本発明は、リチウム二次電池
の正極活物質中のナトリウムおよびカリウムの総含有率
を1000ppm以下に抑制したリチウム遷移金属複合
酸化物を用いることにより、正極集電体の腐食を抑制す
ることができ、その工業的価値は極めて大である。
As described above, the present invention uses the lithium-transition metal composite oxide in which the total content of sodium and potassium in the positive electrode active material of the lithium secondary battery is suppressed to 1000 ppm or less. Corrosion can be suppressed and its industrial value is extremely large.

【0017】[0017]

【実施例】以下、本発明を実施例および比較例に基づい
て詳細に説明する。
EXAMPLES The present invention will be described in detail below based on examples and comparative examples.

【0018】実施例1 コバルト酸リチウムの製造原料である四三酸化コバルト
と炭酸リチウムを各々以下に示す方法で、ナトリウムお
よびカリウム含有量の低減化を行なった。
Example 1 The content of sodium and potassium was reduced by the method shown below for each of cobalt trioxide and lithium carbonate which are raw materials for producing lithium cobalt oxide.

【0019】すなわち、四三酸化コバルトについては、
純水1リットルを入れたビーカー中に試料100gを投
入し、70℃に加温し、撹拌棒で2時間撹拌後、濾過し
た。この操作を3回繰り返し、ナトリウム分は1200
0ppmから40ppm、またカリウム分は50ppm
から10ppmにそれぞれ低減した。
That is, for cobalt trioxide,
100 g of the sample was placed in a beaker containing 1 liter of pure water, heated to 70 ° C., stirred with a stir bar for 2 hours, and then filtered. This operation was repeated 3 times, and the sodium content was 1200
0ppm to 40ppm, and potassium content 50ppm
To 10 ppm respectively.

【0020】炭酸リチウムについては、酸化リチウム・
1水和物45g/lの溶液を1リットル調製し、ナトリ
ウムおよびカリウムの除去のため、EDTAを2g添加
し、90℃に加温し、炭酸アンモニウム80gを添加
し、30分間、加熱撹拌後、濾過、回収したものを11
0℃で2時間乾燥することにより得られた。この方法
で、ナトリウム分は120ppmから20ppm、また
カリウム分は10ppmから1ppmにそれぞれれ低減
した。
For lithium carbonate, lithium oxide
1 liter of a solution of 45 g / l monohydrate was prepared, 2 g of EDTA was added to remove sodium and potassium, the mixture was heated to 90 ° C., 80 g of ammonium carbonate was added, and the mixture was heated and stirred for 30 minutes. 11 filtered and collected
Obtained by drying at 0 ° C. for 2 hours. By this method, the sodium content was reduced from 120 ppm to 20 ppm, and the potassium content was reduced from 10 ppm to 1 ppm.

【0021】このようにして得られた四三酸化コバルト
と炭酸リチウムをコバルト/リチウム比が1.05にな
るように加え、充分に混合した後、空気中(窒素/酸素
=80/20:容量比)、900℃で5時間加熱し反応
させ、リチウムコバルト複合酸化物(LiCoO2)を
得た。
The cobalt trioxide thus obtained and lithium carbonate were added so that the cobalt / lithium ratio was 1.05, and they were sufficiently mixed, and then in air (nitrogen / oxygen = 80/20: volume). Ratio) and heated at 900 ° C. for 5 hours to cause a reaction to obtain a lithium cobalt composite oxide (LiCoO 2 ).

【0022】このリチウムコバルト複合酸化物中のナト
リウムおよびカリウム含有率を原子吸光分析法により測
定し、結果を表1に示した。
The contents of sodium and potassium in this lithium cobalt composite oxide were measured by atomic absorption spectrometry, and the results are shown in Table 1.

【0023】また、このリチウムコバルト複合酸化物を
10g採り、20ccの純水を入れたビーカー内で約5
分間スターラーで撹拌した後、3cm四方に切断した市
販のアルミニウム板(厚み0.3mm)の上にスラリー
状に塗布後、48時間放置しアルミニウム板の腐食の程
度を評価した。結果を表1に示す。なお、ここにおい
て、“大”は全面の1/2超の腐食、“中”は全面の1
/4〜1/2の腐食、“小”は全面の1/4未満の腐食
をそれぞれ示す。
Also, 10 g of this lithium-cobalt composite oxide was taken, and about 5 was put in a beaker containing 20 cc of pure water.
After stirring for 3 minutes with a stirrer, a commercial aluminum plate (thickness: 0.3 mm) cut into a 3 cm square was applied in a slurry form and left for 48 hours to evaluate the degree of corrosion of the aluminum plate. The results are shown in Table 1. Here, “large” means corrosion of more than 1/2 of the entire surface, and “medium” means 1 of the entire surface.
Corrosion of / 4 to 1/2, and "small" indicates corrosion of less than 1/4 of the entire surface.

【0024】実施例2〜9 四三酸化コバルトと炭酸リチウムを混合時に、炭酸ナト
リウムまたは炭酸カリウムを一定量添加した以外は、す
べて実施例1と同様の方法によってリチウムコバルト複
合酸化物を得た。
Examples 2 to 9 Lithium-cobalt composite oxides were obtained in the same manner as in Example 1 except that a certain amount of sodium carbonate or potassium carbonate was added when mixing cobalt tetraoxide and lithium carbonate.

【0025】これらリチウムコバルト複合酸化物につい
ても、実施例1と同様の方法でナトリウムおよびカリウ
ム含有率を測定すると共に、アルミニウム板の腐食の程
度を評価した。結果を表1に示す。
With respect to these lithium-cobalt composite oxides, the sodium and potassium contents were measured in the same manner as in Example 1, and the degree of corrosion of the aluminum plate was evaluated. The results are shown in Table 1.

【0026】比較例1〜2 市販の四三酸化コバルトと炭酸リチウムを用いてナトリ
ウムおよびカリウム含有量の低減化処理を行なわなかっ
た以外は、すべて実施例1と同様の方法によってリチウ
ムコバルト複合酸化物を得た。
Comparative Examples 1-2 Lithium-cobalt composite oxides were all prepared in the same manner as in Example 1 except that the sodium and potassium contents were not reduced by using commercially available cobalt trioxide and lithium carbonate. Got

【0027】これらリチウムコバルト複合酸化物につい
ても、実施例1と同様の方法でナトリウムおよびカリウ
ム含有率を測定すると共に、アルミニウム板の腐食の程
度を評価した。結果を表1に示す。
With respect to these lithium-cobalt composite oxides, the sodium and potassium contents were measured in the same manner as in Example 1, and the degree of corrosion of the aluminum plate was evaluated. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】この表1に示されるように、ナトリウムお
よびカリウムの総含有率が1000ppm以下のリチウ
ムコバルト複合酸化物を用いた実施例1〜9は、ナトリ
ウムおよびカリウムの総含有率が1000ppmを超え
るリチウムコバルト複合酸化物を用いた比較例1〜2と
比較して、アルミニウム板の腐食が少ない。特に、その
効果は、実施例1〜3および6〜7で顕著である。
As shown in Table 1, in Examples 1 to 9 in which the total content of sodium and potassium is 1000 ppm or less, the lithium-cobalt composite oxides have a total content of sodium and potassium of more than 1000 ppm. Compared with Comparative Examples 1 and 2 using the cobalt composite oxide, the aluminum plate is less corroded. In particular, the effect is remarkable in Examples 1 to 3 and 6 to 7.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
リチウム遷移金属複合酸化物中のナトリウムおよびカリ
ウムの総含有率を1000ppm以下に抑制しているの
で、リチウム二次電池の正極集電体の腐食防止を飛躍的
に改善することができ、その結果として二次電池の特性
の向上が図れるという効果を奏する。
As described above, according to the present invention,
Since the total content of sodium and potassium in the lithium-transition metal composite oxide is suppressed to 1000 ppm or less, the corrosion prevention of the positive electrode current collector of the lithium secondary battery can be dramatically improved, and as a result, This has the effect of improving the characteristics of the secondary battery.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 LixMO2 … (1) (x:0.3〜1.2、Mは遷移金属)で示されるリチ
ウムと遷移金属の複合酸化物中のナトリウムおよびカリ
ウムの総含有率が1000ppm以下であることを特徴
とするリチウム二次電池用正極活物質。
1. A total content of sodium and potassium in a composite oxide of lithium and a transition metal represented by Li x MO 2 (1) (x: 0.3 to 1.2, M is a transition metal). A positive electrode active material for a lithium secondary battery, which is 1000 ppm or less.
【請求項2】 前記ナトリウムおよびカリウムの総含有
率が200ppm以下である請求項1に記載のリチウム
二次電池用正極活物質。
2. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the total content of sodium and potassium is 200 ppm or less.
JP4173743A 1992-06-09 1992-06-09 Positive electrode active material for lithium secondary battery Pending JPH05343066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4173743A JPH05343066A (en) 1992-06-09 1992-06-09 Positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4173743A JPH05343066A (en) 1992-06-09 1992-06-09 Positive electrode active material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH05343066A true JPH05343066A (en) 1993-12-24

Family

ID=15966311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4173743A Pending JPH05343066A (en) 1992-06-09 1992-06-09 Positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH05343066A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765863A (en) * 1993-08-24 1995-03-10 Fuji Photo Film Co Ltd Nonaqueous battery
EP1119063A1 (en) * 2000-01-20 2001-07-25 Japan Storage Battery Co., Ltd. Positive active material for nonaqueous secondary battery, and nonaqueous secondary battery using the same
WO2004064180A1 (en) * 2003-01-08 2004-07-29 Nikko Materials Co., Ltd. Material for positive electrode of lithium secondary battery and process for producing the same
KR100464746B1 (en) * 2001-01-23 2005-01-06 가부시끼가이샤 도시바 Positive Electrode Active Material And Lithium Ion Secondary Cell
CN100413125C (en) * 2003-01-06 2008-08-20 日矿马铁利亚股份有限公司 Material for positive electrode of lithium secondary battery and process for producing the same
JP2010282982A (en) * 2005-09-27 2010-12-16 Ishihara Sangyo Kaisha Ltd Lithium transition metal complex oxide and lithium battery made by using the same
KR20130121132A (en) * 2010-11-25 2013-11-05 바스프 에스이 Process for preparing precursors for transition metal mixed oxides
JP2018061039A (en) * 2016-01-22 2018-04-12 旭化成株式会社 Nonaqueous lithium type power storage element
WO2020017515A1 (en) * 2018-07-18 2020-01-23 旭化成株式会社 Lithium ion secondary cell
US10636582B2 (en) 2016-01-22 2020-04-28 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
US10825616B2 (en) 2016-01-22 2020-11-03 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
US10886533B2 (en) 2016-01-22 2021-01-05 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium power storage element
US11107639B2 (en) 2016-01-22 2021-08-31 Asahi Kasei Kabushiki Kaisha Positive electrode precursor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765863A (en) * 1993-08-24 1995-03-10 Fuji Photo Film Co Ltd Nonaqueous battery
EP1119063A1 (en) * 2000-01-20 2001-07-25 Japan Storage Battery Co., Ltd. Positive active material for nonaqueous secondary battery, and nonaqueous secondary battery using the same
KR100464746B1 (en) * 2001-01-23 2005-01-06 가부시끼가이샤 도시바 Positive Electrode Active Material And Lithium Ion Secondary Cell
CN100413125C (en) * 2003-01-06 2008-08-20 日矿马铁利亚股份有限公司 Material for positive electrode of lithium secondary battery and process for producing the same
WO2004064180A1 (en) * 2003-01-08 2004-07-29 Nikko Materials Co., Ltd. Material for positive electrode of lithium secondary battery and process for producing the same
JP2010282982A (en) * 2005-09-27 2010-12-16 Ishihara Sangyo Kaisha Ltd Lithium transition metal complex oxide and lithium battery made by using the same
KR20130121132A (en) * 2010-11-25 2013-11-05 바스프 에스이 Process for preparing precursors for transition metal mixed oxides
JP2014503942A (en) * 2010-11-25 2014-02-13 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing transition metal composite oxide precursor
JP2018061039A (en) * 2016-01-22 2018-04-12 旭化成株式会社 Nonaqueous lithium type power storage element
US10636582B2 (en) 2016-01-22 2020-04-28 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
US10748716B2 (en) 2016-01-22 2020-08-18 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
US10825616B2 (en) 2016-01-22 2020-11-03 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
US10886533B2 (en) 2016-01-22 2021-01-05 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium power storage element
US11107639B2 (en) 2016-01-22 2021-08-31 Asahi Kasei Kabushiki Kaisha Positive electrode precursor
US11387052B2 (en) 2016-01-22 2022-07-12 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
WO2020017515A1 (en) * 2018-07-18 2020-01-23 旭化成株式会社 Lithium ion secondary cell
JPWO2020017515A1 (en) * 2018-07-18 2020-07-30 旭化成株式会社 Lithium ion secondary battery
US11923541B2 (en) 2018-07-18 2024-03-05 Asahi Kasei Kabushiki Kaisha Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
EP0720247B1 (en) Manufacturing processes of positive active materials for lithium secondary batteries and lithium secondary batteries comprising the same
US6159636A (en) Mixtures of lithium manganese oxide spinel as cathode active material
KR100239872B1 (en) Synthesis method for alkaline metal intercalation materials
JP3487441B2 (en) Method for producing active material for lithium secondary battery
KR101593725B1 (en) Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery
JPH05343066A (en) Positive electrode active material for lithium secondary battery
JP6986879B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
EP1492177B1 (en) Positive electrode active material and use thereof
JP2001106534A (en) Multiple metallic hydroxide as raw material of active material for nonaqueous electrolyte liquid battery and lithium multiple metallic oxide for the active material
EP0624552B1 (en) Novel method for preparing solid solution materials for secondary non-aqueous batteries
WO2019227332A1 (en) Transitional metal-doped prussian blue homologous series, preparation method for same, applications thereof, and secondary ion battery
JPH11317226A (en) Positive active material for lithium secondary battery and its manufacture
EP0842120B1 (en) An improved process for making a lithiated lithium manganese oxide spinel
DE19751552A1 (en) Active material for the cathode of a lithium ion battery and method for producing the same
JPH09270259A (en) Electrode and lithium secondary battery
JPH09245787A (en) Positive electrode active material for lithium secondary battery
JPH08333120A (en) Spinel structure containing lithium and manganese (iii/iv)
JPH09188519A (en) Electrolyzed manganese dioxide, its production and manganese dry cell
JPH10302767A (en) Cathode activating material of lithium secondary battery and production thereof
JPH09259879A (en) Manufacture of positive electrode active material for lithium battery
JPH10241682A (en) Positive electrode active material for lithium secondary battery and manufacture thereof
JPH09306487A (en) Manufacture of positive electrode active material for alkaline storage battery
JPH10340726A (en) Manufacture of positive active material for lithium secondary battery and battery using the same
JPH11317225A (en) Positive active material for lithium secondary battery and its manufacture
JP4695237B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery