JPS58160848A - Photointerferometer - Google Patents

Photointerferometer

Info

Publication number
JPS58160848A
JPS58160848A JP57042584A JP4258482A JPS58160848A JP S58160848 A JPS58160848 A JP S58160848A JP 57042584 A JP57042584 A JP 57042584A JP 4258482 A JP4258482 A JP 4258482A JP S58160848 A JPS58160848 A JP S58160848A
Authority
JP
Japan
Prior art keywords
light
wave
optical fiber
optical
light wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57042584A
Other languages
Japanese (ja)
Other versions
JPS6352694B2 (en
Inventor
Kiyobumi Mochizuki
望月 清文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP57042584A priority Critical patent/JPS58160848A/en
Priority to GB8307262A priority patent/GB2117132B/en
Publication of JPS58160848A publication Critical patent/JPS58160848A/en
Publication of JPS6352694B2 publication Critical patent/JPS6352694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02024Measuring in transmission, i.e. light traverses the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0226Fibres

Abstract

PURPOSE:To obtain a photointerferometer capable of varying the length of light passages of two light waves with high accuracy, by using an optical fiber and varying the temperature of an atmosphere of this optical fiber. CONSTITUTION:A light wave 31 is split to two waves by a beam splitter 32 and is separated into a light wave 33 and a light wave 34. These two light waves are turned to a linear polarized light wave crossing at right angles each other by a half-wavelength plate when each light wave is the linear polarized light wave or by polarized light elements 35, 36 and half-wavelength plases 38, 29 each light wave is not the linear polarized light wave and it is synthesized again by a beam splitter 37. A synthesized wave 316 of two light waves crossed at right angles is aligned to perpendicularly intersecting two axes of a polarized wave picture preserving optical fiber 312 by a half-wavelength plate 310 and the fiber 312 is propagated. Only an axis direction component of a photodetection element 313 of perpendicularly intersecting two light waves is outputted by the element 313. A delay passage of this interferometer is made by varying the temperature of the fiber 312 to the temperature of an atmosphere of a thermostat 311 capable of setting the temperature.

Description

【発明の詳細な説明】 本発明は光干渉計に関するものである。[Detailed description of the invention] The present invention relates to an optical interferometer.

従来光干渉計としては第1図に示すようなものが用いら
れていた。図の干渉計は通常マツハ・ツエンダ・干渉計
と呼ばれているものである。図において、光波11はビ
ーム・スプリッタ12によって2分岐され、光波13と
光波14とに別れる。これらの2光波はミラ15及び光
遅延路191ミラ16で折り返され、再びビーム・スプ
リッタ17で合成されて合成波18となる。この干渉計
において、一方を試験光路、他方を参照光路とする。こ
の場合、光遅延路19の遅延時間の調整は機械的に行な
うため、高精度の測定は不可能であった。
Conventionally, an optical interferometer as shown in FIG. 1 has been used. The interferometer shown in the figure is commonly called a Matsuha-Zenda interferometer. In the figure, a light wave 11 is split into two by a beam splitter 12 and separated into a light wave 13 and a light wave 14. These two light waves are turned back by the mirror 15, the optical delay path 191, and the mirror 16, and are combined again by the beam splitter 17 to become a composite wave 18. In this interferometer, one side is used as a test optical path and the other side is used as a reference optical path. In this case, since the delay time of the optical delay path 19 is mechanically adjusted, highly accurate measurement is not possible.

本発明は、光ファイバを用いてその光ファイバの雰囲気
温度を変えることによって2光波の光路長を高精度に変
えることのできる光干渉計を提供するものである。
The present invention provides an optical interferometer that can change the optical path length of two light waves with high precision by using an optical fiber and changing the ambient temperature of the optical fiber.

以下図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.

第2図に本発明の基本構成を示す。図において、偏光子
21によって直線偏光にされた光波22は、半波長板2
3によって直線偏光の状態で、直交する2つの光軸にお
いて偏波面を保存して光を伝送する偏波面保存光ファイ
バ9の直交する2つの光軸25゜26の中間に位置する
ように回転される。偏波面保存光ファイバ29は2つの
直交する直線偏光波27゜28が互いにモード結合する
ことなく独立に伝搬するように作られた光ファイバであ
り、光軸25及び光軸26に沿う独立した2つの先導波
路を1本の光ファイバで作っていると考えることができ
る。半波長板23によって2つの光軸25 、26の中
間に入るように回転された光波24は、偏波面保存光フ
ァイバ29に入ると光波27及び光波28に別れそれぞ
れ独立に伝搬する。出力側では、検光子210によって
光波27及び光波部の1部が合成され光波211となる
FIG. 2 shows the basic configuration of the present invention. In the figure, a light wave 22 that has been linearly polarized by a polarizer 21 is polarized by a half-wave plate 2.
3, it is rotated so that it is located between the two orthogonal optical axes 25° and 26 of the polarization-preserving optical fiber 9, which transmits light while preserving the polarization plane on the two orthogonal optical axes in a linearly polarized state. Ru. The polarization-maintaining optical fiber 29 is an optical fiber that is made so that two orthogonal linearly polarized waves 27 and 28 propagate independently without mode coupling with each other. It can be considered that two leading wavepaths are made of one optical fiber. The light wave 24 rotated by the half-wave plate 23 so as to fall between the two optical axes 25 and 26 enters the polarization-maintaining optical fiber 29 and is separated into a light wave 27 and a light wave 28, each of which propagates independently. On the output side, the light wave 27 and a portion of the light wave portion are combined by the analyzer 210 to form a light wave 211 .

一方、偏波面保存光ファイバ29の直交する2つの光導
波路の屈折率は互いに異なるため、2つの光波27 、
28は、互いに異なる速度で伝搬することになる。この
ため、偏波面保存光ファイバ29の出力側では光波27
と光波28との間に位相差ψが生じる。この位相差ψは
次式で与えられる。
On the other hand, since the two orthogonal optical waveguides of the polarization maintaining optical fiber 29 have different refractive indices, the two optical waves 27,
28 will propagate at different speeds from each other. Therefore, on the output side of the polarization maintaining optical fiber 29, the light wave 27
A phase difference ψ occurs between the light wave 28 and the light wave 28 . This phase difference ψ is given by the following equation.

2π ψ=−−L−Cp −a ・(To−T)   (1)
λ ここで、λは光波24の波長、Lは偏波面保存光ファイ
バ29の長さ、Cpは偏波面光ファイバ29の光弾性定
数、aは偏波面保存光ファイバ29のヤング率とポアソ
ン比及び熱膨張係数に関係する比例係数、Toはドーパ
ントを含むシリカガラスの軟化温度で約1000℃、ま
た、Tは偏波面保存光ファイバ29の置かれている雰囲
気温度である。(1)式より、光波27と光波28との
位相差ψは温度変化と線型の関係にあることが分る。こ
のことは、温度変化が第1図における干渉計の光遅延路
19の動きに相当することを意味している。第1図にお
けるビーム・スプリッタ12及びビーム・スプリッタ1
7は第2図においては、偏波面保存光ファイバ29の入
力側端面212及び検光子210に対応している。ここ
で偏波面保存光ファイバ29を任意の温度に設定可能な
恒温槽に収納する。偏波面保存光ファイバの雰囲気温度
変化に対する検光子の出力変化の実測結果の1例を図5
に示す。温度変化に対して光出力が正弦波状に変化して
いる様子が分かる。
2π ψ=−−L−Cp −a ・(To−T) (1)
λ Here, λ is the wavelength of the light wave 24, L is the length of the polarization-maintaining optical fiber 29, Cp is the photoelastic constant of the polarization-maintaining optical fiber 29, a is the Young's modulus and Poisson's ratio of the polarization-maintaining optical fiber 29, and A proportionality coefficient related to the coefficient of thermal expansion, To, is the softening temperature of silica glass containing a dopant, which is approximately 1000° C., and T is the ambient temperature in which the polarization maintaining optical fiber 29 is placed. From equation (1), it can be seen that the phase difference ψ between the light waves 27 and 28 has a linear relationship with the temperature change. This means that the temperature change corresponds to the movement of the optical delay path 19 of the interferometer in FIG. Beam splitter 12 and beam splitter 1 in FIG.
7 corresponds to the input side end face 212 of the polarization maintaining optical fiber 29 and the analyzer 210 in FIG. Here, the polarization-maintaining optical fiber 29 is housed in a thermostatic oven that can be set to any temperature. Figure 5 shows an example of the actual measurement results of the analyzer output change with respect to the ambient temperature change of the polarization preserving optical fiber.
Shown below. It can be seen that the optical output changes sinusoidally in response to temperature changes.

本発明の実施例を第3図に示した。図において、光波3
1はビーム・スゲリッタ32によって2分岐され、光波
33.光波34に別れる。この2光波は各々が直線偏光
波であるときは半波長板によりそうでないときは偏光子
35 、36および半波長板38 、39によって互い
に直交する直線偏光波になり、ビーム・スプリッタ37
によって再び合成される。直交した2光波の合成波31
6は半波長板310によって偏波面保存光ファイバ31
2の直交する2軸に合せられ、偏波面保存光ファイバ3
12を伝搬する。直交した2光波は、検光子313によ
り゛検光子313の軸方向成分だけが出力される。この
干渉計の遅延路としては、先に述べたように偏波面保存
光ファイバ312の温度を設定温度可変の恒温槽311
の雰囲気温度を変えることで作られる。この変化量は、
偏波面保存光ファイバの単位長さ、単位温度変化あたり
光波31がHe−Neレーザ(波長0.6328,4m
 )の場合0.1μITI/℃・m以下にすることは容
易で連続的に変化することができる。
An embodiment of the invention is shown in FIG. In the figure, light wave 3
1 is split into two by a beam sgelitter 32, and a light wave 33. Separate to 34 light waves. When these two light waves are linearly polarized waves, they are turned into mutually orthogonal linearly polarized waves by a half-wave plate. Otherwise, they are turned into mutually orthogonal linearly polarized waves by polarizers 35 and 36 and half-wave plates 38 and 39.
is synthesized again by Synthetic wave 31 of two orthogonal light waves
6 is a polarization-maintaining optical fiber 31 using a half-wave plate 310.
A polarization-maintaining optical fiber 3 aligned with two orthogonal axes 2
Propagate 12. The analyzer 313 outputs only the axial component of the two orthogonal light waves. As the delay path of this interferometer, as mentioned earlier, the temperature of the polarization preserving optical fiber 312 is set using a constant temperature bath 311 whose temperature is variable.
produced by changing the atmospheric temperature. This amount of change is
A He-Ne laser (wavelength 0.6328, 4 m) produces 31 light waves per unit length and unit temperature change of polarization-maintaining optical fiber.
), it is easy to reduce the value to 0.1 μITI/° C.m or less and it can be changed continuously.

以上の説明においては、偏波′面保存光ファイバとマツ
・・・ツエンダ・干渉計との組合せのものについてのみ
あつかったが、その他の干渉計と偏波面保存光ファイバ
とを組合せ、」二連したものと同様な干渉計を作ること
が可能である。この干渉計において、一方を試験光路、
他方を参照光路として用いれば、物質の屈折率測定また
は光源の可干渉度の測定等を高精度に測定することがで
きる。
In the above explanation, only the combination of a polarization-maintaining optical fiber and a pine-Zehnder interferometer was discussed, but other interferometers and polarization-maintaining optical fibers may be combined. It is possible to make an interferometer similar to the one used in this study. In this interferometer, one side is the test optical path,
If the other path is used as a reference optical path, it is possible to measure the refractive index of a substance or the coherence of a light source with high precision.

この測定に当っては、受光器314を用いて可干渉度変
化から求める方法や、受光器314の代りにスクリーン
を置き干渉縞の変位量から求める方法等がある。
For this measurement, there are methods such as using the light receiver 314 to find out from changes in coherence, or placing a screen in place of the light receiver 314 and finding from the amount of displacement of interference fringes.

第3図においてビーム・スプリンタ32からビーム・ス
プリッタ37の間で構成される干渉計の一部は第4図の
ように構成することも可能である。第4図において、4
1及び42は偏光子及び半波長板、または、偏光子及び
1/4波長板の組合せで、前者の場合には半波長板42
の出力光は偏光ビーム・スプリッタ43の光軸に対して
45°傾くように調整され、後者の場合には、174波
長板42の出力は円偏光に調整される。44 、45は
ミラであり、46は偏光ビーム・スプリッタである。
A part of the interferometer constructed between the beam splitter 32 and the beam splitter 37 in FIG. 3 can also be constructed as shown in FIG. 4. In Figure 4, 4
1 and 42 are a combination of a polarizer and a half-wave plate, or a polarizer and a quarter-wave plate; in the former case, the half-wave plate 42
The output light of is adjusted to be inclined at 45° with respect to the optical axis of the polarizing beam splitter 43, and in the latter case, the output of the 174-wave plate 42 is adjusted to be circularly polarized. 44 and 45 are mirrors, and 46 is a polarizing beam splitter.

以上のように、本発明は偏波面保存光ファイバの直交す
る2つの伝送路を干渉計の2つの光路または光路の1部
として用い、この2つの光路長差が温度によって高精度
に変えられることを利用したもので、高精度に動く光遅
延路を有する光フアイバ干渉計を実現するものである。
As described above, the present invention uses two orthogonal transmission lines of a polarization-maintaining optical fiber as two optical paths or a part of the optical path of an interferometer, and the difference in the length of these two optical paths can be changed with high precision depending on the temperature. This is to realize an optical fiber interferometer with an optical delay path that moves with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光干渉計の1例を示す構成系統図、第2
図は本発明の基本的構成を示す斜視図、第3図は本発明
の実施例を示す構成系統図、第4図は第3図の実施例の
一部変形例を示す構成系統図、第5図は本発明に用いる
偏波面保存光ファイバの写囲気温度変化に対する検光子
の出力変化を示す特性側図である。 11 、13 、14・・・光波、12 、17・・・
ビーム・スプリッタ、15.16・・・ミラ、18・・
・合成波、19・・・光遅延路、21・・・偏光子、2
2 、24 、27 、28・・・光波、23・・・半
波長板、25 、26・・・光軸、29・・・偏波面保
存光7アイパ、210・・・検光子、211・・・光波
、212・・・入力側端面、31 、33 、34・・
・光波、32 、37・・・ビーム・スプリッタ、35
 、36・・・偏光子、38 、39 、310・・・
半波長板、311・・・恒温槽、312・・・偏波面保
存光ファイノ(,313・・・検光子、314・・・受
光器、316・・・合成波、41・・・偏光子、42・
・・半波長板又は1/4波長板、43・・・偏光ビーム
・スプリッタ、44 、45・・・ミラ、46・・・ビ
ーム・スフリ・ツタ。 特許出願人  国際電信電話株式会社 代 理 人   犬  塚     学外1名 3132333835 3637 11
Figure 1 is a configuration diagram showing an example of a conventional optical interferometer.
The figure is a perspective view showing the basic structure of the present invention, FIG. 3 is a structural system diagram showing an embodiment of the present invention, FIG. FIG. 5 is a characteristic side view showing changes in the output of the analyzer with respect to changes in ambient temperature of the polarization-maintaining optical fiber used in the present invention. 11, 13, 14... light waves, 12, 17...
Beam splitter, 15.16...Mira, 18...
・Synthetic wave, 19... Optical delay path, 21... Polarizer, 2
2 , 24 , 27 , 28 ... light wave, 23 ... half-wave plate, 25 , 26 ... optical axis, 29 ... polarization preserving light 7 eyeper, 210 ... analyzer, 211 ...・Light wave, 212...Input side end face, 31, 33, 34...
・Light wave, 32, 37...Beam splitter, 35
, 36... polarizer, 38, 39, 310...
Half-wave plate, 311... Constant temperature bath, 312... Polarization preserving optical fiber (, 313... Analyzer, 314... Light receiver, 316... Combined wave, 41... Polarizer, 42・
... Half-wave plate or quarter-wave plate, 43... Polarizing beam splitter, 44, 45... Mira, 46... Beam souffle ivy. Patent applicant International Telegraph and Telephone Corporation Representative Person Inuzuka 1 person from outside the university 3132333835 3637 11

Claims (1)

【特許請求の範囲】[Claims] 互いに直交する2つの光軸において偏波面を保存して入
射光を伝送する偏波面保存光ファイバと、該偏波面保存
光ファイバを任意所望の温度に保つ恒温槽と、前記偏波
面保存光ファイバの出射光を入射して前記直交する2つ
の光軸に沿う成分を合成する合成手段とを備え、前記直
交する2つの光軸に沿う2′つの光導波路を2つの独立
した光路とし前記恒温槽内の雰囲気温度変化により前記
光路間の光路長差を変えることを特徴とする光干渉計。
a polarization-maintaining optical fiber that transmits incident light while preserving the polarization plane on two optical axes orthogonal to each other; a constant temperature chamber that maintains the polarization-maintaining optical fiber at any desired temperature; a synthesizing means for inputting the emitted light and synthesizing the components along the two orthogonal optical axes, and using the 2' optical waveguides along the two orthogonal optical axes as two independent optical paths in the thermostatic chamber; An optical interferometer characterized in that an optical path length difference between the optical paths is changed according to a change in ambient temperature.
JP57042584A 1982-03-19 1982-03-19 Photointerferometer Granted JPS58160848A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57042584A JPS58160848A (en) 1982-03-19 1982-03-19 Photointerferometer
GB8307262A GB2117132B (en) 1982-03-19 1983-03-16 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042584A JPS58160848A (en) 1982-03-19 1982-03-19 Photointerferometer

Publications (2)

Publication Number Publication Date
JPS58160848A true JPS58160848A (en) 1983-09-24
JPS6352694B2 JPS6352694B2 (en) 1988-10-19

Family

ID=12640111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042584A Granted JPS58160848A (en) 1982-03-19 1982-03-19 Photointerferometer

Country Status (2)

Country Link
JP (1) JPS58160848A (en)
GB (1) GB2117132B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165026A (en) * 1988-12-20 1990-06-26 Fujitsu Ltd Apparatus for measuring fm modulation characteristics of semiconductor laser
JPH036431A (en) * 1989-06-02 1991-01-11 Nippon Telegr & Teleph Corp <Ntt> Measuring apparatus for light frequency modulation characteristic
JPH0359428A (en) * 1989-07-28 1991-03-14 Fujitsu Ltd Method and device for measuring frequency modulation characteristic of semiconductor laser
JP2015503754A (en) * 2012-01-11 2015-02-02 コー・ヤング・テクノロジー・インコーポレーテッド Interferometer using asymmetric polarization and optical apparatus using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986000402A1 (en) * 1984-06-30 1986-01-16 Kent Scientific And Industrial Projects Limited Interferometric sensor
US4852106A (en) * 1987-02-19 1989-07-25 Brother Kogyo Kabushiki Kaisha Optical system for producing controlled beat frequency
FR2697336B1 (en) * 1992-10-28 1994-12-16 Inst Francais Du Petrole Method and device for differential measurement of refractive indices and associated use.
DE102005041491A1 (en) * 2005-09-01 2007-03-08 Robert Bosch Gmbh Interferometric measuring device
CN104330162A (en) * 2014-11-17 2015-02-04 中国科学院光电研究院 Portable Fourier transformation spectrograph

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1175855A (en) * 1966-08-25 1970-01-01 American Optical Corp Improvements in or relating to information processors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165026A (en) * 1988-12-20 1990-06-26 Fujitsu Ltd Apparatus for measuring fm modulation characteristics of semiconductor laser
JPH036431A (en) * 1989-06-02 1991-01-11 Nippon Telegr & Teleph Corp <Ntt> Measuring apparatus for light frequency modulation characteristic
JPH0359428A (en) * 1989-07-28 1991-03-14 Fujitsu Ltd Method and device for measuring frequency modulation characteristic of semiconductor laser
JP2015503754A (en) * 2012-01-11 2015-02-02 コー・ヤング・テクノロジー・インコーポレーテッド Interferometer using asymmetric polarization and optical apparatus using the same

Also Published As

Publication number Publication date
GB8307262D0 (en) 1983-04-20
GB2117132B (en) 1986-01-22
JPS6352694B2 (en) 1988-10-19
GB2117132A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
JP4316691B2 (en) Device for measuring excursion
CN108592800B (en) A kind of laser heterodyne interference measuring device and method based on plane mirror reflection
JP2005338076A (en) System using polarization operation retroreflector
JPS62293110A (en) Angle-measuring plane mirror interferometer system
US7426039B2 (en) Optically balanced instrument for high accuracy measurement of dimensional change
US20060098205A1 (en) Optical connection for interferometry
CN108645343A (en) A kind of laser heterodyne interference measuring device and method based on prism of corner cube reflection
US4802764A (en) Differential plane mirror interferometer having beamsplitter/beam folder assembly
JPS62233708A (en) Angle measuring plane-mirror interferometer system
JP4067427B2 (en) Orthogonal circularly polarized light transmission in fiber
JPS58160848A (en) Photointerferometer
US5028137A (en) Angular displacement measuring interferometer
JPS61219803A (en) Apparatus for measuring physical quantity
JP2003083711A (en) Interferometer and beam coupling method
US5311279A (en) Integrated optical apparatus for the interferometric measurement of light waves
CN110966939B (en) Interferometric measuring device, measuring method and photoetching equipment
JPH0385514A (en) Circularly polarized light generator
JPS58160827A (en) Temperature sensor
JPS6134128B2 (en)
JPH0755571A (en) Plarization dispersion measuring instrument
CN111562003B (en) High-stability high-flux polarization interferometer and interference method
US20030231390A1 (en) Athermal delay line
JPH09318311A (en) Interferometer system
JPH05302810A (en) Heterodyne two wave lengths displacement interference meter
JPH0587519A (en) Differential type interference prism