JPH036431A - Measuring apparatus for light frequency modulation characteristic - Google Patents
Measuring apparatus for light frequency modulation characteristicInfo
- Publication number
- JPH036431A JPH036431A JP1141406A JP14140689A JPH036431A JP H036431 A JPH036431 A JP H036431A JP 1141406 A JP1141406 A JP 1141406A JP 14140689 A JP14140689 A JP 14140689A JP H036431 A JPH036431 A JP H036431A
- Authority
- JP
- Japan
- Prior art keywords
- polarization
- difference
- output
- light
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 claims abstract description 42
- 230000003287 optical effect Effects 0.000 claims abstract description 33
- 239000013307 optical fiber Substances 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000000835 fiber Substances 0.000 abstract description 21
- 238000000034 method Methods 0.000 abstract description 10
- 238000005259 measurement Methods 0.000 abstract description 8
- 230000014759 maintenance of location Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000012951 Remeasurement Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002789 length control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光通信装置の測定に利用する。本発明は周波数
変調された光信号の変調特性を測定するために利用する
。本発明は半導体レーザから放出され周波数変調された
コヒーレント光通信用の光信号の変調特性を測定するに
適する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is used for measuring optical communication equipment. The present invention is used to measure the modulation characteristics of a frequency-modulated optical signal. The present invention is suitable for measuring the modulation characteristics of a frequency-modulated optical signal for coherent optical communication emitted from a semiconductor laser.
コヒーレント光通信では、周波数変調方式が優れている
ことが知られている。またこのために、半導体レーザを
直接変調することにより得られる周波数変調信号を用い
ると簡単な送信回路を得ることができる。ところが半導
体レーザの直接変調により得られる光信号の周波数変調
信号は、周波数変調成分とともに振幅変調成分をも含む
ので、この周波数変調特性の測定には振幅変調成分の影
響の少ない測定方法が必要である。Frequency modulation is known to be superior in coherent optical communications. Moreover, for this purpose, a simple transmitting circuit can be obtained by using a frequency modulated signal obtained by directly modulating a semiconductor laser. However, the frequency modulation signal of the optical signal obtained by direct modulation of a semiconductor laser contains an amplitude modulation component as well as a frequency modulation component, so a measurement method that is less affected by the amplitude modulation component is required to measure the frequency modulation characteristics. .
従来、このような測定にはマツハツエンダ干渉計が用い
られている。第3図にその測定系の構成図を示す。第2
図は人力光周波数と出力光強度を表わす特性図である。Conventionally, a Matsuhatsu Enda interferometer has been used for such measurements. Figure 3 shows a configuration diagram of the measurement system. Second
The figure is a characteristic diagram showing the human power light frequency and the output light intensity.
横軸に光周波数をとり縦軸に出力光の光強度を表わす。The horizontal axis represents the optical frequency, and the vertical axis represents the optical intensity of the output light.
この特性曲線の勾配の大きい点aを選び、この点aの周
波数faを中心周波数として周波数変調された入力光を
マツハツエンダ干渉計に与えると、入力された光を2つ
に分け、その2つの光に光路差を与えて干渉させ周波数
変調成分を強度変化に変換するので、第2図(a)の実
線と破線で示したような光強度の変化に変換された2つ
の光信号が得られる。この光強度に変換された2つの光
信号をそれぞれ光電変換素子で電圧信号に変換し、2つ
の差分をとることにより振幅変調成分を打ち消すことが
できる。これを第2図(b)に示す。If a point a with a large slope of this characteristic curve is selected and input light frequency-modulated with the frequency fa at this point a as the center frequency is applied to the Matsuhatsu Enda interferometer, the input light is divided into two parts, and the two light beams are Since an optical path difference is given to cause interference and the frequency modulation component is converted into a change in intensity, two optical signals converted into changes in light intensity as shown by the solid line and broken line in FIG. 2(a) are obtained. The amplitude modulation component can be canceled by converting the two optical signals converted into light intensity into voltage signals by photoelectric conversion elements and taking the difference between the two. This is shown in FIG. 2(b).
この差分電気信号を観測することにより周波数変調応答
特性を観測することができる。前記光路差は温度変化な
どの環境の変化によって変化し、周波数fa に対する
点が特性曲線の勾配の大きい位置でなくなってしまう。By observing this differential electrical signal, frequency modulation response characteristics can be observed. The optical path difference changes due to changes in the environment such as temperature changes, and the point corresponding to the frequency fa is no longer a position where the slope of the characteristic curve is large.
そこでマツハツエンダ干渉計にヒータを装着しておき、
ヒータにより加熱される温度に従って実効的に光路が変
化して光路差が変化するように構成する。差分電気信号
の一部を周波数変調成分に影響されないために、低域濾
波器を通して制御回路に人力し差分電気信号が常に平均
的に零電位になるように上記ヒータを制御する。Therefore, I installed a heater on the Matsuhatsu Enda interferometer.
The configuration is such that the optical path effectively changes according to the temperature heated by the heater, and the optical path difference changes. In order to avoid being affected by the frequency modulation component, a portion of the differential electrical signal is manually input to the control circuit through a low-pass filter, and the heater is controlled so that the differential electrical signal always has an average zero potential.
また、別の方法として偏波保持ファイバを利用するもの
が考えられる。偏波保持ファイバには偏波を保持する2
つの直交軸が存在する。これらをそれぞれX軸、Y軸と
する。光がX軸およびY軸を通ると微妙に異なった伝搬
時間で伝搬する。偏波保持ファイバのX軸、Y軸に対し
て光の偏波が45度の角度になるように光を入力し、光
の偏波のX軸成分、Y軸成分が異なった伝搬時間で伝搬
する。偏波保持ファイバの光出力端に偏波アナライザを
おき、偏波保持ファイバの1つの偏波保持軸に対して光
の偏波が45度の角度で出射するようにする。この出射
光信号を光電変換素子で電圧信号に変換する。Another possible method is to use a polarization maintaining fiber. Polarization maintaining fiber maintains polarization2
There are two orthogonal axes. These are respectively referred to as the X axis and the Y axis. When light passes through the X and Y axes, it propagates at slightly different propagation times. Light is input so that the polarization of the light is at a 45 degree angle with respect to the X-axis and Y-axis of the polarization-maintaining fiber, and the X-axis and Y-axis components of the polarization of the light propagate at different propagation times. do. A polarization analyzer is placed at the optical output end of the polarization-maintaining fiber so that the polarized light is emitted at an angle of 45 degrees with respect to one polarization-maintaining axis of the polarization-maintaining fiber. This emitted light signal is converted into a voltage signal by a photoelectric conversion element.
ところが、前記マツハツエンダ干渉計を利用した方法で
は、安定測定のためにヒータを装着した光導波路が必要
であるが、先導波路は加工が難しく容易に入手できない
。However, the method using the Matsuhatsu Enda interferometer requires an optical waveguide equipped with a heater for stable measurement, but the guide waveguide is difficult to process and is not easily available.
また、前記偏波保持光ファイバを利用する方法では、偏
波保持光ファイバは容易に入手できるが、上記の構成に
すると制御が不可能で安定測定ができない。そのうえ、
測定時に強度変調成分も同時に測定するため何らかの方
法で強度変調成分を除去しなければならない。これを解
決する方法として、個順保持ファイバへの入射角度を9
0度回転して再度測定し、再測定結果から周波数変調成
分のみを取り出す方法が考えられる。しかし、これでは
2回の測定とその処理が必要なため非常に時間を要する
。Furthermore, in the method using the polarization-maintaining optical fiber, although polarization-maintaining optical fibers are easily available, the above configuration makes control impossible and stable measurement impossible. Moreover,
Since the intensity modulation component is also measured at the same time during measurement, the intensity modulation component must be removed by some method. As a way to solve this problem, the angle of incidence on the individual fibers is set to 9.
A possible method is to rotate the sensor by 0 degrees, measure it again, and extract only the frequency modulation component from the remeasurement results. However, this requires two measurements and their processing, which is very time consuming.
本発明はこれを解決するもので、容易に人手できる偏波
保持光ファイバを利用し、かつ制御を行うことにより安
定な測定を可能にするとともに、その機構がきわめて簡
単であり取扱い工数の小さい装置を提供することを目的
とする。The present invention solves this problem by using a polarization-maintaining optical fiber that can be easily carried out by hand, and by controlling it, it enables stable measurement. The purpose is to provide
本発明は、偏波保持光ファイバの光出力端に偏波保持光
ファイバのX軸またはY軸それぞれに対してほぼ45度
の角度を成す2つの直交偏波成分をとり出せるように偏
波ビームスプリッタを設け、偏波ビームスプリッタから
の出力ポートにそれぞれ光電変換器を設けて、この2つ
の光電変換器の出力電気信号の差分を出力信号とする電
気回路手段を設けたことを特徴とする。The present invention provides a polarized beam so that two orthogonal polarization components forming an angle of approximately 45 degrees with respect to the X-axis or Y-axis of the polarization-maintaining optical fiber can be extracted from the optical output end of the polarization-maintaining optical fiber. The present invention is characterized in that a splitter is provided, a photoelectric converter is provided at each output port from the polarization beam splitter, and an electric circuit means is provided that outputs a difference between the output electric signals of the two photoelectric converters.
また、偏波保持光ファイバのX軸またはY軸の実効的な
光路長を制御する手段を設け、この手段に前記出力電気
信号の差分に応じる制御人力、特に望ましくは差分の時
間平均値が零になるような制御回路を備えることができ
る。Further, a means for controlling the effective optical path length of the X-axis or Y-axis of the polarization-maintaining optical fiber is provided, and this means is controlled manually in response to the difference in the output electrical signals, and particularly preferably, the time average value of the difference is zero. It is possible to provide a control circuit such that:
偏波ビームスプリッタの2つの出力光ボートには、人力
光の周波数変化に対して位相の異なる強度信号が得られ
る。また、偏波ビームスプリッタの2つの出力光ボート
には、入力光の振幅変化の影響がそのまま現れる。した
がって、この2つの光出力ボートに現れる信号を減算す
ることにより、人力光の振幅変化の影響は除かれるとと
もに、周波数変化に対する強度変化は2倍になる。また
、偏波保持ファイバのX軸またはY軸の実効的な光路長
を制御する手段を設け、この手段に前記出力電気信号の
差分に応じる制御入力、特に望ましくは差分の時間平均
値が零にな′るような制御回路を備えることができる。The two output optical ports of the polarization beam splitter provide intensity signals having different phases with respect to the frequency change of the human-powered light. Further, the influence of the amplitude change of the input light appears as is on the two output light ports of the polarization beam splitter. Therefore, by subtracting the signals appearing on these two light output boats, the influence of the amplitude change of the human-powered light is removed, and the intensity change with respect to frequency change is doubled. Further, a means for controlling the effective optical path length of the X-axis or Y-axis of the polarization-maintaining fiber is provided, and the means is provided with a control input corresponding to the difference in the output electrical signals, particularly preferably a time average value of the difference is zero. A control circuit such as the following can be provided.
上記2つの出力ポートの光出力を受信しこの差をとるこ
とによる方法が、偏波保持ファイバを利用する測定方法
についても採用できるのは、偏波保持ファイバのX軸お
よびY軸それぞれに対して45度の角度を成す2つの直
交偏波成分を同時にとりだせるように偏波ビームスプリ
ッタを設けることによって可能である。このことを式を
用いて説明する。The above method of receiving the optical outputs of the two output ports and taking the difference can also be adopted for measurement methods using polarization maintaining fibers, because the method is applicable to each of the X and Y axes of the polarization maintaining fiber. This is possible by providing a polarization beam splitter so that two orthogonal polarization components forming an angle of 45 degrees can be extracted simultaneously. This will be explained using a formula.
入力ポートの信号を次式で表わす。The input port signal is expressed by the following equation.
5(t)=Acos (2yr f を十Φ(t))(
1)ここで、Aは光の電界、fは光の周波数、Φ(1)
は周波数変調信号である。偏波保持ファイバのX軸およ
びY軸の信号はそれぞれ
S +(t)= Acos (2πft+Φ(t) )
/ −ff (2)S2(t)=Acos (2y
r f (t + r)+Φ(t+τ)/VT
(3)ここでτは、光信号がX軸またはY軸を通って
偏波保持ファイバから出力される時の時間差である。偏
波ビームスプリッタでX軸またはY軸それぞれに対して
45度の角度を成す2つの直交偏波成分に分けて取り出
すのでそれぞれ
5s(t)= Acos (2rr f t+Φ(t)
)/2−ACO9(2πf(t+τ)
+Φ←t+τ)/2 (4)
S4(t)= Acos (2yr f t+Φ(t)
)/ 2 +Acos (,2rr f (t + r
)十Φ(t+τ)/2(5)
これらは電界であるのでこれを受光素子で検波すると
5s(t)2=A2/4−A2/4
xcos(2πfτ十Φ(を十τ)−Φ(t))(6)
S6(t)2=A2/4 +A2/4
xcos(2πfτ十Φ(t+τ)−Φ(t))〔7〕
となる。すなわち、2つの出力ポートのそれぞれによる
受信ではA2に含まれる強度変調成分も同時に測定する
ことになる。ところが両出カの差をとると
S s (t)2S s (t)2
A2/2CO3(2πfτ+Φ(を十τ)−Φ(t))
(8)
となるため式(6)、(7)に第1項に含まれる強度変
調成分は除去される。もっとも、第2項の成分は差をと
っても除去できずに残るがこれは十分小さいため問題に
ならない。5(t)=Acos (2yr f 10Φ(t))(
1) Here, A is the electric field of light, f is the frequency of light, Φ(1)
is a frequency modulated signal. The X-axis and Y-axis signals of the polarization-maintaining fiber are respectively S + (t) = Acos (2πft + Φ (t))
/ -ff (2) S2(t)=Acos (2y
r f (t + r) + Φ (t + τ) / VT
(3) Here, τ is the time difference when the optical signal passes through the X-axis or the Y-axis and is output from the polarization-maintaining fiber. Since the polarization beam splitter separates and extracts the two orthogonal polarization components forming an angle of 45 degrees with respect to the X-axis or Y-axis, each 5s(t) = Acos (2rr f t+Φ(t)
)/2-ACO9(2πf(t+τ) +Φ←t+τ)/2 (4) S4(t)=Acos (2yr f t+Φ(t)
)/2 +Acos (,2rr f (t + r
) 10Φ(t+τ)/2(5) These are electric fields, so when they are detected by a light receiving element, 5s(t)2=A2/4-A2/4 xcos(2πfτ0Φ(10τ)-Φ( t)) (6) S6(t)2=A2/4 +A2/4 xcos(2πfτ0Φ(t+τ)−Φ(t)) [7]. That is, upon reception by each of the two output ports, the intensity modulation component included in A2 is also measured at the same time. However, if we take the difference between the two outputs, S s (t)2S s (t)2 A2/2CO3(2πfτ+Φ(10τ)−Φ(t))
(8) Therefore, the intensity modulation component included in the first term in equations (6) and (7) is removed. However, the second term component cannot be removed and remains even if the difference is taken, but this is sufficiently small to cause no problem.
第1図は本発明実施例装置の構成図である。この装置は
、入力光として周波数変調された被測定光の偏波状態を
制御する偏波制御器1と、偏波制御器1の出力光が入射
する偏波保持ファイバ2と、偏波保持ファイバ2の出力
光のX軸およびY軸それぞれに対して45度の角度を成
す2つの直交偏波成分であるX′軸およびY′軸方向成
分に分けて取り出す偏波ビームスプリッタ3と、偏波ビ
ームスプリッタ3の出力光の強度を電気信号に変換する
光電変換器4および5とを備える。偏波制御器1は偏波
保持ファイバ2の1つの偏波保持軸どちらかに対して4
5度の角度を成すように制御しておく。偏波ビームスプ
リッタ3を光のX′軸成分とY′軸成分とに分けて同時
にとり出すように設けられるところに特徴がある。2つ
の光電変換器4および5の出力電気信号の差分を出力信
号とする電気回路手段として、この光電変換器4をアノ
ード側の電位と光電変換器5のカソード側の電位とが加
算されるように直列に接続し、この差分の出力は増幅器
6を介して出力端子7に送出される。FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. This device includes a polarization controller 1 that controls the polarization state of frequency-modulated light to be measured as input light, a polarization-maintaining fiber 2 into which the output light of the polarization controller 1 enters, and a polarization-maintaining fiber. A polarization beam splitter 3 separates and extracts the output light of the output light into two orthogonal polarization components, ie, X'-axis and Y'-axis direction components, forming an angle of 45 degrees with respect to the X-axis and Y-axis, respectively, and It includes photoelectric converters 4 and 5 that convert the intensity of the output light from the beam splitter 3 into electrical signals. The polarization controller 1 has four polarization controllers for either polarization maintaining axis of the polarization maintaining fiber 2.
Control it so that it forms an angle of 5 degrees. The feature is that the polarization beam splitter 3 is provided so as to separate the X'-axis component and the Y'-axis component of the light and take them out at the same time. This photoelectric converter 4 is used as an electric circuit means for outputting the difference between the output electric signals of the two photoelectric converters 4 and 5, so that the potential on the anode side and the potential on the cathode side of the photoelectric converter 5 are added. The differential output is sent to the output terminal 7 via the amplifier 6.
また、偏波保持ファイバ2にはX軸とY軸の光路長の差
を制御する手段としてピエゾ素子8が設け0
られ、このピエゾ素子8の電圧を光電変換器4および5
の差分出力にしたがって制御する制御回路9が接続され
る。Further, a piezo element 8 is provided in the polarization maintaining fiber 2 as a means for controlling the difference in optical path length between the X axis and the Y axis.
A control circuit 9 is connected to the control circuit 9 for controlling according to the differential output.
偏波保持ファイバ2の偏波保持軸xs*iよびY軸には
、その光伝搬時間の差がτであるように実効的な長さに
差があるから、偏波ビームスプリッタ3の2つの出力光
には干渉が発生する。したがって、ポート100人力光
と2つの光電変換器4および5の出力との間には、第2
図に示すような周波数光強度特性が得られる。第2図に
おいて実線の曲線は光電変換器4の出力特性であり、破
線の曲線は光電変換器5の出力特性である。Since there is a difference in effective length between the polarization-maintaining axis xs*i and the Y-axis of the polarization-maintaining fiber 2, such that the difference in optical propagation time is τ, the two polarization-maintaining axes of the polarization beam splitter 3 Interference occurs in the output light. Therefore, between the outputs of the two photoelectric converters 4 and 5, the second
A frequency light intensity characteristic as shown in the figure is obtained. In FIG. 2, the solid curve is the output characteristic of the photoelectric converter 4, and the broken curve is the output characteristic of the photoelectric converter 5.
第2図において、この曲線の勾配がほぼ一様である点a
を選び、ポート10に人力する人力光としてこの点aに
対応する周波数f6を中心周波数とする周波数変調され
た光信号を与えると、光電変換器4および5の出力信号
はこの入力光の周波数の変化に応じてその出力が第2図
(a)のように変化する。この強度の変化は2つの光電
変換器4および5について逆方向であるから、これらを
減算することにより第2図(b)のように2倍の振幅と
なる。In Figure 2, the slope of this curve is almost uniform at point a
If a frequency-modulated optical signal with a center frequency of frequency f6 corresponding to this point a is given to port 10 as a human-powered light, the output signals of photoelectric converters 4 and 5 will be at the frequency of this input light. According to the change, the output changes as shown in FIG. 2(a). Since this change in intensity is in opposite directions for the two photoelectric converters 4 and 5, by subtracting them, the amplitude is doubled as shown in FIG. 2(b).
この実施例では、ピエゾ素子8により加えられる圧力に
したがって実効的に光路が変化して、上記時間τが変化
するように構成されている。すなわち、制御回路9の人
力には2つの光電変換器4および5の差分の信号が与え
られる。この制御回路9の人力にはこの入力に与えられ
る上記差分の信号が常に平均的に零電位になるように制
御する制御回路9とが設けられる。In this embodiment, the optical path is effectively changed according to the pressure applied by the piezo element 8, and the above-mentioned time τ is changed. That is, the signal of the difference between the two photoelectric converters 4 and 5 is given to the control circuit 9 manually. The control circuit 9 is provided with a control circuit 9 which controls the difference signal applied to this input so that it always has zero potential on average.
したがって、第2図に示す被測定信号の中心周波数f6
が変動して、も、a点は実線と破線のちょうど交点にな
るように追従することになる。Therefore, the center frequency f6 of the signal under test shown in FIG.
Even if the line changes, point a will follow the line exactly at the intersection of the solid line and the broken line.
上記例では偏波保持ファイバ2にはX軸およびY軸の光
路長の差を変化させる手段としてピエゾ素子8を用いた
が、これに限らず、偏波保持ファイバの偏波保持X軸お
よびY軸の実効的な光路差を変化させるさまざまな方法
を用いて同様に本発明を実施することができる。In the above example, the piezo element 8 is used in the polarization-maintaining fiber 2 as a means for changing the optical path length difference between the X-axis and the Y-axis. The invention may similarly be practiced using various methods of varying the effective optical path difference of the axes.
偏波保持軸に対する角度は正確に45度でなくわずかに
ずれても本発明は成立する。The present invention will work even if the angle with respect to the polarization maintaining axis is not exactly 45 degrees but is slightly shifted.
1
2
〔発明の効果〕
以上述べたように、簡単に得られる偏波保持光ファイバ
を用いて簡単な回路で光周波数変調特性を測定できる装
置が得られる。これはマツハツエンダ干渉計を用いるも
のに比べて、簡便であるとともに安定な測定を行うこと
ができる効果がある。1 2 [Effects of the Invention] As described above, it is possible to obtain a device that can measure optical frequency modulation characteristics with a simple circuit using a polarization-maintaining optical fiber that can be easily obtained. This has the effect of being simpler and more stable than using a Matsuhatsu Enda interferometer.
第1図は従来例装置の構成図。
第2図は従来例装置および本発明実施例装置の動作説明
用波形図。
第3図は本発明実施例装置の構成図。
1・・・偏波制御器、2・・・偏波保持ファイバ、3・
・・偏波ビームスプリッタ、4.5・・・光電変換器、
6・・・増幅器、7・・・出力端子、訃・・ピエゾ素子
、9・・・光路長制御回路、11・・・半導体レーザ、
12・・・ミラー13・・・モータ。
3FIG. 1 is a configuration diagram of a conventional device. FIG. 2 is a waveform chart for explaining the operation of the conventional device and the device of the present invention. FIG. 3 is a configuration diagram of an apparatus according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Polarization controller, 2...Polarization maintaining fiber, 3...
...Polarization beam splitter, 4.5...Photoelectric converter,
6... Amplifier, 7... Output terminal, 9... Optical path length control circuit, 11... Semiconductor laser,
12...Mirror 13...Motor. 3
Claims (1)
ぼ45度の偏波面で被測定光を入射させる偏波制御器と
、 前記偏波保持光ファイバの出射光を二つの偏波方向の成
分に分波する偏波ビームスプリッタと、この偏波ビーム
スプリッタの二つの出射光の強度をそれぞれ電気信号に
変換する二つの光電変換器と、 この二つの光電変換器の各出力の差分を検出する回路と を備えたことを特徴とする光周波数変調特性の測定装置
。 2、前記偏波保持光ファイバ内の二つの偏波保持軸方向
成分の伝搬速度を前記差分が零になるように制御する手
段を設けた請求項1記載の光周波数変調特性の測定装置
。[Scope of Claims] 1. A polarization-maintaining optical fiber; a polarization controller that makes the light to be measured enter the polarization plane at approximately 45 degrees with respect to one polarization-maintaining axis of the polarization-maintaining optical fiber; A polarization beam splitter that splits the output light of the polarization-maintaining optical fiber into components in two polarization directions, and two photoelectric conversion units that convert the intensities of the two output lights of the polarization beam splitter into electrical signals, respectively. What is claimed is: 1. A measuring device for measuring optical frequency modulation characteristics, comprising: a detector; and a circuit for detecting the difference between the outputs of the two photoelectric converters. 2. The apparatus for measuring optical frequency modulation characteristics according to claim 1, further comprising means for controlling the propagation speed of the two polarization-maintaining axial components in the polarization-maintaining optical fiber so that the difference becomes zero.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1141406A JP2802390B2 (en) | 1989-06-02 | 1989-06-02 | Optical frequency modulation characteristics measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1141406A JP2802390B2 (en) | 1989-06-02 | 1989-06-02 | Optical frequency modulation characteristics measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH036431A true JPH036431A (en) | 1991-01-11 |
JP2802390B2 JP2802390B2 (en) | 1998-09-24 |
Family
ID=15291267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1141406A Expired - Fee Related JP2802390B2 (en) | 1989-06-02 | 1989-06-02 | Optical frequency modulation characteristics measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2802390B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5841536A (en) * | 1997-08-01 | 1998-11-24 | The United States Of America As Represented By The Director Of The National Security Agency | Polarization interferometer apparatus using the polarization dependent phase lag in a birefringent retarder |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58160848A (en) * | 1982-03-19 | 1983-09-24 | Kokusai Denshin Denwa Co Ltd <Kdd> | Photointerferometer |
JPS5957136A (en) * | 1982-09-28 | 1984-04-02 | Fujitsu Ltd | Method for evaluating characteristics of am-fm noise of light source |
JPS5960239A (en) * | 1982-09-29 | 1984-04-06 | Fujitsu Ltd | Device for directly observing amplitude and phase of light |
JPS6270720A (en) * | 1985-07-23 | 1987-04-01 | シ−エムエツクス・システムズ・インコ−ポレ−テツド | Optical phase decoder for interferometer |
-
1989
- 1989-06-02 JP JP1141406A patent/JP2802390B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58160848A (en) * | 1982-03-19 | 1983-09-24 | Kokusai Denshin Denwa Co Ltd <Kdd> | Photointerferometer |
JPS5957136A (en) * | 1982-09-28 | 1984-04-02 | Fujitsu Ltd | Method for evaluating characteristics of am-fm noise of light source |
JPS5960239A (en) * | 1982-09-29 | 1984-04-06 | Fujitsu Ltd | Device for directly observing amplitude and phase of light |
JPS6270720A (en) * | 1985-07-23 | 1987-04-01 | シ−エムエツクス・システムズ・インコ−ポレ−テツド | Optical phase decoder for interferometer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5841536A (en) * | 1997-08-01 | 1998-11-24 | The United States Of America As Represented By The Director Of The National Security Agency | Polarization interferometer apparatus using the polarization dependent phase lag in a birefringent retarder |
Also Published As
Publication number | Publication date |
---|---|
JP2802390B2 (en) | 1998-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6144450A (en) | Apparatus and method for improving the accuracy of polarization mode dispersion measurements | |
US5104222A (en) | System and method for minimizing input polarization-induced phase noise in an interferometric fiber-optic sensor depolarized input light | |
US4932783A (en) | Apparatus and method for minimizing polarization-induced signal fading in an interferometric fiber-optic sensor using input-polarization modulation | |
CN108873007A (en) | A kind of FM-CW laser ranging device inhibiting dither effect | |
EP0172568B1 (en) | Method of and device for realtime measurement of the state of polarization of a quasi-monochromatic light beam | |
CN112629662A (en) | Reconfigurable time-sharing polarization analysis system and detection method | |
JPH0618332A (en) | Measuring method and device for stokes parameter | |
GB2096762A (en) | Optical fibre sensor device | |
JP3496878B2 (en) | Chromatic dispersion and loss wavelength dependence measuring device | |
JPH036431A (en) | Measuring apparatus for light frequency modulation characteristic | |
EP0337796B1 (en) | Device for measuring optical frequency modulation characteristics | |
CN110186501B (en) | Unbalanced optical fiber interferometer arm length difference measuring device and method adopting comparison method | |
CN218918124U (en) | Entropy source device of vacuum fluctuation quantum random number generator | |
JPH01153924A (en) | Coherent light measuring instrument | |
WO2021065106A1 (en) | Vibrometer | |
JP7487636B2 (en) | Laser Doppler Vibrometer | |
JP3180927B2 (en) | Phase fluctuation measurement device | |
JPH01163675A (en) | Multipoint measuring instrument by multiplexed wavelength | |
JPH0670593B2 (en) | Optical frequency modulation characteristic measuring device | |
Rodríguez-Asomoza et al. | Electric signal sensor using an electrooptic coherence modulator | |
JPH01320489A (en) | Method and instrument for measuring distance | |
SU1567988A1 (en) | Apparatus for measuring current and voltage | |
JPH05273077A (en) | Measuring device of light phase modulation characteristics | |
JP2625713B2 (en) | Polarization plane controller | |
JPH01153923A (en) | Coherent light measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |