JPH0385514A - Circularly polarized light generator - Google Patents

Circularly polarized light generator

Info

Publication number
JPH0385514A
JPH0385514A JP22167589A JP22167589A JPH0385514A JP H0385514 A JPH0385514 A JP H0385514A JP 22167589 A JP22167589 A JP 22167589A JP 22167589 A JP22167589 A JP 22167589A JP H0385514 A JPH0385514 A JP H0385514A
Authority
JP
Japan
Prior art keywords
light beam
polarization
polarized light
light
component light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22167589A
Other languages
Japanese (ja)
Inventor
Hideyori Sasaoka
英資 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22167589A priority Critical patent/JPH0385514A/en
Publication of JPH0385514A publication Critical patent/JPH0385514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To stably obtain the light beam of circularly polarized light by providing a quarter wave plate which is disposed with 45 deg. deviation in the main axis bearing with respect to the polarization direction of the light beams of P polarized light component and S polarized light component and converts the light beam multiplexed by a polarized light multiplexing element to the circularly polarized light. CONSTITUTION:The positions of reflecting mirrors 18, 19 are so set that the optical path length of the light beam 15 of the S polarized light component is longer by the length corresponding to the coherence length of monochromatic light 13 than the optical path length of the light beam 14 of the P polarized light component. The light beam 20 which is made incident on the quarter wave plate 12 after the multiplexing is, therefore, preserved in the straight polarization state without becoming elliptically polarized light. The quarter wave plate 12 is disposed by deviating the main axis bearing thereof by 45 deg. with polarization direction of the light beam 14 of the P polarized light component and the light beam 15 of the S polarized light component so that the incident light beam 20 is converted to the light beam 21 of the circularly polarized light. The light beam of the complete circularly polarized light of always the specified output is easily obtd. in this way.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、入射光の偏光状態が変化しても円偏光の光ビ
ームを常に一定出力で変換できる円偏光発生装置に関し
、特に光ファイバ等の光部品の評価を行う際の光源に使
用して好適なものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a circularly polarized light generator capable of converting a circularly polarized light beam with a constant output even if the polarization state of incident light changes, and in particular to an optical fiber, etc. This is suitable for use as a light source when evaluating optical components.

〈従来の技術〉 円偏光或いは無偏光の光ビームを偏光子によって直va
傷光の光ビームに変換する場合、円偏光或いは無偏光の
光ビームに対して偏光子の主軸方位が如何なる方向にあ
っても、常に一定出力となった直線偏光の光ビームを得
ることができる。このため、円偏光や無偏光の光ビーム
を単一偏波光ファイバの一端から入射させ、この単一偏
波光ファイバの他端から射出する光ビームの偏光状態を
調べることにより、単一偏波光ファイバの評価を行うこ
とが可能となる。
<Prior art> A circularly polarized or non-polarized light beam is directly polarized by a polarizer.
When converting into a scratched light beam, it is possible to obtain a linearly polarized light beam with constant output no matter what direction the principal axis of the polarizer is in with respect to a circularly polarized or non-polarized light beam. . Therefore, by inputting a circularly polarized or non-polarized light beam into one end of a single-polarized optical fiber and examining the polarization state of the light beam exiting from the other end of the single-polarized optical fiber, it is possible to create a single-polarized optical fiber. It becomes possible to perform evaluations.

このように、円偏光や無偏光の光ビームは光ファイバ等
の光部品を評価する際の基準光源として有用である。こ
の場合、無偏光の自然光を光部品の評価用基準光源とし
て採用することは種々の点で制約があるため、一般には
円偏光の光ビームを基準光源として使用することが多い
In this way, circularly polarized or unpolarized light beams are useful as reference light sources when evaluating optical components such as optical fibers. In this case, since there are various restrictions on using unpolarized natural light as a reference light source for evaluating optical components, generally a circularly polarized light beam is often used as a reference light source.

従来、任意の偏光状態の光ビームを円偏光に変換する装
置としては、例えば第5図及び第6図に示すようなもの
が知られている。
Conventionally, as a device for converting a light beam in an arbitrary polarization state into circularly polarized light, devices such as those shown in FIGS. 5 and 6 are known, for example.

第5図にその概念を示した円偏光発生装置は、任意の偏
光状態にある入射光1から偏光子2等により直線偏光の
光ビーム3を取り出し、この光ビーム3の偏光方向に対
して主軸方位が45度ずれた四分の一波長板4により、
当該光ビーム3を円偏光の光ビーム5に変換するように
したものである。
The circularly polarized light generator, the concept of which is shown in FIG. With the quarter-wave plate 4 whose orientation is shifted by 45 degrees,
The light beam 3 is converted into a circularly polarized light beam 5.

又、第6図にその概念を示した円偏光発生装置は、任意
の偏光状態にある入射光6を位相補償素子7により円偏
光の光ビーム8に変換するようにしたものである。この
位相補償素子7は、コントローラ9により電気的にその
主軸方位及び位相遅れを制御可能な複屈折媒質である。
A circularly polarized light generator, the concept of which is shown in FIG. 6, converts incident light 6 in an arbitrary polarization state into a circularly polarized light beam 8 by a phase compensation element 7. This phase compensation element 7 is a birefringent medium whose principal axis direction and phase delay can be electrically controlled by a controller 9.

〈発明が解決しようとする課題〉 第5図に示した従来の円偏光発生装置では、偏光子2に
入射する入射光1の偏光状態が変化すると、偏光子2を
透過する直線偏光の光ビーム3が光量が変化する結果、
最終的に得られる円偏光の光ビーム5の出力が変動して
しまい、このままでは光部品の評価を行う際の基準光源
として信頼性に乏しい。従って、この円偏光発生装置を
使用する場合には、入射光1の偏光状態を一定に保つ何
らかの工夫が必要である。
<Problems to be Solved by the Invention> In the conventional circularly polarized light generator shown in FIG. 3 is the result of a change in the amount of light,
The output of the finally obtained circularly polarized light beam 5 fluctuates, and as it is, it is unreliable as a reference light source when evaluating optical components. Therefore, when using this circularly polarized light generator, it is necessary to take some measures to keep the polarization state of the incident light 1 constant.

一方、第6図に示した従来の円偏光発生装置では、入射
光6の偏光状態の変化に応じて位相補償素子7の主軸方
位及び位相遅れをコントローラ9により常に制御しなけ
ればならず、これに伴う操作が非常にめんどうである。
On the other hand, in the conventional circularly polarized light generator shown in FIG. The operations involved are extremely troublesome.

しかも、コントローラ9に対する位相補償素子7の応答
遅れ等によっては、円偏光の光ビーム8を安定して得る
ことができなくなる虞もあった。
Moreover, depending on the response delay of the phase compensation element 7 to the controller 9, etc., there is a possibility that the circularly polarized light beam 8 cannot be stably obtained.

〈課題を解決するための手段〉 第一番目の本発明による円偏光発生装置は、光源からの
光ビームをP偏光成分光ビームとS偏光成分光ビームと
に分波させる偏光分波素子と、前記P偏光成分光ビーム
と前記Sli!光成分光ビームとを再び合波させる偏光
合波素子と、この偏光合波素子と前記偏光分波素子との
間に介装されて前記光ビームの可干渉距離よりも長い光
路差を当該偏光合波素子と前記偏光分波素子との間の前
記PIIa光成分光ビームと前記S偏光成分光ビームと
に与える光路差付与手段と、前記P偏光成分光ビーム及
び前記S偏光成分光ビームの偏光方向に対して主軸方位
が45度ずらして配置され且つ前記偏光合波素子にて合
波された光ビームを円偏光に変換する四分の一波長板と
を具えたものである。
<Means for Solving the Problems> A circularly polarized light generating device according to the first aspect of the present invention includes a polarization splitting element that splits a light beam from a light source into a P polarization component light beam and an S polarization component light beam; The P-polarized component light beam and the Sli! A polarization multiplexing element for recombining the optical component light beams, and a polarization multiplexing element interposed between the polarization multiplexing element and the polarization demultiplexing element to combine the optical component light beams again, and an optical path difference longer than the coherence length of the light beams to combine the polarized light beams. an optical path difference imparting means for providing the PIIa light component light beam and the S polarization component light beam between the multiplexing element and the polarization splitting element; and polarization of the P polarization component light beam and the S polarization component light beam. It is provided with a quarter-wave plate whose principal axis direction is shifted by 45 degrees with respect to the direction, and which converts the light beam multiplexed by the polarization multiplexing element into circularly polarized light.

又、第二番目の本発明による円偏光発生装置は、光源か
らの光ビームをPIl光成分光ビームとS偏光成分光ビ
ームとに分波させる偏光分波素子と、前記P偏光成分光
ビームと前記S偏光成分光ビームとを再び合波させる偏
光合波素子と、この偏光合波素子と前記偏光分波素子と
の間に介装されて前記光ビームの可干渉距離よりも長い
光路差を当該偏光合波素子と前記偏光分波素子との間の
前記pH光成分光ビームと前記Sll光成分光ビームと
に与えろ光路差付与手段と、この光路差付与手段の一部
を構成する反射光学系と前記偏光合波素子との間に介装
されて前記反射光学系による偏光状態の変化を元の状態
に戻して前記偏光合波素子に導く偏光制御素子と、前記
P偏光成分光ビーム及び前記Sll光成分光ビームの偏
光方向に対して主軸方位が45度ずらして配置され且つ
前記偏光合波素子にて合波された光ビームを円偏光に変
換する四分の一波長板とを具えたものである。
Further, the circularly polarized light generating device according to the second aspect of the present invention includes a polarization splitting element that splits the light beam from the light source into a PIl light component light beam and an S polarization component light beam, and the P polarization component light beam. a polarization multiplexing element for recombining the S-polarized component light beam; and a polarization multiplexing element interposed between the polarization multiplexing element and the polarization demultiplexing element to create an optical path difference longer than the coherence length of the light beam. an optical path difference imparting means for imparting an optical path difference to the pH light component light beam and the Sll light component light beam between the polarization multiplexing element and the polarization splitting element; and reflective optics constituting a part of the optical path difference imparting means. a polarization control element interposed between the system and the polarization multiplexing element to return the change in the polarization state caused by the reflective optical system to the original state and guide it to the polarization multiplexing element; a quarter-wave plate whose principal axis direction is shifted by 45 degrees with respect to the polarization direction of the Sll light component light beam and which converts the light beam multiplexed by the polarization multiplexing element into circularly polarized light; It is something that

く作 用〉 光源からの光ビームは、偏光分波素子によりpH光成分
光ビームとSll光成分光ビームとに分波され、再び偏
光合波素子によりこれらP偏光成分光ビームとS偏光成
分光ビームとが合波される。光源からの光ビームの偏光
状態が変化した場合、pH光成分光ビームとS偏光成分
光ビームとの光量の割合がこれに対応して変化するだけ
であり、これらの光量の和は常に一定である。又、偏光
分波素子と偏光合波素子との間のpH光成分光ビームと
Sll光成分光ビームとの光路差を、光源からの光ビー
ムの可干渉距離より長く設定しているため、合波後の光
ビームは楕円偏光となることなく、直線偏光の状態を保
つ。従って、四分の一波長板を透過する光ビームは、常
に一定出力の円偏光となる。
Effect〉 The light beam from the light source is split into a pH light component light beam and an Sll light component light beam by a polarization demultiplexing element, and is again split into a P polarization component light beam and an S polarization component light beam by a polarization multiplexing element. are combined. When the polarization state of the light beam from the light source changes, only the ratio of the amount of light between the pH light component light beam and the S polarization component light beam changes correspondingly, and the sum of these light amounts is always constant. be. In addition, since the optical path difference between the pH light component light beam and the Sll light component light beam between the polarization demultiplexing element and the polarization multiplexing element is set to be longer than the coherence distance of the light beam from the light source, The light beam after the wave remains linearly polarized without becoming elliptically polarized. Therefore, the light beam that passes through the quarter-wave plate always becomes circularly polarized light with a constant output.

一方、光路差付与手段の一部を構成する反射光学系によ
って、P偏光成分光ビーム或いはSll光成分光ビーム
が反射すると、これらの偏光状態が変わってしまう場合
がある。そこで、偏光制御素子によりこれを元の偏光状
態に戻し、四分の一波長板の主軸方位に対して偏光合波
素子にて合波されるP[光成分光ビーム及びSll光成
分光ビームの偏光方向が常に45度ずれているようにす
る。
On the other hand, when the P-polarized component light beam or the Sll light component light beam is reflected by the reflective optical system that constitutes a part of the optical path difference providing means, the polarization state of these components may change. Therefore, the polarization control element returns the light to its original polarization state, and the P [light component light beam and the Sll light component light beam] are combined by the polarization multiplexing element with respect to the principal axis direction of the quarter-wave plate. Make sure that the polarization direction is always shifted by 45 degrees.

〈実 施 例〉 本発明による円偏光発生装置の一実施例の概略構造を表
す第1図に示すように、単色光の光源11とその四分の
一波長板12との間には、光源11から四分の一波長板
12へ向けて照射される単色光13をPIi光成分光ビ
ーム14とS偏光成分光ビーム15とに分波する偏光分
波素子である偏光ビームスプリッタ16と、これらPj
Ia光成分光ビーム14とS偏光成分光ビーム15とを
合波する偏光合波素子である偏光ビームスプリッタ17
とが一直線状に配置されている。本実施例による偏光ビ
ームスプリッタ16.17は、P偏光成分光ビーム14
をそのまま透過させると共にこれと偏光方向が直交する
S偏光成分光ビーム15を反射するようにしたものであ
るが、逆にP偏光成分光ビーム14を反射すると共にS
偏光成分光ビーム15をそのまま透過させるようにした
ものを採用することも当然可能である。
<Embodiment> As shown in FIG. 1, which schematically shows the structure of an embodiment of the circularly polarized light generating device according to the present invention, a light source is provided between a monochromatic light source 11 and its quarter-wave plate 12. 11 toward the quarter-wave plate 12 into a PIi light component light beam 14 and an S-polarized light component light beam 15; Pj
A polarization beam splitter 17 which is a polarization multiplexing element that combines the Ia light component light beam 14 and the S polarization component light beam 15.
are arranged in a straight line. The polarizing beam splitters 16 and 17 according to this embodiment have a P-polarized light beam 14.
The S-polarization component light beam 15, whose polarization direction is orthogonal to the S-polarization component light beam 15, is transmitted as is, and the S-polarization component light beam 15 is reflected.
Of course, it is also possible to adopt one that allows the polarized component light beam 15 to pass through as it is.

前記偏光ビームスプリッタ16によって反射されたS偏
光成分光ビーム15は、光路差付与手段を構成する二枚
の反射鏡18,19により偏光ビームスプリッタ17側
へ導かれ、この偏光ビームスプリッタ17にて反射して
ここを透過して来るPIi光成分光ビーム14に合波さ
れる。この場合、偏光ビームスプリッタ16から反射鏡
18.19を介して偏光ビームスプリッタ17に至るS
偏光成分光ビーム15の光路長が、偏光ビームスプリッ
タ16.17間のP偏光成分光ビーム14の光路長に対
し、単色光13の可干渉距離に相当する分よりも長くな
るように、反射鏡18゜19の位置を設定している。こ
れによって、四分の一波長板12に入射する合波後の光
ビーム20は、楕円偏光となることなく直線偏光状態が
保存される。
The S-polarized component light beam 15 reflected by the polarizing beam splitter 16 is guided toward the polarizing beam splitter 17 by two reflecting mirrors 18 and 19 constituting the optical path difference providing means, and is reflected by the polarizing beam splitter 17. It is then combined into a PIi light component light beam 14 that passes through this. In this case, S from the polarizing beam splitter 16 to the polarizing beam splitter 17 via the reflecting mirror 18
The reflecting mirror is arranged so that the optical path length of the polarized component light beam 15 is longer than the optical path length of the P polarized component light beam 14 between the polarized beam splitters 16 and 17, which corresponds to the coherence length of the monochromatic light 13. The position is set at 18°19. As a result, the multiplexed light beam 20 that enters the quarter-wave plate 12 does not become elliptically polarized light but maintains its linearly polarized state.

なお、反射鏡18.19によりsm光成分光ビーム15
の主軸方位が変わらないように、反射鏡18.19の反
射面に対してS偏光成分光ビーム15の主軸方位を平行
に設定すると良い。但し、このような構成を採用できな
い場合には、偏光ビームスプリッタ17の直前(偏光ビ
ームスプリッタ17と反射[1119との間)に偏光制
御素子を介在させ、S偏光成分光ビーム15の主軸方位
を分波直後の元の状態に戻すと良い。
In addition, the sm light component light beam 15 is formed by the reflecting mirrors 18 and 19.
It is preferable to set the principal axis direction of the S-polarized component light beam 15 parallel to the reflecting surface of the reflecting mirror 18, 19 so that the principal axis direction of the S-polarized light beam 15 does not change. However, if such a configuration cannot be adopted, a polarization control element is interposed just before the polarization beam splitter 17 (between the polarization beam splitter 17 and the reflection [1119]) to change the principal axis direction of the S-polarization component light beam 15. It is best to return to the original state immediately after demultiplexing.

前記四分の一波長板12の主軸方位は、これらp偏光成
分光ビーム14及びS偏光成分光ビーム15のそれぞれ
偏光方向に対して45度ずらして配置されており、従っ
てこの四分の一波長板12に入射する光ビーム20は円
偏光の光ビーム21に変換される。
The principal axis direction of the quarter-wave plate 12 is shifted by 45 degrees with respect to the polarization direction of each of the p-polarized light beam 14 and the s-polarized light beam 15, so that the quarter-wavelength plate 12 A light beam 20 incident on the plate 12 is converted into a circularly polarized light beam 21.

次に、本発明装置によって得られろ円偏光の光ビームが
完全な円偏光となっているかどうかを確認するため、第
2図に示す光パワーメータ22を用い、四分の一波長板
23を透過して来た円偏光の光ビーム24の光量の絶対
レベルを検出した。
Next, in order to confirm whether the circularly polarized light beam obtained by the device of the present invention is completely circularly polarized, a quarter-wave plate 23 is set using an optical power meter 22 shown in FIG. The absolute level of the amount of transmitted circularly polarized light beam 24 was detected.

具体的には、光源25として波長が0.78μmの多モ
ードレーザー光を発振するレーザーダイオードを用い、
これをコリメートレンズ26により平行光束27として
偏光ビームスプリッタ28に入射させ、Pj偏光成分光
ビーム29をそのまま透過させて偏光ビームスプリッタ
30に入射させる一方、S偏光成分光ビーム31を二枚
の反射光32.33を介して偏光ビームスプリッタ30
に入射させろようにした。
Specifically, a laser diode that oscillates a multimode laser beam with a wavelength of 0.78 μm is used as the light source 25,
This is made to enter the polarization beam splitter 28 as a parallel light beam 27 by the collimating lens 26, and the Pj polarization component light beam 29 is transmitted as it is and is input to the polarization beam splitter 30, while the S polarization component light beam 31 is split into two reflected beams. Polarizing beam splitter 30 via 32.33
I tried to make it inject into .

これら偏光ビームスプリッタ28.30間のp偏光成分
光ビーム29とS偏光成分光ビーム31との光路差を3
0cmに設定し、光源25からの多モードレーザー光の
可干渉距離である約20cmよりも10cm程度長めに
した。
The optical path difference between the p-polarized light beam 29 and the s-polarized light beam 31 between these polarized beam splitters 28 and 30 is 3.
The distance was set to 0 cm, which was about 10 cm longer than the coherence distance of the multimode laser beam from the light source 25, which is about 20 cm.

なお、P偏光成分光ビーム29及びS偏光成分光ビーム
31に対する偏光ビームスプリッタ28.30の消光比
は、共にそれぞれ35dB以上であった。
The extinction ratios of the polarizing beam splitter 28.30 for the P-polarized light beam 29 and the S-polarized light beam 31 were both 35 dB or more.

又、反射鏡32.33として反射による主軸方位の変化
はあるものの、楕円偏光への偏光状態の変化がないもの
を使用し、P偏光成分光ビーム29と5I偏光成分光ビ
ーム31とを合波させる偏光ビームスプリッタ30と反
射鏡33との間に、反射鏡32,33によろS偏光成分
光ビーム31の反射に伴う主軸方位の変化を矯正するた
め、偏光制御素子として全針の一波長板34を介装した
In addition, as the reflecting mirrors 32 and 33, although there is a change in the principal axis direction due to reflection, there is no change in the polarization state to elliptically polarized light, and the P polarization component light beam 29 and the 5I polarization component light beam 31 are combined. Between the polarizing beam splitter 30 and the reflecting mirror 33, an all-needle single-wavelength plate is installed as a polarization control element in order to correct changes in the principal axis direction caused by the reflection of the S-polarized component light beam 31 by the reflecting mirrors 32 and 33. 34 was inserted.

一方、四分の一波長板23を透過する円偏光の光ビーム
24を光パワーメータ22へ導くため、これらの間に集
光レンズ35を介装し、更にこの集光レンズ35と四分
の一波長板23との間に偏光子36を配置し、偏光子3
6を回転しながら光パワーメータ22に入射する光ビー
ムの受光量の絶対レベルを測定した。
On the other hand, in order to guide the circularly polarized light beam 24 transmitted through the quarter-wave plate 23 to the optical power meter 22, a condensing lens 35 is interposed between them, and the condensing lens 35 and the quarter-wave plate A polarizer 36 is arranged between the one-wavelength plate 23 and the polarizer 3
While rotating the optical power meter 6, the absolute level of the amount of received light beam incident on the optical power meter 22 was measured.

この結果を第3図に示す。これによると、偏光子36の
回転に関係なく受光量の絶対レベルは常に一定であり、
その変動量は使用した光パワーメータ22の測定分解能
である0、01dB以下であり、四分の一波長板23を
透過した光ビーム24が完全な円偏光となっていること
を確認できた。
The results are shown in FIG. According to this, the absolute level of the amount of received light is always constant regardless of the rotation of the polarizer 36,
The amount of variation was less than 0.01 dB, which is the measurement resolution of the optical power meter 22 used, and it was confirmed that the light beam 24 transmitted through the quarter-wave plate 23 was completely circularly polarized.

次に、光パワーメータ22に入射する光ビームの受光量
の絶対レベルが、光源25からの多モードレーザー光の
偏光状態の変化に伴って変動しないことを確認するため
、偏光子36を固定した状態で光源25を回転しながら
光パワーメータ22に入射する光ビームの受光量の絶対
レベルを測定した。
Next, in order to confirm that the absolute level of the amount of received light beam incident on the optical power meter 22 does not change due to changes in the polarization state of the multimode laser beam from the light source 25, the polarizer 36 was fixed. While rotating the light source 25 in this state, the absolute level of the amount of received light beam incident on the optical power meter 22 was measured.

この結果を第4図に示す。これによると、光源25の回
転の如何にかかわらず、光ビームの光量の絶対レベルは
第3図の場合と全く同一であり、偏光ビームスプリッタ
28に入射する平行光束27の偏光状態が変化しても、
四分の一波長板23を透過する円偏光の光ビーム24の
光量の絶対レベルは変化しないことを確認できた。なお
、この場合の光源25からの多モードレーザー光の消光
比は20dB以上であった。
The results are shown in FIG. According to this, regardless of the rotation of the light source 25, the absolute level of the light quantity of the light beam is exactly the same as in the case of FIG. 3, and the polarization state of the parallel light beam 27 entering the polarizing beam splitter 28 changes. too,
It was confirmed that the absolute level of the amount of circularly polarized light beam 24 passing through the quarter-wave plate 23 did not change. Note that the extinction ratio of the multimode laser beam from the light source 25 in this case was 20 dB or more.

〈発明の効果〉 本発明の円偏光発生装置によると、光源からの光ビーム
の偏光状態が変化しても、常に一定出力の完全な円偏光
の光ビームを何らのmuを行うことなく得られるため、
これを光部品の評価を行う際の光源として用いた場合に
は、光部品に対して信頼性の高い評価を与えろことがで
きる。
<Effects of the Invention> According to the circularly polarized light generator of the present invention, even if the polarization state of the light beam from the light source changes, a completely circularly polarized light beam with a constant output can always be obtained without performing any mu. For,
When this is used as a light source when evaluating optical components, it is possible to give highly reliable evaluations to the optical components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による円偏光発生装置の一実施例の概念
図、第2図は本発明による円偏光発生装置の他の一実施
例の概念図、第3図は偏光子を回転した場合の光パワー
メータの受光量の絶対レベルを表すグラフ、第4図は光
源を回転した場合の光パワーメータの受光量の絶対レベ
ルを表すグラフ、第5図及び第6図はそれぞれ従来の円
偏光発生装置の一例を表す概念図である。 又、図中の符号で11.25は光源、12゜23は四分
の一波長板、14,29はP偏光成分光ビーム、15,
31はS偏光成分光ビーム、16.17,28,30は
偏光ビームスプリッタ、18,19,32,33は反射
鏡、21゜24は円偏光の光ビーム、34は全針の一波
長板である。
Fig. 1 is a conceptual diagram of an embodiment of the circularly polarized light generator according to the present invention, Fig. 2 is a conceptual diagram of another embodiment of the circularly polarized light generator according to the present invention, and Fig. 3 is a conceptual diagram of an embodiment of the circularly polarized light generator according to the present invention. Fig. 4 is a graph showing the absolute level of the amount of light received by the optical power meter when the light source is rotated, and Figs. 5 and 6 are graphs showing the absolute level of the amount of light received by the optical power meter when the light source is rotated. It is a conceptual diagram showing an example of a generator. Also, in the figure, 11.25 is a light source, 12.23 is a quarter-wave plate, 14.29 is a P-polarized component light beam, 15.
31 is an S-polarized light beam, 16, 17, 28, and 30 are polarizing beam splitters, 18, 19, 32, and 33 are reflecting mirrors, 21° and 24 are circularly polarized light beams, and 34 is an all-needle single-wavelength plate. be.

Claims (2)

【特許請求の範囲】[Claims] (1)光源からの光ビームをP偏光成分光ビームとS偏
光成分光ビームとに分波させる偏光分波素子と、前記P
偏光成分光ビームと前記S偏光成分光ビームとを再び合
波させる偏光合波素子と、この偏光合波素子と前記偏光
分波素子との間に介装されて前記光ビームの可干渉距離
よりも長い光路差を当該偏光合波素子と前記偏光分波素
子との間の前記P偏光成分光ビームと前記S偏光成分光
ビームとに与える光路差付与手段と、前記P偏光成分光
ビーム及び前記S偏光成分光ビームの偏光方向に対して
主軸方位が45度ずらして配置され且つ前記偏光合波素
子にて合波された光ビームを円偏光に変換する四分の一
波長板とを具えた円偏光発生装置。
(1) a polarization splitting element that splits a light beam from a light source into a P-polarized component light beam and an S-polarized component light beam;
a polarization multiplexing element for recombining the polarization component light beam and the S-polarization component light beam; an optical path difference providing means for providing a long optical path difference to the P polarization component light beam and the S polarization component light beam between the polarization multiplexing element and the polarization splitting element; a quarter-wave plate whose principal axis direction is shifted by 45 degrees with respect to the polarization direction of the S-polarized component light beam, and which converts the light beam multiplexed by the polarization multiplexing element into circularly polarized light. Circularly polarized light generator.
(2)光源からの光ビームをP偏光成分光ビームとS偏
光成分光ビームとに分波させる偏光分波素子と、前記P
偏光成分光ビームと前記S偏光成分光ビームとを再び合
波させる偏光合波素子と、この偏光合波素子と前記偏光
分波素子との間に介装されて前記光ビームの可干渉距離
よりも長い光路差を当該偏光合波素子と前記偏光分波素
子との間の前記P偏光成分光ビームと前記S偏光成分光
ビームとに与える光路差付与手段と、この光路差付与手
段の一部を構成する反射光学系と前記偏光合波素子との
間に介装されて前記反射光学系による偏光状態の変化を
元の状態に戻して前記偏光合波素子に導く偏光制御素子
と、前記P偏光成分光ビーム及び前記S偏光成分光ビー
ムの偏光方向に対して主軸方位が45度ずらして配置さ
れ且つ前記偏光合波素子にて合波された光ビームを円偏
光に変換する四分の一波長板とを具えた円偏光発生装置
(2) a polarization splitting element that splits a light beam from a light source into a P polarization component light beam and an S polarization component light beam;
a polarization multiplexing element for recombining the polarization component light beam and the S-polarization component light beam; an optical path difference providing means for providing a long optical path difference to the P polarization component light beam and the S polarization component light beam between the polarization multiplexing element and the polarization splitting element; and a part of the optical path difference provision means. a polarization control element that is interposed between the reflective optical system constituting the P and the polarization multiplexing element to return the change in the polarization state caused by the reflective optical system to the original state and guide it to the polarization multiplexer; A quarter whose principal axis direction is shifted by 45 degrees with respect to the polarization direction of the polarized component light beam and the S-polarized component light beam, and which converts the light beam multiplexed by the polarization multiplexing element into circularly polarized light. A circularly polarized light generator equipped with a wavelength plate.
JP22167589A 1989-08-30 1989-08-30 Circularly polarized light generator Pending JPH0385514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22167589A JPH0385514A (en) 1989-08-30 1989-08-30 Circularly polarized light generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22167589A JPH0385514A (en) 1989-08-30 1989-08-30 Circularly polarized light generator

Publications (1)

Publication Number Publication Date
JPH0385514A true JPH0385514A (en) 1991-04-10

Family

ID=16770512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22167589A Pending JPH0385514A (en) 1989-08-30 1989-08-30 Circularly polarized light generator

Country Status (1)

Country Link
JP (1) JPH0385514A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359424A (en) * 2001-05-31 2002-12-13 Mitsutoyo Corp Inspecting device of harmonics superimposing operation of semiconductor laser
US7397553B1 (en) 2005-10-24 2008-07-08 Kla-Tencor Technologies Corporation Surface scanning
US7554654B2 (en) 2007-01-26 2009-06-30 Kla-Tencor Corporation Surface characteristic analysis
US7630086B2 (en) 1997-09-22 2009-12-08 Kla-Tencor Corporation Surface finish roughness measurement
US7688435B2 (en) 1997-09-22 2010-03-30 Kla-Tencor Corporation Detecting and classifying surface features or defects by controlling the angle of the illumination plane of incidence with respect to the feature or defect
US7714995B2 (en) 1997-09-22 2010-05-11 Kla-Tencor Corporation Material independent profiler
JP2011059310A (en) * 2009-09-09 2011-03-24 Yokogawa Electric Corp Polarization adjusting device
WO2019026912A1 (en) * 2017-08-03 2019-02-07 浜松ホトニクス株式会社 Light source device and laser light irradiation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630086B2 (en) 1997-09-22 2009-12-08 Kla-Tencor Corporation Surface finish roughness measurement
US7688435B2 (en) 1997-09-22 2010-03-30 Kla-Tencor Corporation Detecting and classifying surface features or defects by controlling the angle of the illumination plane of incidence with respect to the feature or defect
US7714995B2 (en) 1997-09-22 2010-05-11 Kla-Tencor Corporation Material independent profiler
JP2002359424A (en) * 2001-05-31 2002-12-13 Mitsutoyo Corp Inspecting device of harmonics superimposing operation of semiconductor laser
JP4713769B2 (en) * 2001-05-31 2011-06-29 株式会社ミツトヨ High-frequency superposition operation inspection system for semiconductor laser
US7397553B1 (en) 2005-10-24 2008-07-08 Kla-Tencor Technologies Corporation Surface scanning
US7554654B2 (en) 2007-01-26 2009-06-30 Kla-Tencor Corporation Surface characteristic analysis
JP2011059310A (en) * 2009-09-09 2011-03-24 Yokogawa Electric Corp Polarization adjusting device
WO2019026912A1 (en) * 2017-08-03 2019-02-07 浜松ホトニクス株式会社 Light source device and laser light irradiation device
JP2019029625A (en) * 2017-08-03 2019-02-21 浜松ホトニクス株式会社 Light-source device and laser irradiation device

Similar Documents

Publication Publication Date Title
US11114814B2 (en) Relative phase measurement for coherent combining of laser beams
US7375819B2 (en) System and method for generating beams of light using an anisotropic acousto-optic modulator
US4342517A (en) Method and arrangement for the measurement of rotations by the Sagnac effect
US7372576B2 (en) System and method for generating beams of light using an anisotropic acousto-optic modulator
JP4499924B2 (en) Light beam generation guide device
JPH0385514A (en) Circularly polarized light generator
US20030035112A1 (en) Birefringent beam combiners for polarized beams in interferometers
JPS61219803A (en) Apparatus for measuring physical quantity
GB2117132A (en) Interferometer
JP2572111B2 (en) Laser interferometer
JPH11183116A (en) Method and device for light wave interference measurement
US6941032B2 (en) Passive polarization stabilizer
US6775005B2 (en) Low-coherence reflectometer with polarization control
JP2004309466A (en) Optical fiber gyroscope
JPH03118477A (en) Laser doppler vibrometer using beam branching optical system
JPH0371108A (en) Optical system for generating circularly polarized light
JPS5848018A (en) Optical circuit device
JP3036951B2 (en) Light wave interference measurement device
JPH11101608A (en) Laser-interfered length measuring machine
JPH0694411A (en) Two-wavelength displacement interferometer
JPH0781824B2 (en) Alignment device
JPH11344645A (en) Optical module and optical apparatus using the same
JPH02254413A (en) Polarization coupler
Man et al. Optimization scheme of polarization state controlling in DCPA
JP2001336913A (en) Interferometer