JPS58159503A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS58159503A
JPS58159503A JP4219682A JP4219682A JPS58159503A JP S58159503 A JPS58159503 A JP S58159503A JP 4219682 A JP4219682 A JP 4219682A JP 4219682 A JP4219682 A JP 4219682A JP S58159503 A JPS58159503 A JP S58159503A
Authority
JP
Japan
Prior art keywords
switching element
light
lens
optical
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4219682A
Other languages
Japanese (ja)
Other versions
JPS6313167B2 (en
Inventor
Tsutomu Aoyama
勉 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4219682A priority Critical patent/JPS58159503A/en
Publication of JPS58159503A publication Critical patent/JPS58159503A/en
Publication of JPS6313167B2 publication Critical patent/JPS6313167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/3551x2 switch, i.e. one input and a selectable single output of two possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To obtain an optical switch which has high reliability and less insertion loss by destroying a reflection part thermally through Joule heat generation by feeding and thus performing switching. CONSTITUTION:This optical switch consists of the 1st lens 4 for the image conversion of incident light from an optical fiber 1, a switching element 7 which reflects or transmits the light passed through the lens 4, and a lens 5 for coupling the light reflected by the switching element 7 with a fiber 3 while converging it. The switching element 7 once fed at electrodes 8 varies in reflectivity inreversibly to change optical paths and when the switching element 7 is powered on, Joule heat destroys the reflecting film to allow the light to pass through it. Namely, the element has high reflectivity before being powered on and decreases in reflectivity after being powered on. Consequently, the optical switch which has high reliability and less insertion loss is obtained.

Description

【発明の詳細な説明】 本発明は光フアイバ通信において光伝送路中に挿入され
光伝送路を切換える光スィッチに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical switch inserted into an optical transmission line to switch the optical transmission line in optical fiber communication.

光スィッチは光フアイバ通信を高度化・多様化する上で
重要な光機能回路部品であり、すでに光フアイバリンク
におけるバイパス切換や高信頼を要求されるシステムに
おける光源や回線の現用・予備の切換等に実用化されて
いる。
Optical switches are important optical functional circuit components for advancing and diversifying optical fiber communications, and are already used for bypass switching in optical fiber links and switching between active and backup light sources and lines in systems that require high reliability. It has been put into practical use.

光スィッチは大別すると、ファイバやプリズム等の適切
な形状の光学素子を機械的に駆動して光路の切換を行な
う形式と、電気光学効果や磁気光学効果を利用し可動部
を有しない形式に分けることが出来る。現状では前者の
形式のスイッチが後者のスイッチに比べて切換速度は劣
るものの、低挿入損で低漏話であり現在の主流である多
モードファイバを対象にできるので実用的である。一方
、後者のスイッチは種々の方式が提案されているが、い
ずれも挿入損や漏話が大きくまだ実用化までに解決すべ
き問題が多い。
Optical switches can be roughly divided into two types: those that switch optical paths by mechanically driving optical elements of appropriate shapes such as fibers and prisms, and those that use electro-optic or magneto-optic effects and have no moving parts. It can be divided. Although the former type of switch currently has a lower switching speed than the latter type of switch, it is practical because it has low insertion loss and low crosstalk and can be used with multimode fibers, which are currently mainstream. On the other hand, various systems have been proposed for the latter switch, but all of them have large insertion loss and crosstalk, and there are still many problems to be solved before they can be put into practical use.

光フアイバ通信の有力な適用分野の1つに光海底中継伝
送方式がある。この方式では中継器が海底に沈められ、
回収することが難しく、また多額の費用がかかるため、
中継器中に使用される部品はきわめて高信頼であること
が要求される。光海底中継伝送方式では光源として半導
体レーザ(LD)が使用されるが、現在のところ、まだ
十分な信頼性があるとは言えない。このため番こ光スィ
ッチを使用して光源を二重化あるいは四重化する方法が
検討、実験されている。しかしながら現状では、この方
式に使用できるスイッチは前述のように特性上からは可
動部を有する機樺的な光スィッチであるが、可動部を有
するということで、この形式のスイッチも才た信頼性が
十分であるとは言いがたい。
One of the promising fields of application of optical fiber communications is optical submarine relay transmission systems. In this method, the repeater is sunk to the ocean floor,
Because it is difficult to collect and costs a lot of money,
The components used in repeaters are required to be extremely reliable. Although a semiconductor laser (LD) is used as a light source in the optical submarine relay transmission system, it cannot be said that it is sufficiently reliable at present. For this reason, methods of duplicating or quadrupling the light sources using a light switch are being studied and experimented with. However, currently, the switches that can be used in this method are mechanical optical switches that have a moving part as described above, but because they have a moving part, this type of switch also has excellent reliability. It is hard to say that this is sufficient.

本発明の目的は前記のようなきわめて高い信頼性を要求
される光通信システムに使用でき、可動部を有しない切
換形式による高信頼で、かつ低挿入損の光スィッチを提
供することにある。
An object of the present invention is to provide an optical switch that can be used in the above-mentioned optical communication system that requires extremely high reliability, has a switching type that does not have any moving parts, is highly reliable, and has low insertion loss.

本発明の光スィッチは、光源からの入射光を像変換する
第1のレンズと、前記第1のレンズ通過後の光を反射又
は透過して光路を切換える切換素子と、前記切換素子で
反射された光を集束する第2のレンズと、前記切換素子
を透過した光を集束する第3のレンズからなる光スィッ
チにおいて、前記切換素子に通電して発生するジュール
熱により反射部分を熱的に破壊して反射状態から透過状
態にして光路の切換を行なうことを特徴とする。
The optical switch of the present invention includes a first lens that converts incident light from a light source into an image, a switching element that switches the optical path by reflecting or transmitting the light after passing through the first lens, and a switching element that switches the optical path by reflecting or transmitting the light after passing through the first lens. In an optical switch consisting of a second lens that focuses the light transmitted through the switching element and a third lens that focuses the light transmitted through the switching element, the reflective portion is thermally destroyed by Joule heat generated by energizing the switching element. It is characterized in that the optical path is switched from a reflective state to a transmitting state.

本発明の光スィッチの実施例を第1図に示す。An embodiment of the optical switch of the present invention is shown in FIG.

本発明のスイッチは、光ファイバ1からの入射光を像変
換する第1のレンズ4と、レンズ4通過後の光を反射ま
たは透過する切換素子7と、切換素子7で反射された光
を集束してファイバ2に結合するレンズ5と、切換素子
7を透過した光を集束してファイバ3に結合するレンズ
6からなる。切換素子7は電極8Jこ通電されると反射
率が不可逆的に変化し光路を切換えるものであり、切換
索子7に通電するとジュール熱により反射膜が破壊され
光は透過するようになる現象を利用している。
The switch of the present invention includes a first lens 4 that converts the incident light from the optical fiber 1 into an image, a switching element 7 that reflects or transmits the light after passing through the lens 4, and a switching element 7 that focuses the light reflected by the switching element 7. It consists of a lens 5, which is coupled to the fiber 2, and a lens 6, which focuses the light transmitted through the switching element 7 and couples it to the fiber 3. When the switching element 7 is energized to the electrode 8J, the reflectance irreversibly changes and the optical path is switched.When the switching element 7 is energized, the reflective film is destroyed by Joule heat and the light is transmitted. We are using.

すなわち、通電前は反射率が大きく、通電後は反射率が
減少する。一度通電すると反射率は減少したままであり
、切換動作は1回隔りである。
That is, the reflectance is high before energization, and decreases after energization. Once energized, the reflectance remains reduced, and the switching operation is performed at one-time intervals.

第2図は第1図に示す切換素子7の第1の例である。ガ
ラス板9の上に金属膜10が光が通過する部分11のみ
で狭くなるよう1こコーティングされている。12は電
極である。通電前は金属膜が光の通過部分にあるので透
過率0、反射率1(但し、光の吸収損を無視)である。
FIG. 2 shows a first example of the switching element 7 shown in FIG. A single metal film 10 is coated on the glass plate 9 so that it is narrow only at a portion 11 through which light passes. 12 is an electrode. Before energization, the metal film is in the portion through which light passes, so the transmittance is 0 and the reflectance is 1 (ignoring light absorption loss).

したがって、第1図においてファイバ1と2が結合状態
にある。
Thus, in FIG. 1 fibers 1 and 2 are in a coupled state.

通電すると、金属膜のくびれた部分がジュール熱1こよ
り最も発熱し光が通過する部分11の金属膜は融けて、
表面張力により電極側に集まり、その結果、透過率1、
反射率O(但し、ガラスのフレ云・5− ネル損は無視)となる。くびれ部分の幅はレンズにより
集光するスポット径よりわずか1こ広いだけでよい。例
えば単一モードファイバを用いてレンズで1対1に像変
換する場合は10μm程度である。金属膜としてAtを
用いた場合、反射率は95%であり、この切換素子の挿
入損は0.3dB程度である。切換に要する時間は通電
パワーによるが0.1〜数秒である。
When electricity is applied, the constricted part of the metal film generates the most heat due to 1 Joule heat, and the metal film in the part 11 through which light passes melts.
They gather on the electrode side due to surface tension, and as a result, the transmittance is 1,
The reflectance is O (however, the Fresnel loss of the glass is ignored). The width of the constriction needs to be only one inch wider than the spot diameter condensed by the lens. For example, in the case of one-to-one image conversion using a lens using a single mode fiber, the width is about 10 μm. When At is used as the metal film, the reflectance is 95% and the insertion loss of this switching element is about 0.3 dB. The time required for switching is 0.1 to several seconds depending on the energizing power.

第3図は第1図に示す切換素子の第2の例を示したもb
である。13は三角形のプリズム、14は透明電極及び
プリズム13と対する面に、融点が低く透明で、プリズ
ムとほぼ同じ屈折率を有する材料をコートしたプリズム
である。プリズム13と14伺は、数μm程度のすき間
がある。15は透明電極へ通電するための電極である。
Figure 3 shows a second example of the switching element shown in Figure 1.
It is. 13 is a triangular prism, and 14 is a prism whose surface facing the transparent electrode and prism 13 is coated with a material that is transparent with a low melting point and has approximately the same refractive index as the prism. There is a gap of about several μm between the prisms 13 and 14. 15 is an electrode for supplying electricity to the transparent electrode.

第4図、第5図を用Bで切換動作を説明する。The switching operation will be explained with reference to FIGS. 4 and 5.

通電前はプリズム13に入射した光は、第4図に示した
ように全反射されて出射する。すなわち、反射率1、透
過率Oである。一方、電極15に通電すると、厚さ数百
λ程度の酸化インジウム・スー6= ズを材料とする透明電極17がジュール発熱し、低融点
材料16が融けてプリズム13と14間の間げきを埋め
るので、第5図に示したようにプリズム13に入射した
光は透過する。透明電極と、プリズムと低融点材料16
との間のわずかの屈折率差lこよる反射を無視すれば反
射率01透過率1となる。低融点材料として屈折本釣1
.5のエポキシを用い、プリズム間の間げきを41μm
にしたところ約100°Cで切換ができた。シーの切換
素子の挿入損は大部分透明電極によるものであり、1〜
2dB程度である。切換に要する時間は通電パワーをこ
よるが、0,1〜数秒である。
Before energization, the light incident on the prism 13 is totally reflected and emitted as shown in FIG. That is, the reflectance is 1 and the transmittance is O. On the other hand, when the electrode 15 is energized, the transparent electrode 17 made of indium oxide sous 6= several hundred λ thick generates Joule heat, and the low melting point material 16 melts, closing the gap between the prisms 13 and 14. Since the prism 13 is filled in, the light incident on the prism 13 is transmitted as shown in FIG. Transparent electrode, prism and low melting point material 16
If the reflection caused by the slight refractive index difference l between the two is ignored, the reflectance will be 0 and the transmittance will be 1. Refractive fishing rod 1 as a low melting point material
.. Using No. 5 epoxy, the gap between the prisms was 41 μm.
I was able to switch at about 100°C. The insertion loss of the switching element of C is mostly due to the transparent electrode, and is 1~
It is about 2 dB. The time required for switching depends on the energizing power, but is in the range of 0.1 to several seconds.

以上に詳細に説明したように、本発明の光スィッチでは
通電によるジュール発熱により反射部分を熱的に破壊し
て切換を行なう。従って、可動部がな〈従来の機械的形
式による光スィッチのように可動部をガイドしたり整列
させる機構が不要であり、これらの光スイッチ番こ比べ
て高信頼である。
As described above in detail, in the optical switch of the present invention, switching is performed by thermally destroying the reflective portion by Joule heat generation due to energization. Therefore, since there is no movable part, there is no need for a mechanism to guide or align the movable parts as in conventional mechanical type optical switches, and it is more reliable than these optical switches.

また、挿入損も従来の機械的形式のスイッチと同等にで
きる。
In addition, the insertion loss can be made equivalent to that of conventional mechanical type switches.

本スイッチの切換は一回限りで不可逆的であるが、光海
底中継方式のような1回の切換しか必要としないような
高信頼システムに対して有用である。
Although the switching of this switch is only done once and is irreversible, it is useful for highly reliable systems such as optical submarine relay systems that require only one switching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光スィッチの実施例を示す斜視図、第
2図は第1図の切換素子の一例を示す平面図、第3図は
本発明第1図の切換素子の他の例を示す斜視図、第4図
、第5図は第3図の切換素子の動作を示す側面図である
。 1、2.3・・・・・・ファイバ、4,6,6・・・・
・・レンズ、7・・・・・・切換素子、8・・・・・・
電極、9・・・・・・ガラス板、10・・・・・・金属
膜、11・・・・・・光が通過する部分、12゜15・
・・・・・電極、13.14・・・・・・プリズム、1
6・・・・・・低融点透明材料、17・・・・・・透明
電極。 蓼1 目 蒸2 図 □′ 一λ 丁°” 第3 図 第4目     第5図
Fig. 1 is a perspective view showing an embodiment of the optical switch of the present invention, Fig. 2 is a plan view showing an example of the switching element shown in Fig. 1, and Fig. 3 is another example of the switching element shown in Fig. 1 of the present invention. FIGS. 4 and 5 are side views showing the operation of the switching element shown in FIG. 3. 1, 2.3...Fiber, 4,6,6...
...Lens, 7...Switching element, 8...
Electrode, 9... Glass plate, 10... Metal film, 11... Portion through which light passes, 12°15.
... Electrode, 13.14 ... Prism, 1
6...Low melting point transparent material, 17...Transparent electrode.蓼1 MEMU2 fig.

Claims (3)

【特許請求の範囲】[Claims] (1)光源からの入射光を像変換する第1のレンズと、
前記第1のレンズ通過後の光を反射又は透過して光路を
切換える切換素子と、前記切換素子で反射された光を集
束する第2のレンズと、前記切換素子を透過した光を集
束する第3のレンズからなる光スィッチにおいて、前記
切換素子に通電して発生するジュール熱により反射部分
を熱的に破壊して反射状態から透過状態にして光路の切
換を行なうことを特徴とする光スィッチ。
(1) a first lens that converts the incident light from the light source into an image;
a switching element that reflects or transmits the light after passing through the first lens to switch the optical path; a second lens that focuses the light reflected by the switching element; and a second lens that focuses the light that has passed through the switching element. 3. An optical switch comprising three lenses, characterized in that the reflective portion is thermally destroyed by Joule heat generated by energizing the switching element to switch the optical path from a reflective state to a transmitting state.
(2)前記切換素子が、ガラス板上に金属膜をコートし
金属膜に通電して金属膜を融かして光路の切換を行なう
ことを特徴とする特許請求の範囲第(1)項記載の光ス
ィッチ。
(2) The switching element is characterized in that the optical path is switched by coating a metal film on a glass plate and melting the metal film by applying electricity to the metal film. light switch.
(3)前記切換素子が、三角プリズムの全反射面を対向
させ、一方のプリズムの全反射面に電極及びプリズムと
屈折率がほぼ同じで融点が低い透明材料をコートし、電
極番こ通電し透明材料を融かしてプリズムの全反射面間
の間げきを埋めることにより光路の切換を行なうことを
特徴とする特許請求の範囲第(1)項記載の光スィッチ
(3) The switching element has the total reflection surfaces of the triangular prisms facing each other, the total reflection surface of one prism is coated with a transparent material having a low melting point and approximately the same refractive index as the electrodes and the prism, and the electrode number is energized. The optical switch according to claim 1, wherein the optical path is switched by melting a transparent material to fill gaps between total reflection surfaces of the prisms.
JP4219682A 1982-03-17 1982-03-17 Optical switch Granted JPS58159503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219682A JPS58159503A (en) 1982-03-17 1982-03-17 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219682A JPS58159503A (en) 1982-03-17 1982-03-17 Optical switch

Publications (2)

Publication Number Publication Date
JPS58159503A true JPS58159503A (en) 1983-09-21
JPS6313167B2 JPS6313167B2 (en) 1988-03-24

Family

ID=12629249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219682A Granted JPS58159503A (en) 1982-03-17 1982-03-17 Optical switch

Country Status (1)

Country Link
JP (1) JPS58159503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000106A1 (en) * 1986-07-09 1988-01-14 Hughes Aircraft Company Pellicle laser power limiter
WO2001040843A1 (en) * 1999-12-01 2001-06-07 Xros, Inc., Nortel Networks Arrangement for multiple 1xn optical switches
WO2003107055A1 (en) * 2002-06-14 2003-12-24 日本板硝子株式会社 Optical device unit, optical device, and microlens array

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698544A (en) * 2015-03-31 2015-06-10 昂纳信息技术(深圳)有限公司 2*2 mechanical optical switch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495475A (en) * 1972-05-04 1974-01-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495475A (en) * 1972-05-04 1974-01-18

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000106A1 (en) * 1986-07-09 1988-01-14 Hughes Aircraft Company Pellicle laser power limiter
WO2001040843A1 (en) * 1999-12-01 2001-06-07 Xros, Inc., Nortel Networks Arrangement for multiple 1xn optical switches
US6687430B2 (en) 1999-12-01 2004-02-03 Armand Neukermans Arrangement for multiple 1xn optical switches
WO2003107055A1 (en) * 2002-06-14 2003-12-24 日本板硝子株式会社 Optical device unit, optical device, and microlens array

Also Published As

Publication number Publication date
JPS6313167B2 (en) 1988-03-24

Similar Documents

Publication Publication Date Title
Friberg et al. Nonlinear optical glasses for ultrafast optical switches
JPH05508028A (en) Method of forming refractive index grating in optical waveguide
JP3844918B2 (en) Optical phase controller and optical switch
JPS5885420A (en) Interference type multimode fiber optics switch and modulator
US3871742A (en) Composite thin film optical device
US4770529A (en) Alignment of optical waveguides
JPS58159503A (en) Optical switch
JPH02179626A (en) Light wavelength converter
US4867517A (en) Fail-safe acousto-optic T-couplers for optical communication networks
GB2189038A (en) Optical switching
JP2004212979A (en) Beam splitting prism, manufacturing method of the prism and optical-optical switch device
JPS597324A (en) Coupler for optical fiber
JPS5929219A (en) Optical coupler with terminal for monitoring light output
JPS59192231A (en) Optical switch
US7095537B2 (en) Method and system for optical coupling using holographic recording media
US20010030781A1 (en) Optical device and a method of processing a digital optical signal in parallel and in free space
EP0082623B1 (en) Acousto-optic t-couplers for communication networks
JPS5858782A (en) Module of semiconductor laser
JPS6044647B2 (en) Light-controlled electro-optical device
JP2946056B2 (en) Light switch
JPH0339913A (en) Light wavelength converting device
JP2903700B2 (en) Waveguide type optical device
JPS61113024A (en) Waveguide type polarizing element
JPH04350804A (en) Waveguide type device
JP2836174B2 (en) Light control device