JPS6044647B2 - Light-controlled electro-optical device - Google Patents

Light-controlled electro-optical device

Info

Publication number
JPS6044647B2
JPS6044647B2 JP11130480A JP11130480A JPS6044647B2 JP S6044647 B2 JPS6044647 B2 JP S6044647B2 JP 11130480 A JP11130480 A JP 11130480A JP 11130480 A JP11130480 A JP 11130480A JP S6044647 B2 JPS6044647 B2 JP S6044647B2
Authority
JP
Japan
Prior art keywords
light
optical
voltage
waveguide
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11130480A
Other languages
Japanese (ja)
Other versions
JPS5735829A (en
Inventor
好伸 辻本
哲夫 谷内
晧元 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11130480A priority Critical patent/JPS6044647B2/en
Publication of JPS5735829A publication Critical patent/JPS5735829A/en
Publication of JPS6044647B2 publication Critical patent/JPS6044647B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/293Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by another light beam, i.e. opto-optical deflection

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は光制御型電気光学素子にかかり、電気光学効果
を用いた光スイッチの駆動を、従来は電圧を印加するこ
とにより行なつていたものを、光の照射のみで行ない、
電圧を供給する給電線を不要にした、全光御型の光スイ
ッチを実現することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light-controlled electro-optical element, and the drive of an optical switch using the electro-optic effect, which was conventionally performed by applying a voltage, is now possible by simply irradiating light. go there,
The aim is to realize an all-light controlled optical switch that eliminates the need for power supply lines to supply voltage.

光て電気光学効果を制御しようとする試みは従来にも二
、Ξの例はある。
There have been several previous attempts to control the electro-optic effect using light.

第1図、第2図および第3図はそれらの方式を示すもの
である。第1図において、1は上下面に電極を設けた電
気光学効果素子で、反射鏡2、2’を含めてフアブリペ
ロー型光共振器を構成している。
FIGS. 1, 2 and 3 show these systems. In FIG. 1, reference numeral 1 denotes an electro-optic effect element having electrodes on its upper and lower surfaces, and including reflecting mirrors 2 and 2', constitutes a Fabry-Perot optical resonator.

今、図面左方から入射した光3は共振器が共振条件を満
足するか否かに応じて符号3’側に現われたり現われな
かつたりする。共振条件の制御は光ビーム3″を光検出
器4て光電変換し、増巾器5て増巾して電気光学効果素
子1に電圧を印加して行なう。6はビーム分割器で、共
振器の光の一部をバイアス光として使うためのものであ
る。この装置においては、光ビーム3’は、光ビーム3
″により制御されるが、検出器4、増巾器5には電圧を
印加する給電線が必要であり、電線の全くない光制御系
とはなつていない。第2図aは光導波路を応用した光ス
イッチの構成を示し、同図bはその等価回路図である。
Now, the light 3 incident from the left side of the drawing appears or does not appear on the 3' side depending on whether the resonator satisfies the resonance condition. The resonance conditions are controlled by photoelectrically converting the light beam 3'' by a photodetector 4, amplifying it by an amplifier 5, and applying a voltage to the electro-optic effect element 1. 6 is a beam splitter, and a resonator This is to use a part of the light beam 3' as bias light.In this device, the light beam 3'
However, the detector 4 and amplifier 5 require power supply lines to apply voltage, and are not an optical control system that does not require any electric wires. Figure 2a shows an application of an optical waveguide. The structure of the optical switch is shown, and FIG. 2B is an equivalent circuit diagram.

図にいて、11、11′は電気光学効果を有する導波路
で、光12、12′がそれぞれ導かれる。13、13′
は導波路11、11′に電圧を印加するための電極であ
る。
In the figure, reference numerals 11 and 11' denote waveguides having an electro-optic effect, through which lights 12 and 12' are guided, respectively. 13, 13'
are electrodes for applying voltage to the waveguides 11, 11'.

電極13の上には光導電膜(たとえばCdS膜)14が
設けられている。導波、路11に入射した光12は光導
電膜14に吸収されて、その抵抗を低下させる。その結
果、導波路11′に分圧されている電圧が高くなり(図
をの等価回路参照)、出射光12″が変化する。しかし
この場合も、光導電膜14に対する光て出射光1フ2″
の光量を制御しているものの、導波路11、11′に印
加する電圧の電源VBから給電線て電圧を供給する必要
があり、全光型とはいえない。第3図は給電線不要の光
スイッチの構成を示す。図において、21は電気光学効
果を有する導5波路で、22、22’はそれぞれ入射光
、出射光である。導波路21への印加電圧は焦電効果素
子23に光24,24″を照射して得る。この電圧によ
り導波路21中の光の偏光方向を制御し、検光子25て
光強度の変化量として取り出す。この方法では給電線が
不要となるが、焦電効果により電圧を得るための光は断
続光とする必要がある。その上、短波長の光(焦電物質
LiTaO3:Crに対しては4600Aのダイレーザ
の光を照射)を用いる必要があり、そのため光ファイバ
で制御光を伝送する場合などは損失が大きくて実用的で
ない。さらに、スイッチの駆動には約7mJの光エネル
ギを要し、半導体レーザや発光ダイオードの光をファイ
バで伝送して用いるには波長の点と光パワーの点で不可
能となる。本発明は、電気光学効果を用いた導波路スイ
ッチに、光照射により高起電力を発生する■−■族化合
物膜あるいは■−■族化合物膜、その他Si膜やe膜等
を組合せて、全光制御型の光スイッチを構成し、上述の
問題点を解決したものである。
A photoconductive film (for example, a CdS film) 14 is provided on the electrode 13 . Light 12 incident on the waveguide path 11 is absorbed by the photoconductive film 14, lowering its resistance. As a result, the voltage divided into the waveguide 11' increases (see the equivalent circuit in the figure), and the output light 12'' changes.However, in this case as well, the light to the photoconductive film 14 is 2″
Although the amount of light is controlled, it is necessary to supply the voltage from the power source VB of the voltage applied to the waveguides 11 and 11' through a power supply line, and it cannot be said to be an all-optical type. FIG. 3 shows the configuration of an optical switch that does not require a power supply line. In the figure, 21 is a waveguide 5 having an electro-optic effect, and 22 and 22' are incident light and output light, respectively. The voltage applied to the waveguide 21 is obtained by irradiating the pyroelectric effect element 23 with light 24, 24''.The polarization direction of the light in the waveguide 21 is controlled by this voltage, and the amount of change in light intensity is measured by the analyzer 25. This method eliminates the need for a power supply line, but the light to obtain voltage due to the pyroelectric effect must be intermittent light.In addition, short wavelength light (for pyroelectric material LiTaO3:Cr It is necessary to use a 4600A dye laser (4600A dye laser irradiation), which causes a large loss and is not practical when transmitting control light using an optical fiber.Furthermore, approximately 7mJ of optical energy is required to drive the switch. However, it would be impossible to transmit the light from a semiconductor laser or light emitting diode through a fiber due to the wavelength and optical power. A fully optically controlled optical switch is constructed by combining a ■-■ group compound film or a ■-■ group compound film that generates an electromotive force, and other Si films, e-films, etc., and solves the above-mentioned problems. be.

以下、本発明の実施例について、第4図を用いい説明す
る。ここでは方向性結合型の導波路スイッチを例にあげ
たが、電気光学効果を用いる素子にはすべて本発明を適
用することができる。第4図aにおいて、31は導波路
用の基板(たとえはLlNbO3,円1T等)、32,
32″は基板31上に設けられた導波路で、方向性結合
器型スイッチを構成している。今、電極34に電圧を印
加しないときには、導波路32に入射した光33は導波
路32を伝播中に導波路32″に移り、光33″となり
、出射する。一方、電極34に電圧を印加したときには
、光33は直進し、光33″として出射する。この電圧
の印加の有無を図bに示す光起電力層35により制御す
る。光起電力層35は、たとえはCdTe,GaAs,
Sl,Geを用いて構成する。それぞれの照度と光起電
力との関係を第5図に示す。導波路32,32″、電極
3牡光起電力層35等の配置関係を明確にするため、第
4図bにおけるA−A″断面を同図cに示す。
Hereinafter, embodiments of the present invention will be explained using FIG. 4. Although a directional coupling type waveguide switch is taken as an example here, the present invention can be applied to any element that uses an electro-optic effect. In FIG. 4a, 31 is a waveguide substrate (for example, LlNbO3, circle 1T, etc.), 32,
32'' is a waveguide provided on the substrate 31, which constitutes a directional coupler type switch.When no voltage is applied to the electrode 34, the light 33 incident on the waveguide 32 passes through the waveguide 32. During propagation, the light moves to the waveguide 32'', becomes light 33'', and is emitted.On the other hand, when a voltage is applied to the electrode 34, the light 33 travels straight and is emitted as light 33''. Whether or not this voltage is applied is controlled by the photovoltaic layer 35 shown in FIG. b. The photovoltaic layer 35 is made of, for example, CdTe, GaAs,
It is constructed using Sl and Ge. FIG. 5 shows the relationship between each illuminance and photovoltaic force. In order to clarify the arrangement relationship of the waveguides 32, 32'', the electrode 3, the photovoltaic layer 35, etc., a cross section taken along line AA'' in FIG. 4b is shown in FIG. 4c.

光起電力層35は電極34に接して設けられており、導
波路32,32″、基板31と光起電力層35との間に
−はガラス膜36が設けられている。このガラス膜36
は導波路32,32″のクラッド層の役割と光起電力層
35の基板ガラスの役割とを兼ねている。光起電力層3
5への光の供給法としては、直接空間伝播の光ビームを
用いるほか、光ファイバを利用する方法をよい方法であ
る。なお、図の37はファイバ38に接線されたロッド
レンズで、ファイバ38からの光は図の破線の如く平行
光線となり、光起電力層35に入射する。なお、ロッド
レンズ37の代りにファイババンドルを用いてもよい。
次に本発明の具体例について、数値をあげて説明する。
The photovoltaic layer 35 is provided in contact with the electrode 34, and a glass film 36 is provided between the waveguides 32, 32'', the substrate 31, and the photovoltaic layer 35.
serves as the cladding layer of the waveguides 32, 32'' and as the substrate glass of the photovoltaic layer 35.The photovoltaic layer 3
In addition to using a direct spatially propagating light beam, a good method for supplying light to the optical system 5 is to use an optical fiber. Note that 37 in the figure is a rod lens tangential to the fiber 38, and the light from the fiber 38 becomes a parallel beam of light as shown by the broken line in the figure, and enters the photovoltaic layer 35. Note that a fiber bundle may be used instead of the rod lens 37.
Next, specific examples of the present invention will be explained using numerical values.

ノ 第5図はCdTe,GaAs,Si,Geの斜め蒸
着膜の照度と光起電力の関係を示したものである。Cd
Teの場合、5×101′xで450V以上の電圧を示
している。(温度20℃)、5×101eXの光は、赤
色の場合1dの積当り120pWの光パワー・に相当す
る。CdTeの場合は850r1mより短かい波長の光
で起電力が発生する。一方、CdTeの光起電力は約1
0nm間隔の電極間の電圧に相当し、1?間隔であると
き45■程度となる。現在、最も一般的な材料であるL
iNbO3基板を・用いた方向性結合器型スイッチは4
〜10V程度の電圧て動作する故、寸法的には100〜
200pm巾のCdTe層があれば光でスイッチを駆動
できることになる。
FIG. 5 shows the relationship between illuminance and photovoltaic force of obliquely deposited films of CdTe, GaAs, Si, and Ge. Cd
In the case of Te, a voltage of 450V or more is shown at 5×101'x. (Temperature: 20° C.), 5×101 eX of light corresponds to an optical power of 120 pW per 1 d of red light. In the case of CdTe, an electromotive force is generated by light with a wavelength shorter than 850 r1m. On the other hand, the photovoltaic force of CdTe is about 1
Corresponds to the voltage between electrodes spaced 0 nm apart, 1? When the distance is about 45 cm. Currently, the most common material is L.
There are 4 directional coupler type switches using iNbO3 substrate.
Since it operates at a voltage of about 10V, the dimensions are 100~
A 200 pm wide CdTe layer would allow the switch to be driven by light.

さらに導波路材料にPLnを用いたとすれば、PレTの
電気光学定数はLjNbO3のそれの3皓以上の値であ
るため、同条件の光スイッチを製作すればLiNlO3
を用いたときの113咽度の電圧て動作が可能となる。
Furthermore, if PLn is used as the waveguide material, the electro-optical constant of PLET is more than 3 times that of LjNbO3, so if an optical switch under the same conditions is manufactured, it will be LiNlO3.
It is possible to operate with a voltage of 113 degrees when using.

この場合には、GaAs等の光起電力層も使用すること
がてきる。また、必要とされる光起電力層の面積か導波
路の電極間隔よりも大きい場合には、第6図に示すよう
な電極構造とすればよい。すなわち、電極34の間隔を
図面上下方向に広げ、その上に光起電力層(粗いハッチ
を付した部)35を設ける。電極34は、黒い部分が光
起電力層35と絶縁されており、細かいハッチを付した
部分て光起電力層35と接続されている。以上は方向性
結合器型の光スイッチについての実施例を述べて来たが
、本発明は前述したように電気光学効果を応用するすべ
ての場合に適用可能てあり、その他の例を第7図に示す
In this case, a photovoltaic layer such as GaAs may also be used. Furthermore, if the required area of the photovoltaic layer is larger than the electrode spacing of the waveguide, an electrode structure as shown in FIG. 6 may be used. That is, the interval between the electrodes 34 is widened in the vertical direction in the drawing, and a photovoltaic layer (roughly hatched portion) 35 is provided thereon. The black portion of the electrode 34 is insulated from the photovoltaic layer 35, and the finely hatched portion is connected to the photovoltaic layer 35. Although the embodiments of the directional coupler type optical switch have been described above, the present invention can be applied to all cases where the electro-optic effect is applied, as described above, and other examples are shown in FIG. Shown below.

第7図において、41は基板、42は導波路で、Y型の
分岐路を持ち、分岐点に回折格子45が設けられている
In FIG. 7, 41 is a substrate, 42 is a waveguide, which has a Y-shaped branch path, and a diffraction grating 45 is provided at the branch point.

電極44により電圧を印加すれば回折格子45のフラッ
グ条件が緩和され、光43は直進し、光43″となつて
出射する。電圧無印加の状態ではフラッグ格子45の反
射により光43は光43″として出射する。この構造光
スイッチに関しても、電極上に光起電力層を設けること
により、前述の例と同様に光制御スイッチを構成するこ
とができる。以上の如き本発明の構成の光制御型電気光
学素子は、電圧を印加するための電源および給電線が不
要て、光のみ動作が可能なものであり、それを駆動する
ための光パワーが少なくてすむ。
When voltage is applied through the electrode 44, the flag condition of the diffraction grating 45 is relaxed, and the light 43 travels straight and is emitted as light 43''.When no voltage is applied, the light 43 is reflected by the flag grating 45 and becomes the light 43''. ”. Regarding this structured optical switch as well, by providing a photovoltaic layer on the electrode, an optically controlled switch can be constructed in the same manner as in the above example. The optically controlled electro-optical element having the structure of the present invention as described above does not require a power supply or a power supply line for applying voltage, and can operate only with light, and requires less optical power to drive it. I'll try it.

そして、光起電力層に起電力を発生させるための光の波
長も光ファイバの損失の少ない領域の光が使え、ファイ
バが半導体レーザが発光ダイオードの光を伝送すること
により光スイッチの駆動が可能となる。さらに、電気を
全く用いないため引火性の強い雰囲気中ても安全てある
等の特長を有する。
Furthermore, the wavelength of light used to generate electromotive force in the photovoltaic layer can be in the region of low loss in optical fibers, and the fiber can drive optical switches by transmitting light from light emitting diodes and semiconductor lasers. becomes. Furthermore, since it does not use electricity at all, it has the advantage of being safe even in highly flammable atmospheres.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はそれぞれ従来の光制御型
光スイッチの代表例の構成を示す図である。 第4図は本発明の一実施例である光のみで制御可能な光
スイッチの構成を示し、同図aは導波路と電極の配置図
、同図bは図aの配置に光起電力層を設けた図、同図c
は図bのA−A″断面および光の供給用のレンズとファ
イバの配置関係を示す図てある。第5図は各種材料の斜
め蒸着膜の照度と光起電力の関係を示す図てある。第6
図は本発明において電極間隔を広げ光起電力を大きくす
る方法を示す図てある。第7図は本発明の他の実施例の
導波路スイッチの構成を示す図である。31・・・・・
・導波路用基板、32,32″・・・・・導波路、34
・・・・・・電極、35・・・・・・光起電力層、36
・・・・・・ガラス膜、37・・・・・・ロッドレンズ
、38・・・・・・ファイバ、41・・・・導波路用基
板、42・・・・・・導波路、44・・・・・・電極、
45・・・・・・回折格子。
FIG. 1, FIG. 2, and FIG. 3 are diagrams each showing the configuration of a typical example of a conventional optically controlled optical switch. FIG. 4 shows the configuration of an optical switch that can be controlled only by light, which is an embodiment of the present invention. FIG. Figure c
Figure 5 is a diagram showing the A-A'' section in Figure b and the arrangement of the lens and fiber for supplying light. Figure 5 is a diagram showing the relationship between illuminance and photovoltaic force of obliquely deposited films of various materials. .6th
The figure shows a method of widening the electrode spacing and increasing the photovoltaic force in the present invention. FIG. 7 is a diagram showing the configuration of a waveguide switch according to another embodiment of the present invention. 31...
・Waveguide substrate, 32, 32″...Waveguide, 34
... Electrode, 35 ... Photovoltaic layer, 36
... Glass film, 37 ... Rod lens, 38 ... Fiber, 41 ... Waveguide substrate, 42 ... Waveguide, 44 ... ·····electrode,
45...Diffraction grating.

Claims (1)

【特許請求の範囲】 1 電気光学効果を用いた光スイッチと、前記光スイッ
チと同一基板上に形成され、光により電圧を発生する光
起電力膜を備え、前記光起電力膜に発生する電圧を前記
光スイッチに印加することを特徴とする光制御型電気光
学素子。 2 光起電力膜に供給する光パワーを光ファイバで伝送
することとを特徴とする特許請求の範囲第1項に記載の
光制御型電気光学素子。
[Claims] 1. An optical switch that uses an electro-optic effect, and a photovoltaic film that is formed on the same substrate as the optical switch and that generates a voltage by light, the voltage that is generated in the photovoltaic film. is applied to the optical switch. 2. The optically controlled electro-optical element according to claim 1, wherein the optical power supplied to the photovoltaic film is transmitted through an optical fiber.
JP11130480A 1980-08-12 1980-08-12 Light-controlled electro-optical device Expired JPS6044647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11130480A JPS6044647B2 (en) 1980-08-12 1980-08-12 Light-controlled electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11130480A JPS6044647B2 (en) 1980-08-12 1980-08-12 Light-controlled electro-optical device

Publications (2)

Publication Number Publication Date
JPS5735829A JPS5735829A (en) 1982-02-26
JPS6044647B2 true JPS6044647B2 (en) 1985-10-04

Family

ID=14557822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11130480A Expired JPS6044647B2 (en) 1980-08-12 1980-08-12 Light-controlled electro-optical device

Country Status (1)

Country Link
JP (1) JPS6044647B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032030A (en) * 1983-08-02 1985-02-19 Matsushita Electric Ind Co Ltd Optical control type optical multiplexer/demultiplexer device
JPS6191779A (en) * 1984-10-11 1986-05-09 Agency Of Ind Science & Technol Optical information processor
JPS6370231A (en) * 1986-09-11 1988-03-30 Fujikura Ltd Switching method without short break for optical transmission line
JPH02929A (en) * 1988-06-08 1990-01-05 Hitachi Ltd Waveguide type optical element

Also Published As

Publication number Publication date
JPS5735829A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
KR100326582B1 (en) Optical device with waveguide with nonlinear optical characteristics
JPS6261123B2 (en)
US4951293A (en) Frequency doubled laser apparatus
JP3742477B2 (en) Light modulator
WO1995034148A1 (en) Wavelength division multiplexed optical modulator
JP3199402B2 (en) Mach-Zehnder optical waveguide device
JP3129028B2 (en) Short wavelength laser light source
JPH02179626A (en) Light wavelength converter
JPS6044647B2 (en) Light-controlled electro-optical device
JPH03150509A (en) Method for connecting between waveguide substrate and optical fiber, and reflection preventive film with ultraviolet-ray cutting-off function used for the method
CA2267018C (en) Optical wavelength converter with active waveguide
JP3799062B2 (en) Optical communication apparatus and system
JP2936792B2 (en) Waveguide type optical device
Mohan Fiber Optics and Laser Instrumentation:(for EEE, EI, Electronics, Computer Science & Engineering, Physics and Materials Science Students in Indian Universities)
JP6102432B2 (en) Light modulator
JP2003215518A (en) Optical modulator and method for modulating light
JP6290741B2 (en) Grating coupler forming method
Buller et al. All‐optical routing networks based on bistable interferometers
Toyonaka et al. Polarisation-independent semiconductor optical amplifier module using twin GRIN rod lenses
KR100566216B1 (en) Semiconductor optical device being monolith integrated
JPS6195322A (en) Device for generating phase modulating light for optical communication
JP2713537B2 (en) Optical physical quantity detection sensor
JPS60257325A (en) Photovoltage sensor
KR20210052160A (en) Single photon source
JPH06130337A (en) Analog modulator