JP6102432B2 - Light modulator - Google Patents

Light modulator Download PDF

Info

Publication number
JP6102432B2
JP6102432B2 JP2013075132A JP2013075132A JP6102432B2 JP 6102432 B2 JP6102432 B2 JP 6102432B2 JP 2013075132 A JP2013075132 A JP 2013075132A JP 2013075132 A JP2013075132 A JP 2013075132A JP 6102432 B2 JP6102432 B2 JP 6102432B2
Authority
JP
Japan
Prior art keywords
light
waveguide
mach
substrate
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013075132A
Other languages
Japanese (ja)
Other versions
JP2014199356A (en
Inventor
孝知 伊藤
孝知 伊藤
原 徳隆
徳隆 原
篠崎 稔
稔 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2013075132A priority Critical patent/JP6102432B2/en
Publication of JP2014199356A publication Critical patent/JP2014199356A/en
Application granted granted Critical
Publication of JP6102432B2 publication Critical patent/JP6102432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光変調器に関するものであり、特に、マッハツェンダー型光導波路からの放射光を受光素子で検出する構成を有する光変調器に関する。   The present invention relates to an optical modulator, and more particularly, to an optical modulator having a configuration in which radiated light from a Mach-Zehnder type optical waveguide is detected by a light receiving element.

光通信分野や光計測分野において、マッハツェンダー型光導波路を有する強度変調器など光変調器が多用されている。また、近年は、複数のマッハツェンダー型光導波路を同一基板に形成する偏波多重光変調器なども提案されている。   In the optical communication field and the optical measurement field, an optical modulator such as an intensity modulator having a Mach-Zehnder type optical waveguide is frequently used. In recent years, a polarization multiplexing optical modulator in which a plurality of Mach-Zehnder optical waveguides are formed on the same substrate has been proposed.

各マッハツェンダー型光導波路における光変調の状態を把握するために、マッハツェンダー型光導波路を構成する2つの分岐導波路が合波する合波部から放出される放射光を検出している。   In order to grasp the state of light modulation in each Mach-Zehnder type optical waveguide, radiation light emitted from a multiplexing part where two branching waveguides constituting the Mach-Zehnder type optical waveguide are combined is detected.

図1は、二つのマッハツェンダー型光導波路(XchとYchの信号光を出射する)を備えた光変調器である。各マッハツェンダー型光導波路には、信号光用導波路の両側に放射光用導波路を設け、その内の一本の放射光用導波路上に受光素子(PD)を配置し、エバネッセント波を受光する構成としている。   FIG. 1 shows an optical modulator provided with two Mach-Zehnder type optical waveguides (which emit Xch and Ych signal light). Each Mach-Zehnder type optical waveguide is provided with a radiated light waveguide on both sides of the signal light waveguide, a light receiving element (PD) is disposed on one of the radiated light waveguides, and an evanescent wave is transmitted. It is configured to receive light.

光変調器を構成するニオブ酸リチウム(LN)基板の上に受光素子(PD)を実装する場合は、配置スペースが必要となり、基板が大型化する。そのため、複数のマッハツェンダー型光導波路を形成している場合には、例えば、図1に示すように、スペースが無いためにXchとYchに係る各2つの放射光のうち混信を避けるため、外側に放出される導波光のみをモニタするように受光素子が配置されている。   When a light receiving element (PD) is mounted on a lithium niobate (LN) substrate constituting an optical modulator, an arrangement space is required, and the substrate becomes large. Therefore, in the case where a plurality of Mach-Zehnder type optical waveguides are formed, for example, as shown in FIG. The light receiving element is arranged so as to monitor only the guided light emitted to the light source.

特許文献1に示すように、通常、モニタされる放射光の光強度は、off光のみの場合には、信号光に対して逆相で変化し、二つの放射光の電界振幅は互いに逆の状態となる。しかしながら、放射光に信号光における変換損となる一部の光(信号光(on光)と同相状態)が混在すると、二つの放射光の光強度は互いに逆方向にずれて、位相差を生じることになる。このため、上記構成のように片方の放射光のみを検出する場合には、信号光との位相差が発生することになる。   As shown in Patent Document 1, normally, the intensity of the radiated light to be monitored changes in the opposite phase to the signal light when only the off light is used, and the electric field amplitudes of the two radiated lights are opposite to each other. It becomes a state. However, if part of the light that causes conversion loss in the signal light (the same state as the signal light (on light)) is mixed with the emitted light, the light intensities of the two emitted lights are shifted in opposite directions to produce a phase difference. It will be. For this reason, when only one radiated light is detected as in the above configuration, a phase difference from the signal light occurs.

また、基板上に配置した受光素子では、放射光を受光するには放射光と受光素子との結合効率が低く感度が低いという問題があった。   Further, the light receiving element disposed on the substrate has a problem that the coupling efficiency between the emitted light and the light receiving element is low and the sensitivity is low in order to receive the emitted light.

特許第4977789号公報Japanese Patent No. 4777789

本発明が解決しようとする課題は、上述したような問題を解決し、光変調器の信号光とモニタ光との位相差が補償可能であり、受光素子の受光感度の向上が可能な光変調器を提供することである。   The problem to be solved by the present invention is to solve the problems described above, compensate for the phase difference between the signal light of the optical modulator and the monitor light, and improve the light receiving sensitivity of the light receiving element. Is to provide a vessel.

上記課題を解決するため、本発明の光変調器は、以下のような技術的特徴を有する。
(1) 電気光学効果を有する基板と、該基板に形成され、並列に配置された2つのマッハツェンダー型光導波路を含む光導波路と、該光導波路を伝搬する光波を変調するための変調電極と、該マッハツェンダー型光導波路毎に、合波部から信号光を導波する信号光用導波路と、該信号光用導波路の両側に放射光を導波するための放射光用導波路を有する光変調器において、該基板の外には2つの受光素子を備え、該受光素子は、該マッハツェンダー型光導波路毎に、マッハツェンダー型光導波路から出射する2つの放射光を1つの受光素子で受光するよう構成され、前記2つのマッハツェンダー型光導波路から延びる該信号光用導波路と該放射光用導波路は、全て、該基板の同じ端部まで到達しており、該基板の該端部に配置される集光手段を備え、該集光手段は、前記2つのマッハツェンダー型光導波路から出射された2つの信号光を所定位置に導くと共に、前記マッハツェンダー型光導波路毎に、マッハツェンダー型光導波路から出射する2つの放射光を前記1つの受光素子で受光するよう構成され、該受光素子毎に、受光素子が検出する2つの放射光の光強度を調整するため、該集光手段と該受光素子の位置が調整されていることを特徴とする。
In order to solve the above problems, the optical modulator of the present invention has the following technical features.
(1) A substrate having an electro-optic effect, an optical waveguide including two Mach-Zehnder optical waveguides formed on the substrate and arranged in parallel, and a modulation electrode for modulating a light wave propagating through the optical waveguide; A signal light waveguide for guiding the signal light from the multiplexing unit for each Mach-Zehnder type optical waveguide, and a radiation light waveguide for guiding the emitted light to both sides of the signal light waveguide ; The light modulator includes two light receiving elements outside the substrate , and the light receiving element receives two radiated lights emitted from the Mach-Zehnder type optical waveguides for each Mach-Zehnder type optical waveguide. The signal light waveguide and the radiated light waveguide, which are configured to receive light by an element and extend from the two Mach-Zehnder type optical waveguides, all reach the same end of the substrate, Condensing hands arranged at the end The light collecting means guides the two signal lights emitted from the two Mach-Zehnder type optical waveguides to a predetermined position and emits the light from the Mach-Zehnder type optical waveguides for each of the Mach-Zehnder type optical waveguides. The two light beams are configured to be received by the one light receiving element, and the position of the light collecting means and the light receiving element is adjusted for adjusting the light intensity of the two radiation lights detected by the light receiving element for each light receiving element. Is adjusted .

(2) 上記(1)に記載の光変調器において、該基板の該端部において、該信号光用導波路と該放射光用導波路は、全て、基板端面の近傍で平行になるよう構成されていることを特徴とする(2) In the optical modulator described in (1) above , the signal light waveguide and the radiated light waveguide are all parallel in the vicinity of the substrate end face at the end of the substrate. It is characterized by being .

(3) 上記(1)又は(2)に記載の光変調器において、前記2つの受光素子は、該信号光の伝搬方向を挟むように配置されていることを特徴とする。 (3) In the optical modulator described in the above (1) or (2), the two light receiving elements are arranged so as to sandwich the propagation direction of the signal light.

(4) 上記(1)乃至(3)のいずれかに記載の光変調器において、該マッハツェンダー型光導波路毎に、該集光手段から出射される2つの放射光の進行方向が、互いに略平行となっていることを特徴とする。 (4) In the optical modulator according to any one of (1) to (3), the traveling directions of the two radiated light beams emitted from the light collecting unit are substantially the same for each Mach-Zehnder type optical waveguide. It is characterized by being parallel.

(5) 上記(1)乃至(4)のいずれかに記載の光変調器において、該集光手段は、4つの集光レンズを連続に配置し一体化させた一体型レンズであり、信号光が通過する該集光レンズには、1つの放射光も通過するよう構成されていることを特徴とする。 (5) The optical modulator according to any one of the above (1) to (4), the condenser means is four condenser lens disposed in a continuous integrated so the integral lens, a signal light The condenser lens through which the light passes is configured to pass one radiated light .

本発明により、電気光学効果を有する基板と、該基板に形成され、並列に配置された2つのマッハツェンダー型光導波路を含む光導波路と、該光導波路を伝搬する光波を変調するための変調電極と、該マッハツェンダー型光導波路毎に、合波部から信号光を導波する信号光用導波路と、該信号光用導波路の両側に放射光を導波するための放射光用導波路を有する光変調器において、該基板の外には2つの受光素子を備え、該受光素子は、該マッハツェンダー型光導波路毎に、マッハツェンダー型光導波路から出射する2つの放射光を1つの受光素子で受光するよう構成され、前記2つのマッハツェンダー型光導波路から延びる該信号光用導波路と該放射光用導波路は、全て、該基板の同じ端部まで到達しており、該基板の該端部に配置される集光手段を備え、該集光手段は、前記2つのマッハツェンダー型光導波路から出射された2つの信号光を所定位置に導くと共に、前記マッハツェンダー型光導波路毎に、マッハツェンダー型光導波路から出射する2つの放射光を前記1つの受光素子で受光するよう構成され、該受光素子毎に、受光素子が検出する2つの放射光の光強度を調整するため、該集光手段と該受光素子の位置が調整されているため、2つの放射光が同時に受光素子に入射することで、受光素子で検出する放射光と信号光とが位相差の無い逆相状態となるため、より正確なモニタを行うことができる。しかも、2つの放射光は、レンズなどの集光手段により一つの受光素子に確実に入射されるため、受光素子の受光感度を向上させることも可能となる。 According to the present invention, a substrate having an electro-optical effect, an optical waveguide including two Mach-Zehnder optical waveguides formed on the substrate and arranged in parallel, and a modulation electrode for modulating a light wave propagating through the optical waveguide And, for each Mach-Zehnder type optical waveguide, a signal light waveguide for guiding the signal light from the multiplexing portion , and a radiation light waveguide for guiding the radiation light to both sides of the signal light waveguide The light modulator includes two light receiving elements outside the substrate , and the light receiving element outputs two radiated lights emitted from the Mach-Zehnder type optical waveguide to each Mach-Zehnder type optical waveguide. The signal light waveguide and the radiated light waveguide, which are configured to receive light by a light receiving element and extend from the two Mach-Zehnder type optical waveguides, all reach the same end of the substrate, and the substrate Placed at the end of Condensing means, the condensing means guides the two signal lights emitted from the two Mach-Zehnder type optical waveguides to a predetermined position, and for each Mach-Zehnder type optical waveguide, from the Mach-Zehnder type optical waveguide The two light beams to be emitted are received by the one light receiving element, and for each light receiving element, the light collecting means and the light receiving element are used to adjust the light intensity of the two radiation lights detected by the light receiving element. Since the two radiated lights are incident on the light receiving element at the same time, the radiated light detected by the light receiving element and the signal light are in a reverse phase state having no phase difference, so that more accurate monitoring is possible. It can be performed. Moreover, since the two radiated lights are reliably incident on one light receiving element by a condensing means such as a lens, the light receiving sensitivity of the light receiving element can be improved.

従来の光変調器を説明する図である。It is a figure explaining the conventional optical modulator. 本発明の光変調器の実施例を説明する図である。It is a figure explaining the Example of the optical modulator of this invention. 本発明の光変調器の他の実施例を説明する図である。It is a figure explaining the other Example of the optical modulator of this invention.

以下、本発明好適例を用いて詳細に説明する。
図2は、本発明の光変調器の実施例を示す。
本発明は、電気光学効果を有する基板と、該基板に形成されたマッハツェンダー型光導波路を含む光導波路と、該光導波路を伝搬する光波を変調するための変調電極と、該マッハツェンダー型光導波路の合波部から信号光を導波する信号光用導波路の両側に放射光を導波するための放射光用導波路を有する光変調器において、該放射光用導波路から出射された放射光を、該放射光用導波路の出射部に配置される集光手段を用いて1つの受光素子に導くことを特徴とする。
Hereinafter, it demonstrates in detail using the suitable example of this invention.
FIG. 2 shows an embodiment of the optical modulator of the present invention.
The present invention relates to a substrate having an electro-optic effect, an optical waveguide including a Mach-Zehnder type optical waveguide formed on the substrate, a modulation electrode for modulating a light wave propagating through the optical waveguide, and the Mach-Zehnder type optical waveguide In an optical modulator having a radiated light waveguide for guiding radiated light on both sides of a signal light waveguide that guides signal light from a multiplexing portion of the waveguide, the light is emitted from the radiated light waveguide. radiation, characterized in that leads to one of the light receiving element by using a Ru condensing means disposed on the exit portion of the emitted light waveguide.

電気光学効果を有する基板としては、例えばニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)等の単結晶材料やこれらの固溶体結晶材料を用いることができる。また、半導体やポリマーも電気光学効果を有する基板として使用することが可能である。   As the substrate having an electro-optic effect, for example, a single crystal material such as lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), or a solid solution crystal material thereof can be used. Semiconductors and polymers can also be used as substrates having an electro-optic effect.

光導波路は、例えば、チタンなどの高屈折率材料を基板に注入又は熱拡散することで形成することが可能である。また、基板に凹凸を形成し、リッジ型又はリブ型の光導波路を形成することも可能である。図2では図示されていないが、光変調を行うため、光導波路に近接して変調電極(信号電極と接地電極)が形成される。さらに、Zカットの基板を用いる場合のように、光導波路の直上に電極を形成する場合などは、光導波路を伝播する光波の電極層への吸収を抑制するため、酸化シリコン(SiO)などからなるバッファ層を、光導波路上又は基板上に形成する。 The optical waveguide can be formed, for example, by injecting or thermally diffusing a high refractive index material such as titanium into the substrate. It is also possible to form a ridge type or rib type optical waveguide by forming irregularities on the substrate. Although not shown in FIG. 2, in order to perform optical modulation, a modulation electrode (signal electrode and ground electrode) is formed in the vicinity of the optical waveguide. Further, when an electrode is formed immediately above the optical waveguide as in the case of using a Z-cut substrate, silicon oxide (SiO 2 ) or the like is used to suppress absorption of the light wave propagating through the optical waveguide into the electrode layer. A buffer layer is formed on the optical waveguide or on the substrate.

図2に示すように、本発明の光変調器では、マッハツェンダー型光導波路の合波部から延びる放射光用導波路はLN基板の端部まで到達している。基板端部には、レンズなどの集光手段が配置され、これらは、各放射光用導波路に対応して複数配置されている。   As shown in FIG. 2, in the optical modulator of the present invention, the radiated light waveguide extending from the multiplexing portion of the Mach-Zehnder type optical waveguide reaches the end of the LN substrate. Condensing means such as a lens is disposed at the end of the substrate, and a plurality of these are disposed corresponding to each of the radiation waveguides.

集光手段(レンズ)は、放射光用導波路から出射し当該集光手段に入る放射光の入射位置や入射角度を調整することにより、受光素子(PD)に適切に放射光を導くことが可能である。当然、集光手段は、信号光(Xch・Ych)のビームが所定の位置にくるように、調整する役目も担っている。   The condensing means (lens) can appropriately guide the radiated light to the light receiving element (PD) by adjusting the incident position and the incident angle of the radiated light emitted from the radiated light waveguide and entering the condensing means. Is possible. Naturally, the condensing means also plays a role of adjusting so that the beam of signal light (Xch / Ych) comes to a predetermined position.

集光手段への入射位置又は入射角度を調整する方法としては、図3に示すように、放射光用導波路の曲がりを調整したり、あるいは、放射光用導波路の出射部における角度を調整することも可能である。特に、基板の同じ端面から複数の信号光や放射光が出射する場合には、全ての導波路と基板端面とがなす角度を所定に保つため、全ての導波路を基板端面の近傍で平行にすることで、製造加工を容易にすることができる。   As shown in FIG. 3, the method of adjusting the incident position or the incident angle to the condensing means is to adjust the bending of the radiated light waveguide, or the angle at the emission part of the radiated light waveguide. It is also possible to do. In particular, when a plurality of signal light and radiated light are emitted from the same end surface of the substrate, all the waveguides are parallel to each other in the vicinity of the substrate end surface in order to maintain a predetermined angle between all the waveguides and the substrate end surface. By doing so, the manufacturing process can be facilitated.

特に、集光手段から出射される放射光の進行方向が、図2に示すように、互いに略平行となっていることが好ましい。これは、1つの受光素子(PD)に入射する2つの放射光の光強度を、集光手段又は受光素子の位置を調整することで容易に調整可能とするためである。信号光に対する逆相状態を得るには検出する2つの放射光の光強度を同じにする必要がある。 In particular, the traveling direction of the radiation emitted from the focusing means, as shown in FIG. 2, it is preferable that are substantially parallel to each other. This is to make it possible to easily adjust the light intensities of the two radiated lights incident on one light receiving element (PD) by adjusting the position of the condensing means or the light receiving element. In order to obtain a reverse phase state with respect to the signal light, it is necessary to make the light intensities of the two radiation lights to be detected the same.

集光手段は、図2に示すように、複数のレンズを一体化させた一体型レンズを使用することが好ましい。例えば、レンズは、4つのレンズを四連一体型にすることで、個々のレンズを調整する手間を省き、レンズと受光素子の位置・角度の調整時間が早く簡便に行うことが可能となる。   As shown in FIG. 2, the condensing means preferably uses an integrated lens in which a plurality of lenses are integrated. For example, by integrating four lenses into a four-unit type, it is possible to save time and effort for adjusting individual lenses, and to quickly and easily adjust the positions and angles of the lenses and light receiving elements.

本発明の光変調器は、複数のマッハツェンダー型光導波路を有しているものに、好適に適用することが可能である。図2では2つのマッハツェンダー型光導波路を並列に配置した例を示しているが、2つ以上の場合でも、放射光を受光する対象となるマッハツェンダー型光導波路に対応して一つずつの受光素子を設け、集光手段は、複数のレンズを一体化させた一つの一体型レンズで構成することで、効率良く受光素子に必要な放射光を導入することができる。 The optical modulator of the present invention can be suitably applied to one having a plurality of Mach-Zehnder type optical waveguides. FIG. 2 shows an example in which two Mach-Zehnder type optical waveguides are arranged in parallel, but even in the case of two or more, one by one corresponding to the Mach-Zehnder type optical waveguides that receive radiation light. the light receiving element is provided, focusing means, by constituting a plurality of lenses integral allowed a single integral lens, can be introduced efficiently radiated light required for the light receiving element.

受光素子(PD)の実装位置は、LN基板チップの外側(出力側)に配置し、集光手段を用いて2つの放射光を同時に受光させることで、受光素子の受光感度を向上させることが可能となる。これにより、受光素子には、汎用品を使用しコストを抑えることも可能となる。 The mounting position of the light receiving element (PD) is located outside (output side) of the LN substrate chip, by simultaneously receiving the two emitted light using a focusing means, it is possible to improve the light receiving sensitivity of the light-receiving element It becomes possible. As a result, a general-purpose product can be used for the light receiving element, thereby reducing the cost.

以上のように、本発明に係る光変調器によれば、光変調器の信号光とモニタ光との位相差が補償可能であり、受光素子の受光感度の向上が可能な光変調器を提供することが可能となる。   As described above, according to the optical modulator of the present invention, it is possible to compensate for the phase difference between the signal light of the optical modulator and the monitor light, and provide an optical modulator capable of improving the light receiving sensitivity of the light receiving element. It becomes possible to do.

Claims (5)

電気光学効果を有する基板と、
該基板に形成され、並列に配置された2つのマッハツェンダー型光導波路を含む光導波路と、
該光導波路を伝搬する光波を変調するための変調電極と、
該マッハツェンダー型光導波路毎に、合波部から信号光を導波する信号光用導波路と、該信号光用導波路の両側に放射光を導波するための放射光用導波路を有する光変調器において、
該基板の外には2つの受光素子を備え、該受光素子は、該マッハツェンダー型光導波路毎に、マッハツェンダー型光導波路から出射する2つの放射光を1つの受光素子で受光するよう構成され、
前記2つのマッハツェンダー型光導波路から延びる該信号光用導波路と該放射光用導波路は、全て、該基板の同じ端部まで到達しており、
該基板の該端部に配置される集光手段を備え、該集光手段は、前記2つのマッハツェンダー型光導波路から出射された2つの信号光を所定位置に導くと共に、前記マッハツェンダー型光導波路毎に、マッハツェンダー型光導波路から出射する2つの放射光を前記1つの受光素子で受光するよう構成され、
該受光素子毎に、受光素子が検出する2つの放射光の光強度を調整するため、該集光手段と該受光素子の位置が調整されていることを特徴とする光変調器。
A substrate having an electro-optic effect;
An optical waveguide including two Mach-Zehnder optical waveguides formed on the substrate and arranged in parallel ;
A modulation electrode for modulating a light wave propagating through the optical waveguide;
Each said Mach-Zehnder type optical waveguide, a signal light waveguide for guiding a signal light from the multiplexing unit, and a synchrotron radiation waveguide for guiding the emitted light to both sides of the waveguide the signal light Having an optical modulator,
Two light receiving elements are provided outside the substrate, and the light receiving elements are configured to receive, for each Mach-Zehnder type optical waveguide, two radiated lights emitted from the Mach-Zehnder type optical waveguide by one light receiving element. ,
The signal light waveguide and the radiation light waveguide extending from the two Mach-Zehnder type optical waveguides all reach the same end of the substrate,
Condensing means arranged at the end of the substrate, the condensing means guides the two signal lights emitted from the two Mach-Zehnder type optical waveguides to a predetermined position, and Each of the waveguides is configured to receive two radiated lights emitted from the Mach-Zehnder type optical waveguide by the one light receiving element,
An optical modulator characterized in that, for each light receiving element, the positions of the light condensing means and the light receiving element are adjusted in order to adjust the light intensities of the two radiated lights detected by the light receiving element .
請求項1に記載の光変調器において、  The optical modulator according to claim 1.
該基板の該端部において、該信号光用導波路と該放射光用導波路は、全て、基板端面の近傍で平行になるよう構成されていることを特徴とする光変調器。  An optical modulator characterized in that, at the end portion of the substrate, the signal light waveguide and the radiated light waveguide are all parallel in the vicinity of the substrate end surface.
請求項1又は2に記載の光変調器において、  The optical modulator according to claim 1 or 2,
前記2つの受光素子は、該信号光の伝搬方向を挟むように配置されていることを特徴とする光変調器。  The optical modulator, wherein the two light receiving elements are arranged so as to sandwich the propagation direction of the signal light.
請求項1乃至3のいずれかに記載の光変調器において、
該マッハツェンダー型光導波路毎に、該集光手段から出射される2つの放射光の進行方向が、互いに略平行となっていることを特徴とする光変調器。
The optical modulator according to any one of claims 1 to 3,
An optical modulator characterized in that, for each of the Mach-Zehnder type optical waveguides, the traveling directions of the two radiated lights emitted from the light collecting means are substantially parallel to each other.
請求項1乃至4のいずれかに記載の光変調器において、
該集光手段は、4つの集光レンズを連続に配置し一体化させた一体型レンズであり、信号光が通過する該集光レンズには、1つの放射光も通過するよう構成されていることを特徴とする光変調器。
The optical modulator according to any one of claims 1 to 4,
The condensing means is an integrated lens in which four condensing lenses are continuously arranged and integrated, and is configured such that one radiated light also passes through the condensing lens through which signal light passes . An optical modulator characterized by that.
JP2013075132A 2013-03-29 2013-03-29 Light modulator Expired - Fee Related JP6102432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075132A JP6102432B2 (en) 2013-03-29 2013-03-29 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075132A JP6102432B2 (en) 2013-03-29 2013-03-29 Light modulator

Publications (2)

Publication Number Publication Date
JP2014199356A JP2014199356A (en) 2014-10-23
JP6102432B2 true JP6102432B2 (en) 2017-03-29

Family

ID=52356297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075132A Expired - Fee Related JP6102432B2 (en) 2013-03-29 2013-03-29 Light modulator

Country Status (1)

Country Link
JP (1) JP6102432B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361176B2 (en) * 2014-03-07 2018-07-25 富士通オプティカルコンポーネンツ株式会社 Optical transmitter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60412A (en) * 1983-06-17 1985-01-05 Fujitsu Ltd Two input light photodetecting device
US7783138B2 (en) * 2007-11-16 2010-08-24 Jds Uniphase Corporation Free-space integrated photodetector with reduced phase tracking error
JP5120341B2 (en) * 2009-06-15 2013-01-16 富士通オプティカルコンポーネンツ株式会社 Optical device
JP4977789B1 (en) * 2011-02-23 2012-07-18 住友大阪セメント株式会社 Light modulator

Also Published As

Publication number Publication date
JP2014199356A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP4911529B2 (en) Light modulator
US8909006B2 (en) Optical waveguide device
US9081214B2 (en) Optical control element
JP5363679B2 (en) Light modulation element
JP5782974B2 (en) Light modulator and light receiving amount adjustment method of light receiving element of light modulator
WO2015152061A1 (en) Optical modulator
JP5369883B2 (en) Light control element
US8437068B2 (en) Optical modulator
US20160091772A1 (en) Optical modulator and image display apparauts
CN105527732A (en) Electro-optic phase modulator
JP2014194478A (en) Optical device and transmitter
JP6102432B2 (en) Light modulator
CN107229140B (en) Optical modulator
JP3932276B2 (en) Multi-channel optical modulator with output optical monitor
JP2003215518A (en) Optical modulator and method for modulating light
JP6424855B2 (en) Light modulator
JP6290741B2 (en) Grating coupler forming method
JP4987335B2 (en) Optical device
JP2015102789A (en) Optical waveguide device
JP5463832B2 (en) Light modulator
JPS6044647B2 (en) Light-controlled electro-optical device
JP3866230B2 (en) Optical monitoring system
JP2022133031A (en) Hybrid array waveguide type light deflector
JP2013195687A (en) Optical switching element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160506

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees