JP2015138145A - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
JP2015138145A
JP2015138145A JP2014009554A JP2014009554A JP2015138145A JP 2015138145 A JP2015138145 A JP 2015138145A JP 2014009554 A JP2014009554 A JP 2014009554A JP 2014009554 A JP2014009554 A JP 2014009554A JP 2015138145 A JP2015138145 A JP 2015138145A
Authority
JP
Japan
Prior art keywords
light
receiving element
light receiving
substrate
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014009554A
Other languages
Japanese (ja)
Inventor
原 徳隆
Noritaka Hara
徳隆 原
徳一 宮崎
Tokuichi Miyazaki
徳一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014009554A priority Critical patent/JP2015138145A/en
Publication of JP2015138145A publication Critical patent/JP2015138145A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical modulator that enhances light-receiving sensitivity of a light-receiving element and suppresses reduction in a frequency range of the light-receiving element even when the light-receiving element is disposed on a substrate constituting the optical modulator.SOLUTION: The optical modulator includes a substrate 1, an optical waveguide 27 including a Mach-Zehnder optical waveguide formed on the substrate, and a modulation electrode (not shown in the figure) for modulating light waves propagating the optical waveguide. A light-receiving element 5 is disposed on the substrate and configured to receive either signal light propagating an output waveguide that constitutes the Mach-Zehnder optical waveguide or radiation light radiated from a multiplexing part of the Mach-Zehnder optical waveguide. In the light waves incident to a light-receiving part 50 in the light-receiving element, both of light waves L1 derived from light waves incident to the light-receiving element and directly incident to the light-receiving part and light waves L2 incident after at least one reflection or multiple times of reflection in the light-receiving element are present.

Description

本発明は、光変調器に関するものであり、特に、マッハツェンダー型光導波路を有する光変調器において、出力導波路を伝播する信号光や合波部から放出される放射光を受光素子で検出する構成を有する光変調器に関する。   The present invention relates to an optical modulator. In particular, in an optical modulator having a Mach-Zehnder type optical waveguide, signal light propagating through an output waveguide and radiated light emitted from a multiplexing unit are detected by a light receiving element. The present invention relates to an optical modulator having a configuration.

光通信分野や光計測分野において、マッハツェンダー型光導波路を有する強度変調器など各種の光変調器が用いられている。マッハツェンダー型光導波路から出力される光の強度変化は、変調電極に印加される電圧に対して正弦関数的な特性を示す。光変調器の用途に応じて、最適な出力光の強度を得るため、変調電極に印加される変調信号は、適切な動作バイアス点に設定することが必要となる。   Various optical modulators such as an intensity modulator having a Mach-Zehnder type optical waveguide are used in the optical communication field and the optical measurement field. The intensity change of light output from the Mach-Zehnder type optical waveguide exhibits a sinusoidal characteristic with respect to the voltage applied to the modulation electrode. In order to obtain an optimum output light intensity according to the use of the optical modulator, the modulation signal applied to the modulation electrode needs to be set to an appropriate operating bias point.

このため、従来では、光変調器から出力される信号光の一部、あるいはマッハツェンダー型光導波路の合波部から放出される放射光を、モニタ光として、光検出器のような受光素子で検出し、光変調器の出力光の強度の状態をモニタすることが行われている。そして、受光素子の検出値(モニタ出力)に基づき、変調電極に印加される変調信号の動作バイアス点を調整(バイアス制御)している。   For this reason, conventionally, a part of the signal light output from the optical modulator or the radiated light emitted from the multiplexing part of the Mach-Zehnder optical waveguide is used as a monitor light by a light receiving element such as a photodetector. Detection and monitoring of the intensity state of the output light of the light modulator are performed. Based on the detection value (monitor output) of the light receiving element, the operation bias point of the modulation signal applied to the modulation electrode is adjusted (bias control).

特許文献1には、図1に示すような、基板1の外部に配置された、受光素子5で放射光をモニタする光変調器を開示している。具体的には、電気光学効果を有する基板1には、マッハツェンダー型光導波路(21〜24)を含む光導波路2が形成されている。マッハツェンダー型光導波路を構成する2つの分岐導波路に沿って、光導波路を伝搬する光波を変調するための変調電極が設けられているが、図面では省略されている。出力導波路24には、光ファイバ4が接続され、出射光を外部に導出するよう構成されている。   Patent Document 1 discloses an optical modulator as shown in FIG. 1 that monitors emitted light with a light receiving element 5 disposed outside the substrate 1. Specifically, an optical waveguide 2 including Mach-Zehnder optical waveguides (21 to 24) is formed on a substrate 1 having an electro-optic effect. A modulation electrode for modulating a light wave propagating through the optical waveguide is provided along the two branch waveguides constituting the Mach-Zehnder optical waveguide, but is omitted in the drawing. An optical fiber 4 is connected to the output waveguide 24 and is configured to guide outgoing light to the outside.

マッハツェンダー型光導波路の合波部23から放出される2つの放射光(R1,R2)は、基板1の端部に光ファイバ4を接続するための補強用キャピラリ3の内部を通過し、受光素子5に導入される。2つの放射光のいずれか一方を受光しても良いし、図1のように、両方の放射光を一つの受光素子で受光するよう構成しても良い。   The two radiated lights (R1, R2) emitted from the multiplexing unit 23 of the Mach-Zehnder type optical waveguide pass through the inside of the reinforcing capillary 3 for connecting the optical fiber 4 to the end of the substrate 1, and receive the light. Introduced into the element 5. Either one of the two radiated lights may be received, or both radiated lights may be received by one light receiving element as shown in FIG.

特許文献2には、図2及び3に示すように、光変調器を構成する基板1上に受光素子5を配置する構成が開示されている。具体的には、基板1には、マッハツェンダー型光導波路を含む光導波路2や、該光導波路を伝搬する光波を変調するための変調電極(不図示)が形成されている。受光素子5は、マッハツェンダー型光導波路を構成する出力導波路24を跨ぐように配置されている。   Patent Document 2 discloses a configuration in which a light receiving element 5 is arranged on a substrate 1 constituting an optical modulator, as shown in FIGS. Specifically, an optical waveguide 2 including a Mach-Zehnder optical waveguide and a modulation electrode (not shown) for modulating a light wave propagating through the optical waveguide are formed on the substrate 1. The light receiving element 5 is disposed so as to straddle the output waveguide 24 constituting the Mach-Zehnder type optical waveguide.

図2では、受光素子5は、マッハツェンダー型光導波路の合波部から放出される2つの放射光を共に受光するよう構成している。放射光は基板1の内部を伝搬するが、放射光の伝搬する位置を精確にコントロールするために、放射光を導波する放射光用導波路(25,26)を設けることが可能である。受光素子5は、2つの放射光用導波路(25,26)にかかるように配置されている。   In FIG. 2, the light receiving element 5 is configured to receive both two radiated lights emitted from the multiplexing portion of the Mach-Zehnder type optical waveguide. Although the emitted light propagates through the substrate 1, in order to accurately control the position where the emitted light propagates, it is possible to provide a emitted light waveguide (25, 26) for guiding the emitted light. The light receiving element 5 is disposed so as to cover the two radiated light waveguides (25, 26).

図3は、図2の一点鎖線X−X’における断面図である。放射光用導波路(25,26)に接触又は近接して高屈折率膜(40、41)を配置することにより、放射光の一部(R1,R2)は受光素子5の方に吸い上げられ、受光部50に入射する。   3 is a cross-sectional view taken along one-dot chain line X-X ′ in FIG. 2. By disposing the high refractive index films (40, 41) in contact with or in proximity to the radiation waveguide (25, 26), part of the radiation (R1, R2) is sucked up toward the light receiving element 5. , Enters the light receiving unit 50.

受光素子5は、放射光を受光するだけでなく、出力導波路24を伝搬する光波を受光するよう構成することも可能である。なお、特許文献1又は2に示されているように、2つの放射光を同時に受光し、両者の受光強度を調整することで、放射光を用いたモニタ光と出力導波路から出射される出力光との間の位相差を補償し、良好なモニタ特性を得ることができる。   The light receiving element 5 can be configured not only to receive radiated light but also to receive a light wave propagating through the output waveguide 24. In addition, as shown in Patent Document 1 or 2, the monitor light using the radiated light and the output emitted from the output waveguide are received by simultaneously receiving two radiated lights and adjusting the received light intensity of both. It is possible to compensate for the phase difference from light and to obtain good monitor characteristics.

特許文献1のように、基板1の外部に受光素子5を配置する場合には、同一基板上に複数のマッハツェンダー型光導波路を集積する場合や、基板の端面から離れた位置にマッハツェンダー型光導波路が形成され、当該マッハツェンダー型光導波路とキャピラリーと間に他の光導波路が存在する場合などでは、着目する光波のみを受光素子に導くことは極めて困難となる。   When the light receiving element 5 is arranged outside the substrate 1 as in Patent Document 1, a plurality of Mach-Zehnder type optical waveguides are integrated on the same substrate, or a Mach-Zehnder type at a position away from the end face of the substrate. When an optical waveguide is formed and another optical waveguide exists between the Mach-Zehnder type optical waveguide and the capillary, it is extremely difficult to guide only the focused light wave to the light receiving element.

これに対し、特許文献2のように、基板1の表面に受光素子を配置する構成は、着目する光波を精確に受光できる利点がある。しかしながら、光導波路を伝搬する光波の一部しか受光できないため、受光感度が低いという問題が生じる。しかも、受光部の面積を拡大して受光感度を向上させる場合には、受光部の面積の拡大に逆比例して、受光素子の周波数帯域が低下するという問題も発生する。   On the other hand, the configuration in which the light receiving element is arranged on the surface of the substrate 1 as in Patent Document 2 has an advantage that the focused light wave can be received accurately. However, since only a part of the light wave propagating through the optical waveguide can be received, there arises a problem that the light receiving sensitivity is low. In addition, when the area of the light receiving portion is increased to improve the light receiving sensitivity, there is a problem that the frequency band of the light receiving element is reduced in inverse proportion to the increase in the area of the light receiving portion.

特許第4977789号公報Japanese Patent No. 4777789 特開2013−80009号公報JP2013-80009A

本発明が解決しようとする課題は、上述したような問題を解決し、光変調器を構成する基板上に受光素子を配置した場合でも、受光素子の受光感度を高めると共に、受光素子の周波数帯域の低下を抑制した光変調器を提供することである。   The problem to be solved by the present invention is to solve the above-described problems and increase the light receiving sensitivity of the light receiving element and the frequency band of the light receiving element even when the light receiving element is arranged on the substrate constituting the optical modulator. It is an object of the present invention to provide an optical modulator that suppresses a decrease in the above.

上記課題を解決するため、本発明の光変調器は以下のような技術的特徴を有している。
(1) 基板と、該基板に形成されたマッハツェンダー型光導波路を含む光導波路と、該光導波路を伝搬する光波を変調するための変調電極とを有する光変調器において、受光素子が、該基板上に配置されると共に、該マッハツェンダー型光導波路を構成する出力導波路を伝播する信号光、又は該マッハツェンダー型光導波路の合波部から放出される放射光のいずれかを受光するよう構成され、該受光素子内の受光部に入射する光波には、該受光素子内に入射した光波が直接入射する光波と、該受光素子内部で少なくとも1回以上の多重反射を経て入射する光波とが共に存在することを特徴とする。
In order to solve the above problems, the optical modulator of the present invention has the following technical features.
(1) In an optical modulator having a substrate, an optical waveguide including a Mach-Zehnder optical waveguide formed on the substrate, and a modulation electrode for modulating an optical wave propagating through the optical waveguide, the light receiving element includes: It is arranged on the substrate and receives either the signal light propagating through the output waveguide constituting the Mach-Zehnder type optical waveguide or the radiated light emitted from the combining portion of the Mach-Zehnder type optical waveguide. The light wave incident on the light receiving unit in the light receiving element includes a light wave directly incident on the light receiving element and a light wave incident on the light receiving element through at least one multiple reflection. Are both present.

(2) 上記(1)に記載の光変調器において、該受光素子が受光する光波は該信号光であり、該出力導波路と該受光素子との間には高屈折率構造が形成され、該基板の該放射光の伝搬している部分と該受光素子との間には低屈折率構造が形成されていることを特徴とする。 (2) In the optical modulator according to (1), the light wave received by the light receiving element is the signal light, and a high refractive index structure is formed between the output waveguide and the light receiving element, A low refractive index structure is formed between the portion of the substrate where the radiated light is propagated and the light receiving element.

(3) 上記(1)に記載の光変調器において、該受光素子が受光する光波は該放射光であり、該出力導波路と該受光素子との間には低屈折率構造が形成され、該基板の該放射光の伝搬している部分と該受光素子との間には高屈折率構造が形成されていることを特徴とする。 (3) In the optical modulator according to (1), the light wave received by the light receiving element is the emitted light, and a low refractive index structure is formed between the output waveguide and the light receiving element, A high refractive index structure is formed between the portion of the substrate where the radiated light is propagated and the light receiving element.

(4) 上記(3)に記載の光変調器において、該受光素子が受光する光波は該合波部から放出される2つの放射光であり、該低屈折率構造を挟む2つの該高屈折率構造の間隔は、該出力導波路を伝搬する光波のモード径の2倍以上であることを特徴とする。 (4) In the optical modulator described in (3) above, the light waves received by the light receiving element are two radiated lights emitted from the multiplexing unit, and the two high refractions sandwiching the low refractive index structure The spacing of the rate structures is characterized by being at least twice the mode diameter of the light wave propagating through the output waveguide.

(5) 上記(1)に記載の光変調器において、該受光素子で受光する光波は、基板に形成された溝又は該基板に配置された反射部材により、該受光素子側に導かれることを特徴とする。 (5) In the optical modulator according to (1), the light wave received by the light receiving element is guided to the light receiving element side by a groove formed on the substrate or a reflecting member disposed on the substrate. Features.

(6) 上記(5)に記載の光変調器において、該受光素子が受光する光波は該合波部から放出される2つの放射光であり、該出力導波路を挟む2つの該溝又は2つの該反射部材の間隔は、該出力導波路を伝搬する光波のモード径の2倍以上であることを特徴とする。 (6) In the optical modulator according to (5), the light wave received by the light receiving element is two radiated lights emitted from the multiplexing unit, and the two grooves or 2 sandwiching the output waveguide The interval between the two reflecting members is at least twice the mode diameter of the light wave propagating through the output waveguide.

(7) 上記(1)又は(3)乃至(6)に記載の光変調器において、該受光素子が受光する光波は該合波部から放出される2つの放射光であり、該受光素子の該基板に対する配置位置を調整することで、前記2つの放射光の受光量の比を調整することを特徴とする。 (7) In the optical modulator described in the above (1) or (3) to (6), the light wave received by the light receiving element is two radiated lights emitted from the multiplexing unit. By adjusting the arrangement position with respect to the substrate, the ratio of the received light amounts of the two radiated lights is adjusted.

(8) 上記(1)乃至(7)のいずれかに記載の光変調器において、該基板には、該放射光を導波する放射光用導波路が形成されていることを特徴とする。 (8) The optical modulator according to any one of (1) to (7), wherein the substrate is provided with a radiated light waveguide that guides the radiated light.

(9) 上記(1)乃至(8)のいずれかに記載の光変調器において、該基板の厚みは20μm以下であることを特徴とする。 (9) In the optical modulator according to any one of (1) to (8), the thickness of the substrate is 20 μm or less.

請求項1に係る発明により、基板と、該基板に形成されたマッハツェンダー型光導波路を含む光導波路と、該光導波路を伝搬する光波を変調するための変調電極とを有する光変調器において、受光素子が、該基板上に配置されると共に、該マッハツェンダー型光導波路を構成する出力導波路を伝播する信号光、又は該マッハツェンダー型光導波路の合波部から放出される放射光のいずれかを受光するよう構成され、該受光素子内の受光部に入射する光波には、該受光素子内に入射した光波が直接入射する光波と、該受光素子内部で少なくとも1回以上の多重反射を経て入射する光波とが共に存在するため、同一の受光部により多くの光波が入射するため、受光素子の受光感度を高めることが可能となる。しかも、受光素子の受光部の面積を拡大する必要もないため、受光素子の周波数帯域の低下を招くことも無い。   According to the invention of claim 1, in an optical modulator comprising a substrate, an optical waveguide including a Mach-Zehnder optical waveguide formed on the substrate, and a modulation electrode for modulating a light wave propagating through the optical waveguide, The light receiving element is disposed on the substrate, and either of the signal light propagating through the output waveguide constituting the Mach-Zehnder type optical waveguide, or the emitted light emitted from the combining portion of the Mach-Zehnder type optical waveguide The light wave incident on the light receiving portion in the light receiving element includes a light wave directly incident on the light receiving element and at least one multiple reflection inside the light receiving element. Since both of the incident light waves are present, many light waves are incident on the same light receiving portion, so that the light receiving sensitivity of the light receiving element can be increased. In addition, since it is not necessary to increase the area of the light receiving portion of the light receiving element, the frequency band of the light receiving element is not reduced.

特許文献1に記載された従来例であり、光変調器を構成する基板の外部に受光素子を配置した様子を示す図である。It is a prior art example described in Patent Document 1, and is a diagram showing a state in which a light receiving element is arranged outside a substrate constituting an optical modulator. 特許文献2に記載された従来例であり、光変調器を構成する基板上に受光素子を配置した様子を示す図である。It is a prior art example described in Patent Document 2, and is a diagram showing a state in which a light receiving element is arranged on a substrate constituting an optical modulator. 図2に示す一点鎖線X−X’における断面図を示す図である。It is a figure which shows sectional drawing in the dashed-dotted line X-X 'shown in FIG. 本発明の光変調器に使用される受光素子の概略を示す図である。It is a figure which shows the outline of the light receiving element used for the optical modulator of this invention.

以下、本発明の光変調器について詳細に説明する。
本発明の光変調器は、図4に示すように、基板1と、該基板に形成されたマッハツェンダー型光導波路を含む光導波路27と、該光導波路を伝搬する光波を変調するための変調電極(不図示)とを有する光変調器において、受光素子5が、該基板上に配置されると共に、該マッハツェンダー型光導波路を構成する出力導波路を伝播する信号光、又は該マッハツェンダー型光導波路の合波部から放出される放射光のいずれかを受光するよう構成され、該受光素子内の受光部50に入射する光波には、該受光素子内に入射した光波が直接入射する光波L1と、該受光素子内部で少なくとも1回以上の多重反射を経て入射する光波L2とが共に存在することを特徴とする。
Hereinafter, the optical modulator of the present invention will be described in detail.
As shown in FIG. 4, the optical modulator of the present invention includes a substrate 1, an optical waveguide 27 including a Mach-Zehnder optical waveguide formed on the substrate, and a modulation for modulating an optical wave propagating through the optical waveguide. In an optical modulator having an electrode (not shown), a light receiving element 5 is disposed on the substrate, and signal light propagating through an output waveguide constituting the Mach-Zehnder type optical waveguide, or the Mach-Zehnder type A light wave that is configured to receive any one of the radiated light emitted from the multiplexing portion of the optical waveguide and that is incident on the light receiving portion 50 in the light receiving element is a light wave that is directly incident on the light wave incident in the light receiving element. Both L1 and a light wave L2 incident through at least one multiple reflection inside the light receiving element are present.

基板1としては、石英、半導体など光導波路を形成できる基板であれば良く、特に、電気光学効果を有する基板である、LiNbO,LiTaO又はPLZT(ジルコン酸チタン酸鉛ランタン)のいずれかの単結晶が好適に利用可能である。特に、本発明に好適な基板は、基板の厚みが20μm以下のものである。このような薄板では、光波が基板内に閉じ込められ易く、光導波路を伝搬する光波と基板内を伝搬する光波の分離が難しい。このため、本発明の光変調器のように基板上に受光素子を配置することで、効率的に着目する光波を受光することが可能となる。しかも、基板内を伝搬する不要光も多くなることから、特許文献1又は2に示すように、2つの放射光を同時に受光することで、より精確なモニタ信号を得ることも可能となる。 The substrate 1 may be any substrate that can form an optical waveguide, such as quartz or semiconductor. In particular, one of LiNbO 3 , LiTaO 3, and PLZT (lead lanthanum zirconate titanate), which is a substrate having an electro-optic effect. Single crystals can be suitably used. In particular, a substrate suitable for the present invention has a substrate thickness of 20 μm or less. In such a thin plate, the light wave is easily confined in the substrate, and it is difficult to separate the light wave propagating in the optical waveguide from the light wave propagating in the substrate. For this reason, by arranging the light receiving element on the substrate like the optical modulator of the present invention, it becomes possible to efficiently receive the focused light wave. In addition, since unnecessary light propagates through the substrate, more accurate monitor signals can be obtained by simultaneously receiving two radiated lights as shown in Patent Document 1 or 2.

基板に形成する光導波路27は、例えば、LiNbO基板(LN基板)上にチタン(Ti)などの高屈折率物質を熱拡散することにより形成される。また、光導波路となる部分の両側に溝を形成したリブ型光導波路や光導波路部分を凸状としたリッジ型導波路も利用可能である。また、PLC等の異なる基板に光導波路を形成し、これらの基板を貼り合せ集積した光回路にも、本発明を適用することが可能である。 The optical waveguide 27 formed on the substrate is formed, for example, by thermally diffusing a high refractive index material such as titanium (Ti) on a LiNbO 3 substrate (LN substrate). Further, a rib-type optical waveguide in which grooves are formed on both sides of a portion that becomes an optical waveguide and a ridge-type waveguide in which the optical waveguide portion is convex can be used. Further, the present invention can also be applied to an optical circuit in which optical waveguides are formed on different substrates such as PLC and these substrates are bonded and integrated.

変調電極は、信号電極や接地電極から構成され、基板表面に、Ti・Auの電極パターンを形成し、金メッキ方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層を設けることも可能である。なお、基板(光導波路)内を伝搬する信号光や放射光を、受光素子側に導出する領域においては、バッファ層を形成すると、放射光を効率良く導出することが難しくなるため、当該領域にはバッファ層を形成しないことが好ましい。 The modulation electrode is composed of a signal electrode and a ground electrode, and can be formed by forming a Ti / Au electrode pattern on the surface of the substrate and using a gold plating method or the like. Furthermore, a buffer layer such as a dielectric SiO 2 can be provided on the substrate surface after the formation of the optical waveguide, if necessary. In a region where signal light or radiated light propagating in the substrate (optical waveguide) is led out to the light receiving element side, it is difficult to efficiently derive radiated light if a buffer layer is formed. Preferably does not form a buffer layer.

本発明の光変調器の特徴は、図4のように、基板内又は基板に形成された光導波路27を伝搬する光波L0の一部をモニタする際には、フォトダイオード(PD)などで構成される受光素子5の受光感度を高めるため、受光素子内に入射した光波を受光部50に直接入射させるだけでなく、受光素子内部で少なくとも1回以上の多重反射を経て受光部50に入射させることである。   As shown in FIG. 4, the optical modulator of the present invention is configured by a photodiode (PD) or the like when monitoring a part of the light wave L0 propagating in the optical waveguide 27 formed in or on the substrate. In order to increase the light receiving sensitivity of the light receiving element 5, not only the light wave incident in the light receiving element is directly incident on the light receiving unit 50 but also the light wave incident on the light receiving unit 50 through multiple reflections at least once inside the light receiving element. That is.

受光素子5を構成する基板51内で放射光を多重反射させるためには、光波が反射する場所に、誘電体多層膜や金属反射膜などの反射膜を配置することが好ましい。例えば、図4に示すように埋込み電極を構成する金属膜の下面で反射させたり、図示されていないが、基板51の外周面の少なくとも一部に誘電体多層膜や金属膜を配置して、反射効率を上げることが可能である。しかも、誘電体多層膜や金属膜を利用することで、受光素子基板の表面状態(汚れ等)によらず安定した反射が可能となる。   In order to multiplexly reflect the radiated light within the substrate 51 constituting the light receiving element 5, it is preferable to arrange a reflective film such as a dielectric multilayer film or a metal reflective film at a location where the light wave is reflected. For example, as shown in FIG. 4, it is reflected on the lower surface of the metal film constituting the embedded electrode, or although not shown, a dielectric multilayer film or a metal film is disposed on at least a part of the outer peripheral surface of the substrate 51, It is possible to increase the reflection efficiency. In addition, by using a dielectric multilayer film or a metal film, stable reflection is possible regardless of the surface state (dirt or the like) of the light receiving element substrate.

受光素子5の基板51の屈折率が3.16(InPの場合)と高屈折率であるため、モニタすべき信号光や放射光が受光素子の基板内に入って来る入射角度によっては、全反射を利用することも可能である。具体例として、光導波路27をLN基板1に形成した光導波路(n=2.15)とし、受光素子の基板51の材質をInP(n=3.16)とすれば、受光素子基板内への入射角度は、LN基板の法線を基準として、約42度である。また、受光素子基板の外周面(周囲を空気と仮定すると)での全反射角は、約18度である。このため、入射角が18〜42度の範囲で受光素子基板内に入射した光波は、当該基板内で全反射による多重反射を実現することができる。   Since the refractive index of the substrate 51 of the light receiving element 5 is a high refractive index of 3.16 (in the case of InP), depending on the incident angle at which signal light and radiated light to be monitored enter the substrate of the light receiving element, It is also possible to use reflection. As a specific example, if the optical waveguide 27 is an optical waveguide (n = 2.15) formed on the LN substrate 1 and the material of the substrate 51 of the light receiving element is InP (n = 3.16), the light receiving element substrate is formed. The incident angle is about 42 degrees with respect to the normal line of the LN substrate. Further, the total reflection angle on the outer peripheral surface of the light receiving element substrate (assuming the surroundings is air) is about 18 degrees. For this reason, the light wave incident on the light receiving element substrate within the range of the incident angle of 18 to 42 degrees can realize multiple reflection by total reflection in the substrate.

図4では、多重反射する光波L2は、埋込み電極の下面での反射、基板51の側壁面での反射、そして、基板51の下面での反射の合計3回の反射で構成されている。本発明の光変調器は、この実施例に限定されず、例えば、基板51の側壁面のみで1回反射して、受光部50に光波が入射するよう構成することも可能である。   In FIG. 4, the light wave L <b> 2 that is multiple-reflected is composed of three reflections in total: reflection on the lower surface of the embedded electrode, reflection on the side wall surface of the substrate 51, and reflection on the lower surface of the substrate 51. The optical modulator of the present invention is not limited to this embodiment, and for example, it may be configured such that the light wave is incident on the light receiving unit 50 after being reflected only once by the side wall surface of the substrate 51.

多重反射を1回含む場合、受光感度は約1.5倍になる。しかも、受光部へ直接入射する光波L1と、PD基板内で多重反射した光波L2との間の時間遅延は微小であり、2ps程度である。これは周波数に変換すると500GHz相当であり、受光部の周波数応答速度は高々40GHz程度であるので、受光素子のモニタ信号の波形が歪むことはない。   When multiple reflection is included once, the light receiving sensitivity is about 1.5 times. In addition, the time delay between the light wave L1 directly incident on the light receiving portion and the light wave L2 that is multiple-reflected in the PD substrate is very small, about 2 ps. This is equivalent to 500 GHz when converted to frequency, and the frequency response speed of the light receiving unit is at most about 40 GHz, so that the waveform of the monitor signal of the light receiving element is not distorted.

図4の光波L1及びL2が、受光部50に共に入射するよう調整するには、例えば、基板1(又は光導波路27)に対して受光素子5の配置位置を調整し、受光感度が最も高くなる位置に受光素子を固定するよう設定することができる。   In order to adjust the light waves L1 and L2 in FIG. 4 to be incident on the light receiving unit 50, for example, the arrangement position of the light receiving element 5 is adjusted with respect to the substrate 1 (or the optical waveguide 27), and the light receiving sensitivity is the highest. The light receiving element can be set to be fixed at a certain position.

受光素子内にモニタすべき光波を導入するには、特許文献2にも開示されているように、光導波路等の光波を導波している箇所に、受光素子基板51を直接接触させる方法だけでなく、図4のように、光導波路27等と受光素子基板51との間に高屈折率膜(42,43)を介在させる方法もある。この場合は、高屈折率膜の屈折率は、光導波路27(または、光波を導波している基板1)の屈折率よりも高く、受光素子基板51の屈折率よりも低く設定することが必要である。このように、モニタすべき光波が伝搬している部分と受光素子との間には高屈折率構造(光波が伝搬している部分より高い屈折率を有する構造)を設け、他方、モニタすべきできない光波(受光素子への入射を抑制すべき光波)が伝搬している部分と受光素子との間には低屈折率構造(光波が伝搬している部分より低い屈折率を有する構造)を設けている。低屈折率構造としては、低屈折率膜を配置するだけでなく、空気層を介在させる構成であっても良い。   In order to introduce a light wave to be monitored in the light receiving element, as disclosed in Patent Document 2, only a method of bringing the light receiving element substrate 51 into direct contact with a portion where the light wave such as an optical waveguide is guided. Alternatively, as shown in FIG. 4, there is a method in which a high refractive index film (42, 43) is interposed between the optical waveguide 27 and the like and the light receiving element substrate 51. In this case, the refractive index of the high refractive index film may be set higher than the refractive index of the optical waveguide 27 (or the substrate 1 guiding the light wave) and lower than the refractive index of the light receiving element substrate 51. is necessary. As described above, a high refractive index structure (a structure having a higher refractive index than that of the portion where the light wave propagates) is provided between the portion where the light wave to be monitored propagates and the light receiving element, and on the other hand, it should be monitored A low refractive index structure (a structure having a lower refractive index than the portion where the light wave is propagating) is provided between the portion where the light wave that cannot be transmitted (the light wave whose incidence on the light receiving element should be suppressed) is propagating ing. As the low refractive index structure, not only a low refractive index film but also an air layer may be interposed.

また、特許文献2にも開示されているように、基板1(又は光導波路27)に不図示の溝又は反射部材を配置して、モニタ光の一部を受光素子の方に導くことも可能である。   Further, as disclosed in Patent Document 2, it is also possible to arrange a groove or a reflecting member (not shown) on the substrate 1 (or the optical waveguide 27) to guide part of the monitor light toward the light receiving element. It is.

図2及び3のように、受光素子が受光する光波が、マッハツェンダー型光導波路の合波部から放出される2つの放射光であり、2つの光波を同時に受光する場合について説明する。   The case where the light waves received by the light receiving element are two radiated lights emitted from the combining part of the Mach-Zehnder type optical waveguide as shown in FIGS. 2 and 3 and the two light waves are received simultaneously will be described.

図3に示すように、低屈折率構造60を挟む2つの高屈折率構造(40,41)を配置する場合には、該高屈折率構造の間隔Wは、出力導波路24を伝搬する光波のモード径の2倍以上であることが好ましい。これは、出力導波路を伝搬する光波まで受光素子に吸い上げることを抑制するためである。また、基板1に溝や反射部材を配置して、モニタすべき光波を受光素子側に偏向させる場合も、同様に、出力導波路24を挟む2つの溝又は2つの反射部材の間隔Wは、出力導波路を伝搬する光波のモード径の2倍以上であることが好ましい。   As shown in FIG. 3, when two high-refractive index structures (40, 41) sandwiching the low-refractive index structure 60 are arranged, the interval W between the high-refractive index structures is a light wave propagating through the output waveguide 24. It is preferably at least twice the mode diameter. This is to prevent the light receiving element from sucking light waves propagating through the output waveguide. Similarly, when a groove or a reflection member is disposed on the substrate 1 and the light wave to be monitored is deflected to the light receiving element side, similarly, the interval W between the two grooves or the two reflection members sandwiching the output waveguide 24 is It is preferably at least twice the mode diameter of the light wave propagating through the output waveguide.

更に本発明の光変調器においても、特許文献2と同様に、受光素子5の基板1(又は光導波路25,26)に対する配置位置を調整することで、2つの放射光の受光量の比を調整することが可能となる。また、図2のように、放射光を導波する放射光用導波路(25,26)を設けることにより、放射光を受光素子5へ、より効率的に導くことが可能となる。   Further, in the optical modulator of the present invention as well, as in Patent Document 2, the ratio of the amount of received light of two radiated lights can be adjusted by adjusting the arrangement position of the light receiving element 5 with respect to the substrate 1 (or the optical waveguides 25 and 26). It becomes possible to adjust. In addition, as shown in FIG. 2, by providing the radiated light waveguides (25, 26) that guide the radiated light, the radiated light can be more efficiently guided to the light receiving element 5.

以上のように、本発明に係る光変調器によれば、光変調器を構成する基板上に受光素子を配置した場合でも、受光素子の受光感度を高めると共に、受光素子の周波数帯域の低下を抑制した光変調器を提供することが可能となる。   As described above, according to the optical modulator of the present invention, even when the light receiving element is arranged on the substrate constituting the optical modulator, the light receiving sensitivity of the light receiving element is increased and the frequency band of the light receiving element is reduced. It is possible to provide a suppressed optical modulator.

1 基板
2,27 光導波路
21 入力導波路
22 分岐導波路
23 合波部
24 出力導波路
25,26 放射光用導波路
3 キャピラリ
5 受光素子
50 受光部
40〜43 高屈折率構造
60 低屈折率構造
DESCRIPTION OF SYMBOLS 1 Board | substrates 2 and 27 Optical waveguide 21 Input waveguide 22 Branching waveguide 23 Combined part 24 Output waveguide 25 and 26 Waveguide for radiated light 3 Capillary 5 Light receiving element 50 Light receiving part 40-43 High refractive index structure 60 Low refractive index Construction

Claims (9)

基板と、該基板に形成されたマッハツェンダー型光導波路を含む光導波路と、該光導波路を伝搬する光波を変調するための変調電極とを有する光変調器において、
受光素子が、該基板上に配置されると共に、該マッハツェンダー型光導波路を構成する出力導波路を伝播する信号光、又は該マッハツェンダー型光導波路の合波部から放出される放射光のいずれかを受光するよう構成され、
該受光素子内の受光部に入射する光波には、該受光素子内に入射した光波が直接入射する光波と、該受光素子内部で少なくとも1回以上の多重反射を経て入射する光波とが共に存在することを特徴とする光変調器。
In an optical modulator having a substrate, an optical waveguide including a Mach-Zehnder optical waveguide formed on the substrate, and a modulation electrode for modulating a light wave propagating through the optical waveguide,
The light receiving element is disposed on the substrate, and either of the signal light propagating through the output waveguide constituting the Mach-Zehnder type optical waveguide, or the emitted light emitted from the combining portion of the Mach-Zehnder type optical waveguide Is configured to receive light,
The light wave incident on the light receiving portion in the light receiving element includes both the light wave directly incident on the light receiving element and the light wave incident on the light receiving element through at least one multiple reflection. An optical modulator characterized by:
請求項1に記載の光変調器において、該受光素子が受光する光波は該信号光であり、該出力導波路と該受光素子との間には高屈折率構造が形成され、該基板の該放射光の伝搬している部分と該受光素子との間には低屈折率構造が形成されていることを特徴とする光変調器。   2. The optical modulator according to claim 1, wherein the light wave received by the light receiving element is the signal light, and a high refractive index structure is formed between the output waveguide and the light receiving element, A light modulator characterized in that a low refractive index structure is formed between a portion through which radiated light is propagated and the light receiving element. 請求項1に記載の光変調器において、該受光素子が受光する光波は該放射光であり、該出力導波路と該受光素子との間には低屈折率構造が形成され、該基板の該放射光の伝搬している部分と該受光素子との間には高屈折率構造が形成されていることを特徴とする光変調器。   2. The optical modulator according to claim 1, wherein the light wave received by the light receiving element is the radiated light, and a low refractive index structure is formed between the output waveguide and the light receiving element, A light modulator characterized in that a high refractive index structure is formed between a portion through which radiated light is propagated and the light receiving element. 請求項3に記載の光変調器において、該受光素子が受光する光波は該合波部から放出される2つの放射光であり、該低屈折率構造を挟む2つの該高屈折率構造の間隔は、該出力導波路を伝搬する光波のモード径の2倍以上であることを特徴とする光変調器。   4. The optical modulator according to claim 3, wherein the light wave received by the light receiving element is two radiated lights emitted from the multiplexing unit, and an interval between the two high refractive index structures sandwiching the low refractive index structure. Is at least twice the mode diameter of the light wave propagating through the output waveguide. 請求項1に記載の光変調器において、該受光素子で受光する光波は、基板に形成された溝又は該基板に配置された反射部材により、該受光素子側に導かれることを特徴とする光変調器。   2. The light modulator according to claim 1, wherein the light wave received by the light receiving element is guided to the light receiving element side by a groove formed in the substrate or a reflecting member disposed on the substrate. Modulator. 請求項5に記載の光変調器において、該受光素子が受光する光波は該合波部から放出される2つの放射光であり、該出力導波路を挟む2つの該溝又は2つの該反射部材の間隔は、該出力導波路を伝搬する光波のモード径の2倍以上であることを特徴とする光変調器。   6. The optical modulator according to claim 5, wherein the light wave received by the light receiving element is two radiated lights emitted from the multiplexing unit, and the two grooves or the two reflecting members sandwiching the output waveguide. The optical modulator is characterized in that the interval is at least twice the mode diameter of the light wave propagating through the output waveguide. 請求項1又は3乃至6に記載の光変調器において、該受光素子が受光する光波は該合波部から放出される2つの放射光であり、該受光素子の該基板に対する配置位置を調整することで、前記2つの放射光の受光量の比を調整することを特徴とする光変調器。   7. The optical modulator according to claim 1, wherein the light wave received by the light receiving element is two radiated lights emitted from the multiplexing unit, and adjusts an arrangement position of the light receiving element with respect to the substrate. Thus, the ratio of the amount of received light of the two radiated lights is adjusted. 請求項1乃至7のいずれかに記載の光変調器において、該基板には、該放射光を導波する放射光用導波路が形成されていることを特徴とする光変調器。   8. The optical modulator according to claim 1, wherein a radiated light waveguide for guiding the radiated light is formed on the substrate. 請求項1乃至8のいずれかに記載の光変調器において、該基板の厚みは20μm以下であることを特徴とする光変調器。   9. The optical modulator according to claim 1, wherein the thickness of the substrate is 20 [mu] m or less.
JP2014009554A 2014-01-22 2014-01-22 Optical modulator Pending JP2015138145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014009554A JP2015138145A (en) 2014-01-22 2014-01-22 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014009554A JP2015138145A (en) 2014-01-22 2014-01-22 Optical modulator

Publications (1)

Publication Number Publication Date
JP2015138145A true JP2015138145A (en) 2015-07-30

Family

ID=53769176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009554A Pending JP2015138145A (en) 2014-01-22 2014-01-22 Optical modulator

Country Status (1)

Country Link
JP (1) JP2015138145A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107229141A (en) * 2016-03-25 2017-10-03 住友大阪水泥股份有限公司 Optical Modulator
US9817293B2 (en) 2014-03-31 2017-11-14 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US9869888B2 (en) 2016-03-25 2018-01-16 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US9897826B2 (en) 2016-03-25 2018-02-20 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US9897825B2 (en) 2016-03-25 2018-02-20 Sumitomo Osaka Cement Co., Ltd. Optical modulator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140823A (en) * 1997-05-22 1999-02-12 Fujitsu Ltd Photodetector module
JP2000036615A (en) * 1998-07-21 2000-02-02 Sumitomo Electric Ind Ltd Photo-detecting element and photo-detecting element module
JP2000150923A (en) * 1998-11-12 2000-05-30 Nippon Telegr & Teleph Corp <Ntt> Backside incidence type light receiving device and manufacture thereof
JP2001320081A (en) * 2000-05-12 2001-11-16 Fujitsu Ltd Semiconductor light receiving element
JP2002344002A (en) * 2001-03-12 2002-11-29 Matsushita Electric Ind Co Ltd Light-receiving element and mounting body thereof
JP2005165254A (en) * 2003-11-28 2005-06-23 Korea Electronics Telecommun Optical coupling apparatus integratable with photodetector
US7276770B1 (en) * 2004-04-09 2007-10-02 Semicoa Semiconductors Fast Si diodes and arrays with high quantum efficiency built on dielectrically isolated wafers
JP2012078407A (en) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd Optical waveguide element and method for manufacturing optical waveguide element
JP2013080009A (en) * 2011-09-30 2013-05-02 Sumitomo Osaka Cement Co Ltd Light modulator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140823A (en) * 1997-05-22 1999-02-12 Fujitsu Ltd Photodetector module
JP2000036615A (en) * 1998-07-21 2000-02-02 Sumitomo Electric Ind Ltd Photo-detecting element and photo-detecting element module
JP2000150923A (en) * 1998-11-12 2000-05-30 Nippon Telegr & Teleph Corp <Ntt> Backside incidence type light receiving device and manufacture thereof
JP2001320081A (en) * 2000-05-12 2001-11-16 Fujitsu Ltd Semiconductor light receiving element
JP2002344002A (en) * 2001-03-12 2002-11-29 Matsushita Electric Ind Co Ltd Light-receiving element and mounting body thereof
JP2005165254A (en) * 2003-11-28 2005-06-23 Korea Electronics Telecommun Optical coupling apparatus integratable with photodetector
US7276770B1 (en) * 2004-04-09 2007-10-02 Semicoa Semiconductors Fast Si diodes and arrays with high quantum efficiency built on dielectrically isolated wafers
JP2012078407A (en) * 2010-09-30 2012-04-19 Sumitomo Osaka Cement Co Ltd Optical waveguide element and method for manufacturing optical waveguide element
JP2013080009A (en) * 2011-09-30 2013-05-02 Sumitomo Osaka Cement Co Ltd Light modulator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9817293B2 (en) 2014-03-31 2017-11-14 Sumitomo Osaka Cement Co., Ltd. Optical modulator
CN107229141A (en) * 2016-03-25 2017-10-03 住友大阪水泥股份有限公司 Optical Modulator
US9869888B2 (en) 2016-03-25 2018-01-16 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US9885889B2 (en) 2016-03-25 2018-02-06 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US9897826B2 (en) 2016-03-25 2018-02-20 Sumitomo Osaka Cement Co., Ltd. Optical modulator
US9897825B2 (en) 2016-03-25 2018-02-20 Sumitomo Osaka Cement Co., Ltd. Optical modulator
CN107229141B (en) * 2016-03-25 2022-01-11 住友大阪水泥股份有限公司 Optical modulator

Similar Documents

Publication Publication Date Title
JP6056800B2 (en) Light modulator
JP5782974B2 (en) Light modulator and light receiving amount adjustment method of light receiving element of light modulator
US8909006B2 (en) Optical waveguide device
US20170017098A1 (en) Optical device and transmitter
US9081214B2 (en) Optical control element
WO2001069308A1 (en) Optical waveguide modulator with output light monitor
JP5369883B2 (en) Light control element
JP2015138145A (en) Optical modulator
JP7322784B2 (en) Optical waveguide element, optical modulation device using the same, and optical transmitter
JP2016206415A (en) Optical module and optical fiber assembly
KR101129223B1 (en) All optical logic device and optical modulator using surface plasmon resonance
US9377665B2 (en) Optical modulator having a 2×2 coupler
JP2001215371A (en) Optical waveguide type element with monitor
CN107229140B (en) Optical modulator
JP6266813B2 (en) Light modulation element and electric field sensor
JP6237160B2 (en) Optical waveguide device
US11125943B2 (en) Optical modulator and optical measurement apparatus
JP4987335B2 (en) Optical device
JP5133930B2 (en) Optical modulator module
JP4977788B1 (en) Light modulator
JP2017173660A (en) Optical modulator
JP3887552B2 (en) Wavelength management apparatus and optical modulator management method
JP2014199356A (en) Optical modulator
JP2017173662A (en) Optical modulator
JP2013174850A (en) Optical modulator with monitor photodetector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180522