JPH0339913A - Light wavelength converting device - Google Patents

Light wavelength converting device

Info

Publication number
JPH0339913A
JPH0339913A JP17583689A JP17583689A JPH0339913A JP H0339913 A JPH0339913 A JP H0339913A JP 17583689 A JP17583689 A JP 17583689A JP 17583689 A JP17583689 A JP 17583689A JP H0339913 A JPH0339913 A JP H0339913A
Authority
JP
Japan
Prior art keywords
optical waveguide
active layer
end surface
semiconductor laser
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17583689A
Other languages
Japanese (ja)
Inventor
Tatsuo Ito
達男 伊藤
Shinichi Mizuguchi
水口 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17583689A priority Critical patent/JPH0339913A/en
Publication of JPH0339913A publication Critical patent/JPH0339913A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To couple laser light directly and optically without interposing an optical system such as a lens in a light wavelength converting element from a semiconductor laser chip while protecting the active layer end surface of a semiconductor laser and an optical waveguide end surface by making the active layer end surface of the semiconductor laser and the optical waveguide end surface abut on each other across a gap provided on the active layer end surface and optical waveguide end surface. CONSTITUTION:Laser light which is excited and oscillated in the active layer 7 is emitted from the end surface of the active layer 7 and made incident on the optical waveguide 9 through the gap 10 provided between the active layer 7 and optical waveguide 9. At this time, the end surface of the active layer 7 and the end surface of the optical waveguide 9 is not in contact with nowhere and are protected. Thus, the light wavelength converting device consists of the semiconductor laser and the optical waveguide which has a light wavelength converting function based upon nonlinear optical effect and the active layer end surface of the semiconductor laser and the optical waveguide end surface are made to abut on each other across the gap provided on the active layer end surface of the semiconductor laser or the optical waveguide end surface to enable direct optical coupling while protecting the active layer end surface and optical waveguide end surface.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体レーザ光の波長を非線形光学効果によ
って、波長変換する光波長変換装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical wavelength conversion device that converts the wavelength of semiconductor laser light using a nonlinear optical effect.

従来の技術 従来の光波長変換装置は、半導体レーザから発するレー
ザ光をレンズによつ゛て集光し、光導波路に入射する構
成であった(例えば、特開昭61−18934号公報等
参照)。
2. Description of the Related Art Conventional optical wavelength conversion devices have a structure in which laser light emitted from a semiconductor laser is focused through a lens and then input into an optical waveguide (for example, see Japanese Patent Laid-Open No. 18934/1983). .

以下図面を参照しながら上述した従来の光波長変換装置
の一例について説明する。
An example of the conventional optical wavelength conversion device mentioned above will be described below with reference to the drawings.

第5図は従来の光波長変換装置の構成を示すもめである
。第5図において、1は半導体レーザである。2は、コ
リメータレンズ、3は、集光レンズである。4は、光波
長変換素子であり、例えばLiNb0.基板に光導波路
5を設けたものである(特開昭61−72222号公報
等参照)。
FIG. 5 is a diagram showing the configuration of a conventional optical wavelength conversion device. In FIG. 5, 1 is a semiconductor laser. 2 is a collimator lens, and 3 is a condenser lens. 4 is an optical wavelength conversion element, for example, LiNb0. An optical waveguide 5 is provided on a substrate (see Japanese Unexamined Patent Publication No. 61-72222, etc.).

以上のように構成された光波長変換装置について、以下
その動作について説明する。
The operation of the optical wavelength conversion device configured as described above will be described below.

先ず、半導体レーザlから発したレーザ光は、コリメー
タレンズ2によって平行ビームとなる。
First, a laser beam emitted from a semiconductor laser 1 is turned into a parallel beam by a collimator lens 2.

さらにこの平行ビームは集光レンズ3によって収束し、
光波長変換素子4中に設けられた光導波路5に入射する
。そしてこの入射光は、光導波路5の有する非線形光学
効果によって波長変換されることとなる。
Furthermore, this parallel beam is converged by a condensing lens 3,
The light enters an optical waveguide 5 provided in the optical wavelength conversion element 4. The wavelength of this incident light is converted by the nonlinear optical effect of the optical waveguide 5.

発明が解決しようとする課題 しかしながら上記のような構成では、半導体レーザ1か
ら発したレーザ光が一度、半導体レーザlと光導波路5
との間の空間を伝播した後に光導波路5に入射するため
途中に存在するレンズによる光のケラレ、反射等の損失
が発生する。また、コリメータレンズ2や、集光レンズ
3はコストアップ要因でもある等々の欠点を有していた
Problems to be Solved by the Invention However, in the above configuration, the laser light emitted from the semiconductor laser 1 once passes through the semiconductor laser 1 and the optical waveguide 5.
Since the light enters the optical waveguide 5 after propagating through the space between the light and the light, losses such as vignetting and reflection due to the lenses present in the middle occur. Further, the collimator lens 2 and the condensing lens 3 have drawbacks such as increasing costs.

この欠点を解消するために半導体レーザチップと光導波
路とを突き合わせて直接光結合させることも考えられた
が、この方法では、端面間の間接調整時にレーザ端面と
光導波路端面が接触して破損を生じるという問題点が残
る。
In order to overcome this drawback, it has been considered to butt the semiconductor laser chip and the optical waveguide together for direct optical coupling, but with this method, the laser end face and the optical waveguide end face may come into contact and be damaged during indirect adjustment between the end faces. There remains the problem that this occurs.

本発明は上記問題点に鑑み、半導体レーザと光波長変換
素子間の光学系を使用せず、なおかつレーザ端面と光導
波路端面を保護することの出来る光波長変換装置を提供
するものである。
In view of the above problems, the present invention provides an optical wavelength conversion device that does not use an optical system between the semiconductor laser and the optical wavelength conversion element and can protect the laser end face and the optical waveguide end face.

課題を解決するための手段 」二足問題点を解決するために本発明の光波長変換装置
は、半導体レーザと非線形光学効果に基づく光波長変換
機能を有する光導波路とからなる光波長変換装置におい
て、前記半導体レーザの活性層端面または前記光導波路
端面に設けた間隙を挟んで前記半導体レーザの活性層端
面と前記光導波路端面とを突き合わせたことを特徴とす
るものである。
In order to solve the two-pronged problem, the optical wavelength conversion device of the present invention is an optical wavelength conversion device consisting of a semiconductor laser and an optical waveguide having an optical wavelength conversion function based on a nonlinear optical effect. , the end face of the active layer of the semiconductor laser and the end face of the optical waveguide are brought into contact with each other with a gap provided between the end face of the active layer of the semiconductor laser or the end face of the optical waveguide.

又、半導体レーザの活性層と光導波路とを波長程度以下
の間隙を介在させて平行に配設してもよい。
Further, the active layer of the semiconductor laser and the optical waveguide may be arranged in parallel with a gap of less than the wavelength.

作   用 本発明は上記した構成によって半導体レーザの活性層端
面と光導波路端面とが間隙を隔てて突き合わされるため
に互いに接触することがなく、保護された状態で直接光
結合することが出来る。
Operation According to the present invention, the active layer end face of the semiconductor laser and the optical waveguide end face are butted against each other with a gap in between, so that they do not come into contact with each other and can be directly optically coupled in a protected state.

従って半導体レーザと光導波路間の光学系は不要となり
、端面の保護も可能となる。
Therefore, an optical system between the semiconductor laser and the optical waveguide becomes unnecessary, and the end face can also be protected.

又、半導体レーザの活性層と光導波路を波長程度以下の
間隙を介在させて平行に配設すると、半導体レーザの活
性層中のレーザ光の電磁界分布が、活性層と光導波路間
の間隙を越えて光導波路中に滲み出すことによって、レ
ーザ光が活性層から光導波路に伝播する。即ち、活性層
中の電磁界分布は、活性層の外側の媒質に於ても、距離
と共に指数函数的に減少する分布を持ち、一方光導波路
中を進むレーザ光も特有の電磁界分布を持つため、この
電磁界分布同士が位相的に整合することが出来て、そし
て活性層と光導波路の間の媒質が、波長程度以下に薄い
場合は、活性層から光導波路への光の滲み出しが生じる
。従って半導体レーザと光波長変換素子間の光学系は不
要となる。又、端面同志が接触することもなく、その保
護も可能である。
Furthermore, when the active layer of the semiconductor laser and the optical waveguide are arranged in parallel with a gap of less than the wavelength, the electromagnetic field distribution of the laser light in the active layer of the semiconductor laser will spread across the gap between the active layer and the optical waveguide. The laser light propagates from the active layer to the optical waveguide by leaking beyond the active layer and into the optical waveguide. That is, the electromagnetic field distribution in the active layer has a distribution that decreases exponentially with distance even in the medium outside the active layer, and on the other hand, laser light traveling in an optical waveguide also has a unique electromagnetic field distribution. Therefore, if these electromagnetic field distributions can be phase-matched and the medium between the active layer and the optical waveguide is thinner than the wavelength, light leaks from the active layer to the optical waveguide. arise. Therefore, an optical system between the semiconductor laser and the optical wavelength conversion element is not required. In addition, the end faces do not come into contact with each other, making it possible to protect them.

実施例 以下本発明の実施例の光波長変換装置について、図面を
参照しながら説明する。
Embodiments Hereinafter, optical wavelength conversion devices according to embodiments of the present invention will be described with reference to the drawings.

第1図、第2図は本発明の第1実施例に於ける光波長変
換装置の構成を示すものである。6は半導体レーザチッ
プ、7はその活性層である。8は光波長変換素子であり
、例えばLiNbo、基板に光導波路9を設けたもので
ある。10は間隙であり、活性層7または光導波路9の
先端をJ、ツチング等で除去するか、あるいは間隙10
以外の部分に薄膜堆積することにより形成する。
1 and 2 show the configuration of an optical wavelength conversion device in a first embodiment of the present invention. 6 is a semiconductor laser chip, and 7 is its active layer. Reference numeral 8 denotes an optical wavelength conversion element, which is made of, for example, LiNbo and has an optical waveguide 9 provided on a substrate. 10 is a gap, and the tip of the active layer 7 or the optical waveguide 9 is removed by J.
It is formed by depositing a thin film on other parts.

以上のように構成された光波長変換装置について、その
動作を説明する。先ず活性層7内で励起発振したレーザ
光は、活性層7端面から出射し。
The operation of the optical wavelength conversion device configured as described above will be explained. First, the laser light excited and oscillated within the active layer 7 is emitted from the end face of the active layer 7.

活性層7と光導波路9の間に設けられた間隙10を介し
て、光導波路9に入射する。この時、活性層7の端面と
光導波路9の端面はどこにも接触せず保護されている。
The light enters the optical waveguide 9 through a gap 10 provided between the active layer 7 and the optical waveguide 9. At this time, the end face of the active layer 7 and the end face of the optical waveguide 9 are protected without contacting anywhere.

以上のように本実施例によれば、半導体レーザと非線形
光学効果に基づく光波長変換機能を有する光導波路とか
らなる光波長変換装置において、前記半導体レーザの活
性層端面と前記光導波路端面とを前記半導体レーザの活
性層端面または前記光導波路端面に設けた間隙を挾んで
突き合わせることにより、活性層端面及び光導波路端面
を保護しながら直接光結合することが出来る。
As described above, according to this embodiment, in an optical wavelength conversion device including a semiconductor laser and an optical waveguide having an optical wavelength conversion function based on a nonlinear optical effect, the active layer end face of the semiconductor laser and the optical waveguide end face are connected to each other. By sandwiching and abutting the end faces of the active layer of the semiconductor laser or the end face of the optical waveguide, direct optical coupling can be achieved while protecting the end faces of the active layer and the end face of the optical waveguide.

次に、本発明の第2実施例の光波長変換装置について、
第3図、第4図を参照しながら説明する。
Next, regarding the optical wavelength conversion device of the second embodiment of the present invention,
This will be explained with reference to FIGS. 3 and 4.

第3図、第4図において、第1図、第2図と同番号のも
のは同一物を示す半導体レーザチップ6は光波長変換素
子8上に、その活性層と光導波路9が間隙を介して平行
となるように配設されている。即ち、第4図に示すよう
に、11.12は半導体レーザチップ6の活性層7の両
面に設けられたクラッド層であり、活性層7と光導波路
9間のクラッド層12の厚さは、半導体レーザ光の波長
程度、(例えば0.8μm程度)の厚みを有し、活性層
7と光導波路9とを隔てている。
In FIGS. 3 and 4, the same numbers as those in FIGS. 1 and 2 indicate the same components. A semiconductor laser chip 6 has an active layer and an optical waveguide 9 placed on an optical wavelength conversion element 8 with a gap therebetween. They are arranged so that they are parallel to each other. That is, as shown in FIG. 4, 11 and 12 are cladding layers provided on both sides of the active layer 7 of the semiconductor laser chip 6, and the thickness of the cladding layer 12 between the active layer 7 and the optical waveguide 9 is as follows. It has a thickness of about the wavelength of semiconductor laser light (for example, about 0.8 μm), and separates the active layer 7 from the optical waveguide 9 .

以上の構成によると、半導体レーザチップ6内で励起し
たレーザ光は活性層7の両端面で反射を繰り返すが、こ
の時クラッド層12に滲み出したレーザ光は、クラッド
層12が波長程度に薄いため、さらにその下の光導波路
9にまで伝播するようになり、結果、半導体レーザチッ
プ6から光波長変換素子8にレーザ光が伝達されること
となる。
According to the above configuration, the laser beam excited within the semiconductor laser chip 6 is repeatedly reflected at both end faces of the active layer 7, but at this time, the laser beam that has seeped into the cladding layer 12 is as thin as the wavelength. Therefore, the laser light propagates further to the optical waveguide 9 below, and as a result, the laser light is transmitted from the semiconductor laser chip 6 to the optical wavelength conversion element 8.

以上のように本実施例によれば、半導体レーザチップ6
のクラッド層12を波長程度以下の厚みにして光波長変
換素子8と接して設けることにより半導体レーザチップ
6から光波長変換素子8にレーザ光が伝達されることと
なる。
As described above, according to this embodiment, the semiconductor laser chip 6
By providing the cladding layer 12 with a thickness equal to or less than the wavelength and in contact with the optical wavelength conversion element 8, laser light is transmitted from the semiconductor laser chip 6 to the optical wavelength conversion element 8.

発明の効果 以上のように本発明は半導体レーザと非線形光学効果に
基づく光波長変換機能を有する光導波路とからなる光波
長変換装置において、前記半導体レーザの活性層端面と
前記光導波路端面とを前記半導体レーザの活性層端面ま
たは前記光導波路端面に設けた間隙を挟んで突き合わせ
ることにより、活性層端面及び光導波路端面を保護しな
がら半導体レーザチップから光波長変換素子にレンズ等
の光学系を介在させることなくレーザ光が直接光結合す
ることが出来る。
Effects of the Invention As described above, the present invention provides an optical wavelength conversion device comprising a semiconductor laser and an optical waveguide having an optical wavelength conversion function based on a nonlinear optical effect. By butting the active layer end face of the semiconductor laser or the optical waveguide end face across a gap, an optical system such as a lens is inserted from the semiconductor laser chip to the optical wavelength conversion element while protecting the active layer end face and the optical waveguide end face. Laser light can be directly optically coupled without any interference.

また半導体レーザの活性層と光導波路とを波長程度以下
の間隙を介在させて平行に配することにより、半導体レ
ーザチップから光波長変換素子にレンズ等の光学系を介
在させることなくレーザ光を伝達せることができる。
In addition, by arranging the active layer of the semiconductor laser and the optical waveguide in parallel with a gap equal to or smaller than the wavelength, laser light can be transmitted from the semiconductor laser chip to the optical wavelength conversion element without intervening optical systems such as lenses. can be set.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の第1実施例における光波長変
換装置の正面図及び分解斜視図、第3図、第4図は本発
明の第2実施例における光波長変換装置の正面図及び要
部拡大正面図、第5図は従来の光波長変換装置の構成図
である。 6・・・・・・半導体レーザチップ、7・・・・・・活
11層、8・・・・・・光波長変換素子、9・・・・・
・光導波路、10・・・・・・間隙、11.12・・・
・・・クラッド層。
1 and 2 are front views and exploded perspective views of an optical wavelength conversion device according to a first embodiment of the present invention, and FIGS. 3 and 4 are front views of an optical wavelength conversion device according to a second embodiment of the present invention. The figure and an enlarged front view of main parts, and FIG. 5 are configuration diagrams of a conventional optical wavelength conversion device. 6...Semiconductor laser chip, 7...11 active layers, 8...Optical wavelength conversion element, 9...
・Optical waveguide, 10... Gap, 11.12...
...Clad layer.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザと非線形光学効果に基づく光波長変
換機能を有する光導波路とからなる光波長変換装置にお
いて、前記半導体レーザの活性層端面または前記光導波
路端面に設けた間隙を挟んで前記半導体レーザの活性層
端面と前記光導波路端面とを突き合わせたことを特徴と
する光波長変換装置。
(1) In an optical wavelength conversion device comprising a semiconductor laser and an optical waveguide having an optical wavelength conversion function based on a nonlinear optical effect, the semiconductor laser An optical wavelength conversion device characterized in that an end face of the active layer and an end face of the optical waveguide are brought into contact with each other.
(2)半導体レーザと非線形光学効果に基づく光波長変
換機能を有する光導波路とからなる光波長変換装置にお
いて、半導体レーザの活性層と光導波路とを波長程度以
下の間隙を介在させて平行に設したことを特徴とする光
波長変換装置。
(2) In an optical wavelength conversion device consisting of a semiconductor laser and an optical waveguide having an optical wavelength conversion function based on a nonlinear optical effect, the active layer of the semiconductor laser and the optical waveguide are arranged in parallel with a gap of less than the wavelength. An optical wavelength conversion device characterized by:
JP17583689A 1989-07-07 1989-07-07 Light wavelength converting device Pending JPH0339913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17583689A JPH0339913A (en) 1989-07-07 1989-07-07 Light wavelength converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17583689A JPH0339913A (en) 1989-07-07 1989-07-07 Light wavelength converting device

Publications (1)

Publication Number Publication Date
JPH0339913A true JPH0339913A (en) 1991-02-20

Family

ID=16003067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17583689A Pending JPH0339913A (en) 1989-07-07 1989-07-07 Light wavelength converting device

Country Status (1)

Country Link
JP (1) JPH0339913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134151A (en) * 1991-11-15 1993-05-28 Sharp Corp Optically coupled optical device
US6944377B2 (en) 2002-03-15 2005-09-13 Hitachi Maxell, Ltd. Optical communication device and laminated optical communication module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134151A (en) * 1991-11-15 1993-05-28 Sharp Corp Optically coupled optical device
US6944377B2 (en) 2002-03-15 2005-09-13 Hitachi Maxell, Ltd. Optical communication device and laminated optical communication module

Similar Documents

Publication Publication Date Title
US5259044A (en) Mach-Zehnder optical modulator with monitoring function of output light
JP3070016B2 (en) Optical waveguide device
JPH0954283A (en) Polarization independent type optical isolator device
JP3490745B2 (en) Composite optical waveguide type optical device
JP5277761B2 (en) Optical semiconductor device and manufacturing method thereof
US5107535A (en) Connecting method between waveguide substrate and optical fiber
US6238102B1 (en) Multiaxial optical coupler
JP3200996B2 (en) Optical waveguide device
JPH0339913A (en) Light wavelength converting device
JP3229142B2 (en) Optical device
JPS597312A (en) Optical isolator
US20030108312A1 (en) Fiber optical devices with high power handling capability
JPH0434505A (en) Optical waveguide type device and production thereof
JP2581256B2 (en) Method for fixing optical waveguide device
JPH10160951A (en) Optical multiplexing and demultiplexing circuit
JPH05196823A (en) Waveguide chip
JPS597324A (en) Coupler for optical fiber
JPH08261713A (en) Optical waveguide type displacement sensor
JPH07134220A (en) Structure of juncture of optical fiber and optical waveguide and its connecting method
JPS5929219A (en) Optical coupler with terminal for monitoring light output
JPH0973026A (en) Integrated type optical connecting structure
JPS61232405A (en) Optical demultiplexer and multiplexer
JPS6097309A (en) Optical coupling method to thin dielectric film
JPH10325911A (en) Optical waveguide element
JP3152456B2 (en) Focus error signal detecting device, optical information recording / reproducing device, and magneto-optical information recording / reproducing device