JPH0973026A - Integrated type optical connecting structure - Google Patents

Integrated type optical connecting structure

Info

Publication number
JPH0973026A
JPH0973026A JP22818295A JP22818295A JPH0973026A JP H0973026 A JPH0973026 A JP H0973026A JP 22818295 A JP22818295 A JP 22818295A JP 22818295 A JP22818295 A JP 22818295A JP H0973026 A JPH0973026 A JP H0973026A
Authority
JP
Japan
Prior art keywords
substrate
diffraction grating
optical
waveguide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22818295A
Other languages
Japanese (ja)
Inventor
Masato Ishioka
昌人 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22818295A priority Critical patent/JPH0973026A/en
Publication of JPH0973026A publication Critical patent/JPH0973026A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical connecting structure which is strong to disturbance and is small in size and low in cost by providing one substrate with diffraction grating type lenses and waveguide and introducing the light made incident through these diffraction grating type lenses to the optical waveguide via reflectors. SOLUTION: An input section is composed of the diffraction grating type lenses 7 existing on the rear surface of the substrate 1, the reflectors 9 formed by utilizing the diagonally etched window existing on the front surface of the substrate 1 and the optical waveguide 3. An output section 8 has the constitution similar to the constitution of the input section. Diffracted light 6 having the effect equal to the effect of the lenses is generated when the perpendicularly incident spatial parallel beams (a beam diameter sufficiently larger than the section of the waveguide) 5 from the outside are made incident on the diffraction grating type lenses 7. The diffracted light 6 propagates in the optical waveguide substrate 1. The diffracted light 6 focuses on the reflection metallic film 2 of the reflectors 9 existing at the ends of the optical waveguides 3. As a result, the diffracted light 6 reflects in the propagation direction of the waveguide and is changed in the optical path, by which the diffracted light is made into the guided light 4 propagating in the optical waveguide 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、平面光導波路を用
いたデバイスと、光ファイバおよび空間光との光接続構
造に関する。本発明は、平面光導波路を用いているデバ
イス部品が組み込まれている装置全般に利用することが
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device using a planar optical waveguide and an optical connection structure for an optical fiber and spatial light. INDUSTRIAL APPLICABILITY The present invention can be used for all devices in which a device component using a planar optical waveguide is incorporated.

【0002】[0002]

【従来の技術】一装置内の小型光源(例えば、半導体レ
ーザ)と平面光導波路デバイスとの光接続に必要な従来
の技術には、主に以下の(1)と、(2)の方法があ
る。 (1)従来技術1 従来技術1は、小型光源からの空間光を、一旦、光ファ
イバに光結合させ、光ファイバを光伝送媒体として利用
し、その端面と導波路基板端面との直接接着で光接続を
行なう手法である。
2. Description of the Related Art The conventional techniques required for optical connection between a small light source (for example, a semiconductor laser) and a planar optical waveguide device in one device are mainly the following methods (1) and (2). is there. (1) Prior art 1 In prior art 1, spatial light from a small light source is once optically coupled to an optical fiber, the optical fiber is used as an optical transmission medium, and the end face thereof is directly bonded to the end face of the waveguide substrate. This is an optical connection method.

【0003】図4にその一例を示し、説明する。小型光
源105(この例では、ファイバ出力半導体レーザモジ
ュール)からの光は、光ファイバ103を通して伝搬光
104となって平面光導波路101の端面102に直接
光接続される。
An example is shown in FIG. 4 and will be described. Light from the small light source 105 (fiber output semiconductor laser module in this example) becomes propagation light 104 through the optical fiber 103 and is directly optically connected to the end face 102 of the planar optical waveguide 101.

【0004】この時、光ファイバ103の末端面100
と平面光導波路101の端面102は、光学接着剤によ
り固定される。 (2)従来技術2 従来技術1は、微小レンズ(ボール、ロッドレンズ等)
を組み合わせた空間光接続の手法である。
At this time, the end face 100 of the optical fiber 103
The end face 102 of the planar optical waveguide 101 is fixed with an optical adhesive. (2) Prior art 2 Prior art 1 is a minute lens (ball, rod lens, etc.)
This is a spatial optical connection method that combines the two.

【0005】図5にその一例を示し、説明する。小型光
源305(この例ではキャンタイプ半導体レーザ)から
の発散光307は、ボールレンズ304によって平行光
309に変換され、光軸306の方向に伝搬し、ロッド
レンズ303で収束光308に変換され、平面光導波路
101の端面102に光結合する。
An example of this is shown in FIG. 5 and will be described. The diverging light 307 from the small light source 305 (can type semiconductor laser in this example) is converted into parallel light 309 by the ball lens 304, propagates in the direction of the optical axis 306, and is converted into convergent light 308 by the rod lens 303. It is optically coupled to the end face 102 of the planar optical waveguide 101.

【0006】[0006]

【発明が解決しようとする課題】従来の技術における、
平面光導波路との光接続には、光ファイバや、小型光源
の端面や、微小光学(屈折型)レンズ等の光学部品が必
要であった。そのため以下の課題がある。 (1)従来技術1(図4)における課題 光ファイバによる直接光接続では、装置内において光フ
ァイバを収納するスペースが必要なため、装置全体が大
型化する。
SUMMARY OF THE INVENTION In the prior art,
Optical components such as an optical fiber, an end face of a small light source, and a micro-optical (refractive type) lens are required for optical connection with the planar optical waveguide. Therefore, there are the following problems. (1) Problem in Prior Art 1 (FIG. 4) In direct optical connection using an optical fiber, a space for accommodating the optical fiber is required in the device, so that the entire device becomes large.

【0007】また、光ファイバ端面の微小面積(φ12
5μm)に対し接着するため、外乱に弱い。その上、、
接続端面の高精度な研磨工程が必要なため、高コストの
原因となっている。 (2)従来技術2(図5)における課題 微小光学レンズ群による空間光接続では、光源、平面光
導波路の光軸に対する個々のレンズの位置合わせが難し
い。
In addition, a small area (φ12
Since it adheres to 5 μm), it is vulnerable to disturbance. Moreover,,
This requires a highly accurate polishing process for the connection end faces, which causes high cost. (2) Problem in Prior Art 2 (FIG. 5) In spatial optical connection using a micro optical lens group, it is difficult to align the individual lenses with respect to the optical axis of the light source and the planar optical waveguide.

【0008】また、外乱による導波路端面の各軸(x,
y,z,θ)の相対位置のズレによる結合効率の低下が
問題になる。そのうえ、(1)と同様に、接続端面の高
精度な研磨工程が必要なことが問題になっている。
In addition, each axis (x,
There is a problem that the coupling efficiency decreases due to the deviation of the relative position of (y, z, θ). Moreover, as in the case of (1), there is a problem that a highly accurate polishing process of the connection end face is required.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(第1の手段)本発明に係る一体型光接続構造は、
(A)基板の表面に設けた光導波路と、(B)前記基板
の裏面に設けた回折格子型レンズと、(C)前記基板表
面の斜エッチング窓を利用したリフレクタを備え、
(D)前記リフレクタは、回折格子型レンズを通って入
射した光が焦点を結ぶ位置に設置され、前記回折格子型
レンズを通って入射した光を前記光導波路に導くことを
特徴とする。 (第2の手段)本発明に係る一体型光接続構造は、
(A)基板の表面に設けた光導波路と、(B)前記基板
の裏面に設けた回折格子型レンズと、(C)前記基板表
面の斜エッチング窓を利用したリフレクタを備え、
(D)前記リフレクタは、回折格子型レンズを通って入
射した光が焦点を結ぶ位置に設置され、前記光導波路か
らの光を回折格子型レンズを通過する方向に反射させる
ことを特徴とする。 (第3の手段)本発明に係る一体型光接続構造は、
(A)基板の表面に設けた光導波路と、(B)前記基板
の裏面に設けた回折格子型レンズと、(C)前記基板表
面の斜エッチング窓を利用したリフレクタと、(D)コ
ネクタ付光ファイバを備え、(E)前記回折格子型レン
ズは、前記光ファイバのフェルール先端からの発散光
が、前記リフレクタ上に焦点を結ぶように、基板の裏面
に設置され、(F)前記リフレクタは、前記光ファイバ
の中を通過し、フェルール先端から回折格子型レンズに
照射された光を、前記光導波路に導くことを特徴とす
る。 (第4の手段)本発明に係る一体型光接続構造は、
(A)基板の表面に設けた光導波路と、(B)前記基板
の裏面に設けた回折格子型レンズと、(C)前記基板表
面の斜エッチング窓を利用したリフレクタと、(D)コ
ネクタ付光ファイバを備え、(E)前記回折格子型レン
ズは、前記光ファイバのフェルール先端からの発散光
が、前記リフレクタ上に焦点を結ぶように、基板の裏面
に設置され、(F)前記リフレクタは、前記光導波路を
通過した光を回折格子型レンズを通過する方向に反射さ
せ、前記光ファイバ中に入射させることを特徴とする。 (第5の手段)本発明に係る一体型光接続構造は、
(A)基板の表面に設けた光導波路と、(B)前記基板
の裏面に設けた回折格子型レンズと、(C)前記基板表
面の斜エッチング窓を利用したリフレクタと、(D)コ
ネクタ付光ファイバを備え、(E)前記光ファイバのフ
ェルール先端からの照射される光が、前記回折格子型レ
ンズを通った後、前記リフレクタ上に焦点を結ぶよう
に、前記光ファイバを固定する手段を有することを特徴
とする。 (第6の手段)本発明に係る一体型光接続構造は、
(A)基板の表面に設けた光導波路と、(B)前記基板
の裏面に設けた回折格子型レンズと、(C)前記基板表
面の斜エッチング窓を利用したリフレクタと、(D)コ
ネクタ付光ファイバを備え、(E)前記光導波路を通過
し、前記リフレクタで反射され、前記回折格子型レンズ
を通過した光が前記光ファイバの中に入射する位置に、
該光ファイバを固定する手段を設けたことを特徴とす
る。
(First Means) The integrated optical connection structure according to the present invention comprises:
(A) an optical waveguide provided on the front surface of the substrate, (B) a diffraction grating lens provided on the back surface of the substrate, and (C) a reflector utilizing an oblique etching window on the front surface of the substrate,
(D) The reflector is installed at a position where light incident through the diffraction grating lens is focused, and guides light incident through the diffraction grating lens to the optical waveguide. (Second Means) The integrated optical connection structure according to the present invention comprises:
(A) an optical waveguide provided on the front surface of the substrate, (B) a diffraction grating lens provided on the back surface of the substrate, and (C) a reflector utilizing an oblique etching window on the front surface of the substrate,
(D) The reflector is installed at a position where light incident through the diffraction grating lens is focused, and reflects the light from the optical waveguide in a direction of passing through the diffraction grating lens. (Third Means) The integrated optical connection structure according to the present invention is
(A) An optical waveguide provided on the front surface of the substrate, (B) a diffraction grating type lens provided on the back surface of the substrate, (C) a reflector using an oblique etching window on the front surface of the substrate, and (D) a connector (E) the diffraction grating lens is installed on the back surface of the substrate so that the divergent light from the ferrule tip of the optical fiber focuses on the reflector, and (F) the reflector is The light that has passed through the optical fiber and has been applied to the diffraction grating lens from the tip of the ferrule is guided to the optical waveguide. (Fourth Means) The integrated optical connection structure according to the present invention is
(A) An optical waveguide provided on the front surface of the substrate, (B) a diffraction grating type lens provided on the back surface of the substrate, (C) a reflector using an oblique etching window on the front surface of the substrate, and (D) a connector (E) the diffraction grating lens is installed on the back surface of the substrate so that the divergent light from the ferrule tip of the optical fiber focuses on the reflector, and (F) the reflector is The light that has passed through the optical waveguide is reflected in a direction in which it passes through a diffraction grating type lens, and is made incident on the optical fiber. (Fifth Means) The integrated optical connection structure according to the present invention comprises:
(A) An optical waveguide provided on the front surface of the substrate, (B) a diffraction grating type lens provided on the back surface of the substrate, (C) a reflector using an oblique etching window on the front surface of the substrate, and (D) a connector (E) means for fixing the optical fiber so that the light emitted from the tip of the ferrule of the optical fiber passes through the diffraction grating lens and is focused on the reflector. It is characterized by having. (Sixth Means) The integrated optical connection structure according to the present invention is
(A) An optical waveguide provided on the front surface of the substrate, (B) a diffraction grating type lens provided on the back surface of the substrate, (C) a reflector using an oblique etching window on the front surface of the substrate, and (D) a connector An optical fiber is provided, and (E) the light passing through the optical waveguide, reflected by the reflector, and passing through the diffraction grating lens is incident on the optical fiber.
It is characterized in that means for fixing the optical fiber is provided.

【0010】従来技術(1)の接着材固定における光フ
ァイバ直接端面接続の不安定さの問題は、本発明に係る
一体型光接続構造によれば、回折格子型レンズと導波路
とを一つの基板に一体型化することで、光ファイバ端面
と導波路側基板との非接触な結合が実現でき、接着材が
介在しない高安定な光接続が可能となる。
The problem of the instability of the direct connection of the end faces of the optical fiber in the fixing of the adhesive material in the prior art (1) is that the diffraction grating lens and the waveguide are combined in one unit according to the integrated optical connection structure of the present invention. By integrating with the substrate, non-contact coupling between the end face of the optical fiber and the waveguide side substrate can be realized, and high-stable optical connection without an adhesive material can be realized.

【0011】また、光源から直接空間を伝搬する様々な
形態のビームに合わせた平面回折パターンの設計によ
り、あえて光ファイバを経由する必要のない構造のもの
には、光源からの非接触な光接続も可能であり、装置の
小型化が実現できる。
Further, due to the design of the plane diffraction pattern adapted to the various types of beams propagating in the space directly from the light source, non-contact optical connection from the light source can be made to a structure which does not need to go through an optical fiber. It is also possible, and downsizing of the device can be realized.

【0012】従来技術(2)における問題、すなわち、
結合レンズと平面光導波路基板とが分離している構造の
ため、相対的な位置ズレは避けられないという問題は、
本発明に係る一体型光接続構造によれば、一枚の基板で
導波路と回折格子型レンズが構成されている(モノシリ
ック構造)ので、フォトリソグラフィの高精度な導波路
部と回折レンズの位置合わせが可能になる。
The problem in the prior art (2), namely,
Due to the structure in which the coupling lens and the planar optical waveguide substrate are separated, the problem that relative displacement is inevitable is
According to the integrated optical connection structure of the present invention, since the waveguide and the diffraction grating type lens are constituted by a single substrate (monolithic structure), the position of the waveguide portion and the diffraction lens with high precision in photolithography Matching becomes possible.

【0013】これより、極めて安定で位置ズレのない光
接続が実現できる。また、接続は基板中で行なわれるた
め、従来技術(1)と(2)の共通課題である高精度な
端面研磨は不要になる。
As a result, an extremely stable optical connection with no misalignment can be realized. Further, since the connection is made in the substrate, the highly accurate end face polishing, which is a common problem of the conventional techniques (1) and (2), becomes unnecessary.

【0014】以上の手段により、従来技術(1)と
(2)の課題を解決することができる。そして、次のよ
うに作用する。外部入力光は導波路基板裏面の回折格子
型レンズによって、導波路端の斜エッチングリフレクタ
へ集光し、導波路へ伝搬する向きに変換され、光接続が
行なわれる。これらの構成部品は、すべて、単一基板上
に集積されているため、外乱による位置ズレはなくな
る。また端面研磨も不要になる。
By the above means, the problems of the prior arts (1) and (2) can be solved. Then, it operates as follows. The external input light is condensed by the diffraction grating type lens on the back surface of the waveguide substrate to the oblique etching reflector at the end of the waveguide and is converted to the direction of propagating to the waveguide for optical connection. Since all of these components are integrated on a single substrate, displacement due to disturbance is eliminated. Further, polishing of the end surface is not necessary.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を図1〜図3
に示す。 (第1の実施の形態)本発明の第1の実施の形態、すな
わち回折格子型レンズ一体型平面光導波路接続構造によ
る外部空間平行光との接続の形態を、図1および図2に
しめす。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to FIGS.
Shown in (First Embodiment) A first embodiment of the present invention, that is, a mode of connection with external space parallel light by a diffraction grating type lens integrated type planar optical waveguide connection structure is shown in FIGS.

【0016】第1の実施の形態においては、入力部は、
基板裏面にある回折格子型レンズ7と、基板表面にある
斜エッチングによるリフレクタ9(反射膜として金属膜
2をコーティング)と、導波路3により構成されてい
る。
In the first embodiment, the input section is
It includes a diffraction grating lens 7 on the back surface of the substrate, a reflector 9 (coated with the metal film 2 as a reflection film) on the surface of the substrate by oblique etching, and a waveguide 3.

【0017】出力部8においても、入力部と同様な構成
をしているので、外部光との入出力が可能である。図1
を用いて本光接続構造の動作について説明する。
Since the output section 8 also has the same structure as the input section, input / output with external light is possible. FIG.
The operation of this optical connection structure will be described with reference to FIG.

【0018】外部からの垂直入射空間平行光(導波路断
面に比べ十分大きいビーム径)5が回折格子型レンズ7
に入射すると、レンズと同等な作用をする回折光6が生
じ、導波路基板中1を伝搬する。
A vertical incident space parallel light (beam diameter sufficiently larger than the waveguide cross section) 5 from the outside is a diffraction grating lens 7
When incident on, the diffracted light 6 having the same function as the lens is generated and propagates through the waveguide substrate 1.

【0019】この場合の導波基板1は、回折型レンズを
採用しているため、特に材質は選ばないのが特徴であ
る。集光動作する回折光6は、導波路端にある斜エッチ
ングによるリフレクタ9の反射金属膜2上に焦点を結
び、これによって、回折光6は導波路伝搬方向に反射
し、光路を変換して導波路3を伝搬する導波光4とな
る。
Since the waveguide substrate 1 in this case uses a diffractive lens, the material is not particularly selected. The diffracted light 6 that performs the focusing operation is focused on the reflective metal film 2 of the reflector 9 by oblique etching at the end of the waveguide, whereby the diffracted light 6 is reflected in the waveguide propagation direction and the optical path is changed. The guided light 4 propagates through the waveguide 3.

【0020】導波光4の出力側は、前述と逆の動作をし
て、外部に出力光8として取り出される。従って、結合
レンズに回折型レンズを採用することで、基板材料を選
ばず導波路との表裏面における一体型構造が成り立ち、
かつ斜エッチングによるリフレクタにより、導波路への
光接続が可能になる。
The output side of the guided light 4 performs the opposite operation to the above, and is extracted as the output light 8 to the outside. Therefore, by adopting a diffractive lens as the coupling lens, an integral structure is formed on the front and back surfaces of the waveguide, regardless of the substrate material,
In addition, the oblique etching reflector enables optical connection to the waveguide.

【0021】これらは、すべてプレーナ技術を用いた一
体型構造であり、これまでの光学接着材を全く使用して
いないため、極めて安定な光接続が、低コストで実現で
きることになる。 (第2の実施の形態)本発明の第2の実施の形態を図3
にしめす。
Since all of them have an integrated structure using the planar technology and no conventional optical adhesive material is used, extremely stable optical connection can be realized at low cost. (Second Embodiment) FIG. 3 shows a second embodiment of the present invention.
I will show you.

【0022】第2の実施の形態においては、導波路30
と、斜エッチングによるリフレクタ28と、回折格子型
レンズ25とが、基板24において一体型構造を成して
おり、それらとコネク付光ファイバ21とをホールドす
るパッケージング23により、全体を構成している。
In the second embodiment, the waveguide 30
, The reflector 28 by oblique etching, and the diffraction grating lens 25 form an integral structure in the substrate 24, and the packaging 23 that holds them and the optical fiber 21 with the connection forms the whole. There is.

【0023】つぎに、第2の実施の形態(図3)の動作
を説明する。第2の実施の形態の基本動作は、第1の実
施の形態の場合と同じである。すなわち、コネクタ付光
ファイバ21のフェルール先端22からの発散光26
が、斜エッチングによるリフレクタ28上に焦点を結ぶ
ような平面パターンの回折格子型レンズ25を、基板2
4の裏面に作製することで、第1の実施の形態と同等な
作用をする。
Next, the operation of the second embodiment (FIG. 3) will be described. The basic operation of the second embodiment is the same as that of the first embodiment. That is, the divergent light 26 from the ferrule tip 22 of the optical fiber with connector 21
However, the diffraction grating type lens 25 having a plane pattern for focusing on the reflector 28 by oblique etching is attached to the substrate 2
By producing the back surface of No. 4, the same operation as that of the first embodiment is achieved.

【0024】フェルール先端22と基板24とは空間的
に離れているので、その相対位置関係を固定するため
に、パッケージ23で本発明の光接続構造全体を保持し
ている。
Since the ferrule tip 22 and the substrate 24 are spatially separated, the package 23 holds the entire optical connection structure of the present invention in order to fix the relative positional relationship.

【0025】パッケージ23と光接続構造とは、接着材
以外の固定方法を採用することができる。例えば、基板
にメタライズした半田固定等により、外乱に強い光接続
を、光ファイバにおいても実現できる。なおかつ、その
ままコネクタ付光ファイバによる脱着が自由にできるの
で、簡便で低コストな光接続を実現することができる。
For the package 23 and the optical connection structure, a fixing method other than an adhesive material can be adopted. For example, by fixing metallized solder to the substrate, optical connection resistant to disturbance can be realized in the optical fiber. Moreover, since the optical fiber with connector can be freely attached and detached as it is, a simple and low-cost optical connection can be realized.

【0026】[0026]

【発明の効果】本発明では結合レンズに回折格子型レン
ズを採用し、導波路に対して垂直な集光を、導波路へ水
平な方向に変換するための斜エッチングリフレクタを一
枚の導波路基板に集積し、一体構造にしているので、以
下に記載するような効果を奏する。 (1)接着材等を一切使わないため、外乱(位置ズレ)
に強い導波路への光接続が可能になる。 (2)すべての構成部品が共通のプレーナ技術によって
実現できるため、光接続の低コスト化が可能になる。 (3)コネクタ付光ファイバによる簡便な光接続が可能
になる。
According to the present invention, a diffraction grating type lens is used as a coupling lens, and one oblique etching reflector for converting a light collection vertical to the waveguide in a horizontal direction to the waveguide. Since it is integrated on the substrate and has an integrated structure, the following effects can be obtained. (1) Disturbance (misalignment) because no adhesives are used
Optical connection to a strong waveguide is possible. (2) Since all components can be realized by a common planar technology, the cost of optical connection can be reduced. (3) A simple optical connection can be achieved by using an optical fiber with a connector.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態である「回折格子型
レンズ一体型平面光導波路と空間平行光との光接続構
造」の動作原理を説明する断面図。
FIG. 1 is a cross-sectional view illustrating the operation principle of a “diffraction grating type lens-integrated planar optical waveguide and spatially parallel light optical connection structure” according to a first embodiment of the present invention.

【図2】図1の「回折格子型レンズ一体型平面光導波路
と空間平行光との光接続構造」の構成を示す斜視図。
FIG. 2 is a perspective view showing a configuration of “an optical connection structure of a diffraction grating type lens-integrated plane optical waveguide and spatial parallel light” of FIG. 1.

【図3】本発明の第2の実施の形態である「回折格子型
レンズ一体型平面光導波路と光ファイバとの光接続構
造」の構成並びに動作原理を説明するための断面拡大
図。
FIG. 3 is an enlarged cross-sectional view for explaining a configuration and an operating principle of a “optical connection structure between a diffraction grating type lens-integrated planar optical waveguide and an optical fiber” according to a second embodiment of the present invention.

【図4】従来技術1の「光接続技術」の構成図。FIG. 4 is a configuration diagram of “optical connection technology” of related art 1.

【図5】従来技術2の「光接続技術」の構成図。FIG. 5 is a configuration diagram of “optical connection technology” of related art 2.

【符号の説明】[Explanation of symbols]

1…光導波路基板、 2…金属反射膜、 3…光導波路、 4…導波光、 5…空間平行光(入射光)、 6…回折光、 7…回折格子型レンズ、 8…空間平行光(出射光)、 9…リフレクタ、 21…コネクタ付光ファイバ、 22…フェルール先端、 23…パッケージ(外装)、 24…光導波路基板、 25…回折格子型レンズ、 26…発散光(入射光)、 27…回折光、 28…リフレクタ、 29…金属反射膜、 30…光導波路、 31…導波光、 100…光ファイバ接続端面、 101…チャネル光導波路、 102…チャネル導波路端面、 103…光ファイバ、 104…伝搬光、 105…光ファイバ出力型半導体レーザモジュール、 303…ロッドレンズ、 304…ボールレンズ、 305…キャンタイプ半導体レーザ、 306…光軸、 307…発散出力光、 308…収束光、 309…平行光。 DESCRIPTION OF SYMBOLS 1 ... Optical waveguide substrate, 2 ... Metal reflection film, 3 ... Optical waveguide, 4 ... Guided light, 5 ... Spatial parallel light (incident light), 6 ... Diffraction light, 7 ... Diffraction grating lens, 8 ... Spatial parallel light ( Emitted light), 9 ... Reflector, 21 ... Connector-attached optical fiber, 22 ... Ferrule tip, 23 ... Package (exterior), 24 ... Optical waveguide substrate, 25 ... Diffraction grating lens, 26 ... Divergent light (incident light), 27 ... Diffracted light, 28 ... Reflector, 29 ... Metal reflective film, 30 ... Optical waveguide, 31 ... Guided light, 100 ... Optical fiber connection end face, 101 ... Channel optical waveguide, 102 ... Channel waveguide end face, 103 ... Optical fiber, 104 Propagation light, 105 ... Optical fiber output type semiconductor laser module, 303 ... Rod lens, 304 ... Ball lens, 305 ... Can type semiconductor laser, 306 ... Optical axis, 3 7 ... divergent output light, 308 ... converging light, 309 ... parallel light.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】(A)基板(1)の表面に設けた光導波路
(3)と、(B)前記基板(1)の裏面に設けた回折格
子型レンズ(7)と、(C)前記基板表面の斜エッチン
グ窓を利用したリフレクタ(9)を備え、(D)前記リ
フレクタ(9)は、回折格子型レンズ(7)を通って入
射した光が焦点を結ぶ位置に設置され、前記回折格子型
レンズ(7)を通って入射した光(5)を前記光導波路
(3)に導くことを特徴とする一体型光接続構造。
1. An optical waveguide (3) provided on a front surface of a substrate (1), (B) a diffraction grating lens (7) provided on a back surface of the substrate (1), and (C) the above. A reflector (9) using an oblique etching window on the surface of the substrate is provided. (D) The reflector (9) is installed at a position where the light incident through the diffraction grating lens (7) is focused, An integrated optical connection structure, which guides light (5) incident through a lattice type lens (7) to the optical waveguide (3).
【請求項2】(A)基板(1)の表面に設けた光導波路
(3)と、(B)前記基板(1)の裏面に設けた回折格
子型レンズ(7)と、(C)前記基板表面の斜エッチン
グ窓を利用したリフレクタ(9)を備え、(D)前記リ
フレクタ(9)は、回折格子型レンズ(7)を通って入
射した光が焦点を結ぶ位置に設置され、前記光導波路
(3)からの光を回折格子型レンズ(7)を通過する方
向に反射させることを特徴とする一体型光接続構造。
2. An optical waveguide (3) provided on the front surface of a substrate (1), (B) a diffraction grating lens (7) provided on the back surface of the substrate (1), and (C) the above. A reflector (9) utilizing an oblique etching window on the surface of the substrate is provided. (D) The reflector (9) is installed at a position where the light incident through the diffraction grating lens (7) is focused, An integrated optical connection structure characterized in that light from a waveguide (3) is reflected in a direction of passing through a diffraction grating type lens (7).
【請求項3】(A)基板(24)の表面に設けた光導波
路(30)と、(B)前記基板(24)の裏面に設けた
回折格子型レンズ(25)と、(C)前記基板表面の斜
エッチング窓を利用したリフレクタ(28)と、(D)
コネクタ付光ファイバ(21)を備え、(E)前記回折
格子型レンズ(25)は、前記光ファイバ(21)のフ
ェルール先端(22)からの発散光(26)が、前記リ
フレクタ(28)上に焦点を結ぶように、基板(24)
の裏面に設置され、(F)前記リフレクタ(28)は、
前記光ファイバ(21)の中を通過し、フェルール先端
(22)から回折格子型レンズ(25)に照射された光
(26)を、前記光導波路(30)に導くことを特徴と
する一体型光接続構造。
3. An optical waveguide (30) provided on the front surface of a substrate (24), (B) a diffraction grating lens (25) provided on the back surface of the substrate (24), and (C) the above. A reflector (28) utilizing an oblique etching window on the substrate surface, and (D)
(E) The diffraction grating lens (25) is provided with an optical fiber (21) with a connector, and divergent light (26) from the ferrule tip (22) of the optical fiber (21) is reflected on the reflector (28). To focus on the substrate (24)
(F) The reflector (28) is installed on the back surface of
The integrated type characterized in that the light (26) which has passed through the optical fiber (21) and has been irradiated from the ferrule tip (22) to the diffraction grating type lens (25) is guided to the optical waveguide (30). Optical connection structure.
【請求項4】(A)基板(24)の表面に設けた光導波
路(30)と、(B)前記基板(24)の裏面に設けた
回折格子型レンズ(25)と、(C)前記基板表面の斜
エッチング窓を利用したリフレクタ(28)と、(D)
コネクタ付光ファイバ(21)を備え、(E)前記回折
格子型レンズ(25)は、前記光ファイバ(21)のフ
ェルール先端(22)からの発散光(26)が、前記リ
フレクタ(28)上に焦点を結ぶように、基板(24)
の裏面に設置され、(F)前記リフレクタ(28)は、
前記光導波路(30)を通過した光を回折格子型レンズ
(25)を通過する方向に反射させ、前記光ファイバ
(21)中に入射させることを特徴とする一体型光接続
構造。
4. An optical waveguide (30) provided on the front surface of a substrate (24), (B) a diffraction grating lens (25) provided on the back surface of the substrate (24), and (C) the above. A reflector (28) utilizing an oblique etching window on the substrate surface, and (D)
(E) The diffraction grating lens (25) is provided with an optical fiber (21) with a connector, and divergent light (26) from the ferrule tip (22) of the optical fiber (21) is reflected on the reflector (28). To focus on the substrate (24)
(F) The reflector (28) is installed on the back surface of
An integrated optical connection structure, characterized in that light passing through the optical waveguide (30) is reflected in a direction of passing through a diffraction grating type lens (25) and is made incident on the optical fiber (21).
【請求項5】(A)基板(24)の表面に設けた光導波
路(30)と、(B)前記基板(24)の裏面に設けた
回折格子型レンズ(25)と、(C)前記基板表面の斜
エッチング窓を利用したリフレクタ(28)と、(D)
コネクタ付光ファイバ(21)を備え、(E)前記光フ
ァイバ(21)のフェルール先端(22)からの照射さ
れる光が、前記回折格子型レンズ(25)を通った後、
前記リフレクタ(28)上に焦点を結ぶように、前記光
ファイバ(21)を固定する手段(23)を有すること
を特徴とする一体型光接続構造。
5. (A) An optical waveguide (30) provided on the front surface of a substrate (24), (B) a diffraction grating lens (25) provided on the back surface of the substrate (24), and (C) the above. A reflector (28) utilizing an oblique etching window on the substrate surface, and (D)
An optical fiber (21) with a connector is provided, and (E) the light emitted from the ferrule tip (22) of the optical fiber (21) passes through the diffraction grating lens (25),
An integrated optical connection structure comprising means (23) for fixing the optical fiber (21) so as to focus on the reflector (28).
【請求項6】(A)基板(24)の表面に設けた光導波
路(30)と、(B)前記基板(24)の裏面に設けた
回折格子型レンズ(25)と、(C)前記基板表面の斜
エッチング窓を利用したリフレクタ(28)と、(D)
コネクタ付光ファイバ(21)を備え、(E)前記光導
波路(30)を通過し、前記リフレクタ(28)で反射
され、前記回折格子型レンズ(25)を通過した光が前
記光ファイバ(21)の中に入射する位置に、該光ファ
イバ(21)を固定する手段(23)を設けたことを特
徴とする一体型光接続構造。
6. (A) An optical waveguide (30) provided on the front surface of a substrate (24), (B) a diffraction grating lens (25) provided on the back surface of the substrate (24), and (C) the above. A reflector (28) utilizing an oblique etching window on the substrate surface, and (D)
An optical fiber (21) with a connector is provided, and (E) light that has passed through the optical waveguide (30), is reflected by the reflector (28), and has passed through the diffraction grating lens (25), is the optical fiber (21). ) Is provided with a means (23) for fixing the optical fiber (21) at a position where the optical fiber (21) enters.
JP22818295A 1995-09-05 1995-09-05 Integrated type optical connecting structure Withdrawn JPH0973026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22818295A JPH0973026A (en) 1995-09-05 1995-09-05 Integrated type optical connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22818295A JPH0973026A (en) 1995-09-05 1995-09-05 Integrated type optical connecting structure

Publications (1)

Publication Number Publication Date
JPH0973026A true JPH0973026A (en) 1997-03-18

Family

ID=16872501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22818295A Withdrawn JPH0973026A (en) 1995-09-05 1995-09-05 Integrated type optical connecting structure

Country Status (1)

Country Link
JP (1) JPH0973026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129501A1 (en) * 2005-05-31 2006-12-07 Nippon Sheet Glass Company, Limited Waveguide element
EP1995614A1 (en) * 2007-05-24 2008-11-26 Nitto Denko Corporation Optical waveguide device and manufacturing method thereof
CN108663822A (en) * 2018-04-20 2018-10-16 浙江大学 Point diffraction light sources based on Nanowire Waveguides

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129501A1 (en) * 2005-05-31 2006-12-07 Nippon Sheet Glass Company, Limited Waveguide element
EP1995614A1 (en) * 2007-05-24 2008-11-26 Nitto Denko Corporation Optical waveguide device and manufacturing method thereof
US8655118B2 (en) 2007-05-24 2014-02-18 Nitto Denko Corporation Optical waveguide device and manufacturing method thereof
US8744220B2 (en) 2007-05-24 2014-06-03 Nitto Denko Corporation Optical waveguide device and manufacturing method thereof
CN108663822A (en) * 2018-04-20 2018-10-16 浙江大学 Point diffraction light sources based on Nanowire Waveguides
CN108663822B (en) * 2018-04-20 2020-07-10 浙江大学 Point diffraction light source based on nanowire waveguide

Similar Documents

Publication Publication Date Title
KR100480786B1 (en) Integrated type optical head with coupler
US7293463B2 (en) Acoustoelectric conversion device
US10641966B2 (en) Free space grating coupler
JP2006522943A (en) A practical way to reduce losses associated with beam shaping and fitting external sources and optics to thin silicon waveguides
JP2000056146A (en) Light self-guide optical circuit
JP2926664B2 (en) Optical module
US6606432B2 (en) Phase mask consisting of an array of multiple diffractive elements for simultaneous accurate fabrication of large arrays of optical couplers and method for making same
JPH0973026A (en) Integrated type optical connecting structure
US5452384A (en) Optical integrated lensed connector for focussing oblique incident light
US5721426A (en) Optical transmitting/receiving module having communication lines coupled by a single lens
JPS63164034A (en) Optical waveguide type optical pickup
JPH05172633A (en) Light connection device and optical system for it
JPH02116809A (en) Optical coupler
JP2004233894A (en) Optical wiring substrate, its manufacturing method, and manufacturing method of optical element of optical wiring substrate
JPH04275483A (en) Semiconductor laser light amplifier
JPH02226783A (en) Coupling method of semiconductor laser and optical waveguide, and optical device obtained by same coupling method
JPH08261713A (en) Optical waveguide type displacement sensor
JPH01180504A (en) Optical integrated circuit
JPS6331033A (en) Optical pick-up
JP2910217B2 (en) prism
CN115421247A (en) Optical coupling structure
JPH06118260A (en) Photo-coupler
WO2001084193A1 (en) Phase mask consisting of an array of multiple diffractive elements for simultaneous accurate fabrication of large arrays of optical couplers and method for making same
JPS5814115A (en) Thick film optical circuit
JPH0339913A (en) Light wavelength converting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105