JPH02226783A - Coupling method of semiconductor laser and optical waveguide, and optical device obtained by same coupling method - Google Patents

Coupling method of semiconductor laser and optical waveguide, and optical device obtained by same coupling method

Info

Publication number
JPH02226783A
JPH02226783A JP4816189A JP4816189A JPH02226783A JP H02226783 A JPH02226783 A JP H02226783A JP 4816189 A JP4816189 A JP 4816189A JP 4816189 A JP4816189 A JP 4816189A JP H02226783 A JPH02226783 A JP H02226783A
Authority
JP
Japan
Prior art keywords
semiconductor laser
optical waveguide
optical
adhesive agent
coupling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4816189A
Other languages
Japanese (ja)
Inventor
Hayami Hosokawa
速美 細川
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP4816189A priority Critical patent/JPH02226783A/en
Publication of JPH02226783A publication Critical patent/JPH02226783A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve coupling efficiency, and stably operate a laser without affection of reflected light by coupling the outputting surface of a semiconductor laser and the end surface of an optical waveguide, via optical adhesive agent. CONSTITUTION:By using transparent optical adhesive agent such as ultraviolet ray curing adhesive agent and epoxy adhesive agent, the following are fixed; the end surface 8 of the side, of an optical waveguide member 5, which corresponds with a semiconductor laser 3, the end surface 9 of a step part of a heat sink 1, and the outputting surface 10 of the semiconductor laser 3. The optical waveguide member 5 is constituted of a substrate 6 and an optical waveguide 7 formed thereon, and the semiconductor laser 3 is constituted of a high reflectivity coating layer 13 and an active layer 14. Since the optical adhesive agent 12 is positioned at the outputting surface 10 side of the laser 3, the reflectivity of the outputting surface 10 side is decreased, and the total reflectivity can be increased by a coating layer 13. The reflectivity of the adhesive agent 12 is smaller than that of the air, so that the laser light effectively makes an incidence into the waveguide 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体レーザと光導波路との結合方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of coupling a semiconductor laser and an optical waveguide.

(従来の技術) 従来において半導体レーザとその出射光を導く光導波路
とを一体とする光学デバイスを得る場合、例えば、ヒー
トシンク上にそれぞれを、半導体レーザの出射面と光導
波路の端面とが当接される状態において固定して行って
いる。
(Prior Art) Conventionally, when obtaining an optical device that integrates a semiconductor laser and an optical waveguide that guides its emitted light, for example, each is placed on a heat sink, and the emission surface of the semiconductor laser and the end surface of the optical waveguide are in contact with each other. It is fixed in the state in which it is to be used.

(発明が解決しようとする課題) しかしながら、このような構成によれば、半導体レーザ
の出射面と光導波路の端面との間にどうしても数μm厚
の空気層が残り、下記のような問題点があった。
(Problem to be Solved by the Invention) However, with such a configuration, an air layer with a thickness of several μm inevitably remains between the emission surface of the semiconductor laser and the end face of the optical waveguide, resulting in the following problems. there were.

まず、空気層における屈折率が大きいので半導体レーザ
からの出射光の拡散が空気層で助長され、これに対し入
射されるべき光導波路はその厚みが3μ一厚程度と小さ
いので、光導波路に入射する光量が減少し、いわゆる結
合効率が低下した。
First, since the refractive index of the air layer is large, the diffusion of the emitted light from the semiconductor laser is facilitated by the air layer.On the other hand, the optical waveguide to which it should enter is as small as about 3μ thick, so it enters the optical waveguide. The amount of light transmitted decreased, and the so-called coupling efficiency decreased.

また、空気層と光導波路との屈折率の差が大きいので、
光導波路端面における反射量が大きくなり、これは上記
の結合効率の低下の原因となるとともに、反射戻り光に
より半導体レーザの動作が不安定になった。
Also, since there is a large difference in refractive index between the air layer and the optical waveguide,
The amount of reflection at the end face of the optical waveguide increased, which caused the above-mentioned reduction in coupling efficiency, and the operation of the semiconductor laser became unstable due to the reflected return light.

さらに、半導体レーザと光導波路とはそれぞれヒートシ
ンク上に固定されているので、環境温度変化によるヒー
トシンクの収縮膨張の形状変化に伴って、半導体レーザ
の出射面と光導波路の端面との間に位置づれが発生し、
半導体レーザから光導波路に正常に入射が行われなくな
る場合が発生した。
Furthermore, since the semiconductor laser and the optical waveguide are each fixed on a heat sink, as the shape of the heat sink contracts and expands due to environmental temperature changes, the positional shift between the output surface of the semiconductor laser and the end surface of the optical waveguide may occur. occurs,
There have been cases where the semiconductor laser does not enter the optical waveguide normally.

本発明は上記の問題点に鑑みてなしたもので、結合効率
に優れ、半導体レーザにおいて光導波路端面からの反射
光の問題がなく、しかも環境変化に対して安定して使用
できる半導体レーザと光導波路との結合構造を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned problems, and is a semiconductor laser and an optical guide that have excellent coupling efficiency, do not have the problem of reflected light from the end face of an optical waveguide in a semiconductor laser, and can be used stably against environmental changes. The purpose is to provide a coupling structure with a wave path.

(課題を解決するための手段) 本発明は、このような目的を達成するために、請求項(
1)の発明においては、半導体レーザと光導波路との結
合方法を、半導体レーザの出射面と光導波路の端面とを
光学接着剤を介して結合する構成とする。
(Means for Solving the Problems) In order to achieve such an object, the present invention provides the following:
In the invention of 1), the method of coupling the semiconductor laser and the optical waveguide is such that the emission surface of the semiconductor laser and the end face of the optical waveguide are coupled via an optical adhesive.

請求項(2)の発明においては、光学デバイスを、請求
項(1)の結合方法により半導体レーザと光導波路とが
結合されてなる構成とする。
In the invention of claim (2), the optical device has a structure in which a semiconductor laser and an optical waveguide are coupled by the coupling method of claim (1).

(作用) 本発明の構成によれば、半導体レーザの出射面と光導波
路の端面との間に光学接着剤が介在されるので、光学接
着剤は空気より屈折率が小さい故に半導体レーザからの
光は拡散がそれほど助長されることなく効率良く光導波
路に入射され、また、光学接着剤と光導波路との屈折率
の差がそれほど大きくないので光導波路端面における反
射量が軽減され、また光学接着剤の固定機能により半導
体レーザの出射面と光導波路の端面とか常に正しく位置
決めされる。
(Function) According to the configuration of the present invention, since the optical adhesive is interposed between the emission surface of the semiconductor laser and the end face of the optical waveguide, the optical adhesive has a lower refractive index than air, so that light from the semiconductor laser is is efficiently incident on the optical waveguide without much promotion of diffusion, and since the difference in refractive index between the optical adhesive and the optical waveguide is not so large, the amount of reflection at the end face of the optical waveguide is reduced. The fixing function ensures that the output surface of the semiconductor laser and the end face of the optical waveguide are always correctly positioned.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
。第1図は光学デバイスの斜視図、第2図は同断面図で
°ある。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of the optical device, and FIG. 2 is a sectional view thereof.

図において符号lはヒートシンクであり、ヒートシンク
は一方側が段状に高く形成され、その高く形成された部
分2上に半導体レーザ3が、低い部分4上に光導波路部
材5が設けられている。光導波路部材5は、例えばニオ
ブ酸リチウムよりなる基板6上にチタン層が拡散されて
構成される光導波路7が設けられて構成されている。
In the figure, reference numeral 1 denotes a heat sink, and one side of the heat sink is formed high in a stepped manner, and a semiconductor laser 3 is provided on the high portion 2, and an optical waveguide member 5 is provided on the low portion 4. The optical waveguide member 5 includes an optical waveguide 7 formed by diffusing a titanium layer on a substrate 6 made of, for example, lithium niobate.

そして、光導波路部材5の半導体レーザ3に対応する側
の端面8とヒートシンクlの段部端面9および半導体レ
ーザ3の出射面IOとは、紫外線硬化型接着剤やエポキ
シ接着剤等の硬化時に透明となる光学接着剤12により
固着されており、このようにして、半導体レーザ3の出
射面10と光導波路7の端面8aとを光学接着剤12を
介して結合し、従来において両面10.8a間□に存在
した空気層を除去している。
The end surface 8 of the optical waveguide member 5 on the side corresponding to the semiconductor laser 3, the stepped end surface 9 of the heat sink 1, and the output surface IO of the semiconductor laser 3 are transparent when an ultraviolet curable adhesive or an epoxy adhesive is cured. In this way, the emission surface 10 of the semiconductor laser 3 and the end surface 8a of the optical waveguide 7 are bonded via the optical adhesive 12, and in the conventional method, the emission surface 10 of the semiconductor laser 3 and the end surface 8a of the optical waveguide 7 are bonded together. The air layer that existed in □ is removed.

なお、半導体レーザ3において、13は高反射率コーテ
ィング層、14は活性層であり、コーティング層13は
、本発明のように半導体レーザ3の出射面10側に光学
接着剤I2が位置するものでは半導体レーザ3において
共振動作に必要な出射面lO側の反射率が低下するので
、半導体レーザ3のトータル反射率を向上するように設
けられるものである。
In the semiconductor laser 3, 13 is a high reflectance coating layer and 14 is an active layer, and the coating layer 13 is not one in which the optical adhesive I2 is located on the emission surface 10 side of the semiconductor laser 3 as in the present invention. This is provided to improve the total reflectance of the semiconductor laser 3, since the reflectance on the output surface lO side, which is necessary for resonance operation in the semiconductor laser 3, decreases.

上記構成により、光学接着剤12は空気より屈折率が小
さいので、半導体レーザ3からの光は拡散がそれほど助
長されることなく効率良く光導波路7に入射される。ま
た、光学接着剤lOと光導波路7との屈折率の差がそれ
ほど大きくないので、光導波路端面8aにおける反射量
が軽減される。
With the above configuration, since the optical adhesive 12 has a smaller refractive index than air, the light from the semiconductor laser 3 is efficiently incident on the optical waveguide 7 without much promotion of diffusion. Furthermore, since the difference in refractive index between the optical adhesive lO and the optical waveguide 7 is not so large, the amount of reflection at the optical waveguide end face 8a is reduced.

さらに、光学接着剤12の固定機能により半導体レーザ
3の出射面IOと光導波路7の端面8aとが常に正しく
相対するように位置決めされる。
Further, due to the fixing function of the optical adhesive 12, the output surface IO of the semiconductor laser 3 and the end surface 8a of the optical waveguide 7 are always positioned so as to correctly face each other.

第3図は第2の実施例を示し、このものでは1つの角部
に突出部20を備えるヒートシンク1を使用し、その手
前側面に横付けにして半導体レーザ3を設ける構成とし
ており、光導波路部材5の半導体レーザ3に対応する側
の端面とヒートシンクlの突出部20端面および半導体
レーザ3の出射面間に光学接着剤12を介在させた構成
としている。この第2実施例では、第1の実施例におい
ては半導体レーザ3を活性層14が水平方向となるよう
に配置したのに対し、活性層14が垂直方向に位置する
ように半導体レーザ3を配置してより高い結合効率が得
られる構成としている。
FIG. 3 shows a second embodiment, in which a heat sink 1 having a protrusion 20 at one corner is used, a semiconductor laser 3 is disposed horizontally on the front side of the heat sink 1, and an optical waveguide member is provided. An optical adhesive 12 is interposed between the end surface of the heat sink 1 on the side corresponding to the semiconductor laser 3, the end surface of the protrusion 20 of the heat sink 1, and the emission surface of the semiconductor laser 3. In this second embodiment, the semiconductor laser 3 is arranged so that the active layer 14 is in the vertical direction, whereas in the first embodiment, the semiconductor laser 3 is arranged so that the active layer 14 is in the horizontal direction. The structure is such that higher coupling efficiency can be obtained.

すなわち、半導体レーザ3の出射光は楕円型の拡散光で
あり、その広がり角度は活性層14の面方向と一致する
方向が小さく(約to’)、直交する方向が大きい(約
35°)。したがってこの実施例に示すように、広がり
角が小さい方向を光導波路7の厚み方向に合わせるよう
にすれば、基板および空気中に放射される光が減少され
光の損失がより軽減されるものである。
That is, the emitted light from the semiconductor laser 3 is an elliptical diffused light, and its spread angle is small in the direction coinciding with the surface direction of the active layer 14 (approximately to') and large in the direction orthogonal to it (approximately 35 degrees). Therefore, as shown in this embodiment, by aligning the direction in which the divergence angle is small with the thickness direction of the optical waveguide 7, the light emitted into the substrate and the air can be reduced, and the loss of light can be further reduced. be.

第4図と第5図とは第3の実施例を示すものであり、こ
のものでは光導波路部材5の光導波路7および基板6の
一部を一体に切欠き、その切欠位置の上部に半導体レー
ザ3を設けるとともに、半導体レーザ3上にヒートシン
ク30を設け、光導波路部材5の切欠端面8と半導体レ
ーザ3の出射面10間に光学接着剤12を介在させた構
成としている。31は電極である。
4 and 5 show a third embodiment, in which a part of the optical waveguide 7 and the substrate 6 of the optical waveguide member 5 are cut out integrally, and a semiconductor is placed above the cutout position. A laser 3 is provided, a heat sink 30 is provided on the semiconductor laser 3, and an optical adhesive 12 is interposed between the cutout end surface 8 of the optical waveguide member 5 and the emission surface 10 of the semiconductor laser 3. 31 is an electrode.

上記光導波路部材5は基板6を垂直方向のエツチングに
より切欠くので、切欠きよる寸法aは精度良く得られ、
これにより、半導体レーザ3の光導波路7への高さ方向
における設置時の位置合わせが容易にできる構成として
いる。また、半導体レーザ3と光導波路部材5とがヒー
トシンク上に設けられないので、そのヒートシンクの温
度変化に対応する収縮膨張の影響により半導体レーザ3
の出射面lOと光導波路7との位置関係が常に正しい位
置に保持される。
Since the optical waveguide member 5 is formed by cutting out the substrate 6 by vertical etching, the dimension a due to the notch can be obtained with high precision.
This makes it possible to easily align the semiconductor laser 3 with respect to the optical waveguide 7 when it is installed in the height direction. Further, since the semiconductor laser 3 and the optical waveguide member 5 are not provided on a heat sink, the semiconductor laser 3 is affected by contraction and expansion corresponding to temperature changes of the heat sink.
The positional relationship between the output surface lO and the optical waveguide 7 is always maintained at the correct position.

また、上記の第3の実施例に示すように光導波路部材5
を切欠いて半導体レーザ3を設ける構成とすれば、その
水平方向における切欠き方向を選択することにより、第
6図の平面図に示すように半導体レーザ3から光導波路
7への入射方向を適宜に設定できるようになる。
Further, as shown in the third embodiment above, the optical waveguide member 5
If the semiconductor laser 3 is provided with a notch, by selecting the direction of the notch in the horizontal direction, the direction of incidence from the semiconductor laser 3 to the optical waveguide 7 can be adjusted appropriately as shown in the plan view of FIG. You will be able to set it.

なお、第3図ないし第6図において、第1図と第2図と
に対応する部分には同一の番号を付した。
In FIGS. 3 to 6, parts corresponding to those in FIGS. 1 and 2 are given the same numbers.

(発明の効果) したがって本発明によれば、半導体レーザの出射面と光
導波路の端面との間に光学接着剤が介在されるので、光
学接着剤は空気より屈折率が小さい故に半導体レーザか
らの光は拡散がそれほど助長されることなく効率良く光
導波路に入射され、これにより半導体レーザと光導波路
との結合効率が向上される。
(Effects of the Invention) Therefore, according to the present invention, since the optical adhesive is interposed between the emission surface of the semiconductor laser and the end face of the optical waveguide, the optical adhesive has a lower refractive index than air, so that the optical adhesive is free from the semiconductor laser. Light is efficiently incident on the optical waveguide without much promotion of diffusion, thereby improving the coupling efficiency between the semiconductor laser and the optical waveguide.

また、光学接着剤と光導波路との屈折率の差がそれほど
太き(ないので、光導波路端面における反射量が軽減さ
れ、これにより半導体レーザは反射光の影響を受けるこ
となく安定して作動される。
In addition, since the difference in refractive index between the optical adhesive and the optical waveguide is not that large, the amount of reflection at the end face of the optical waveguide is reduced, which allows the semiconductor laser to operate stably without being affected by reflected light. Ru.

さらに、光学接着剤の固定機能により半導体レーザの出
射面と光導波路の端面とが常に正しく位置決めされ、半
導体レーザから光導波路への入射が常に安定して行われ
る。
Further, due to the fixing function of the optical adhesive, the emission surface of the semiconductor laser and the end face of the optical waveguide are always correctly positioned, and the incidence from the semiconductor laser to the optical waveguide is always performed stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の実施例に関し、第1図は
光学デバイスの斜視図、第2図は同断面図、第3図は第
2実施例の斜視図、第4図は第3実施例の斜視図、第5
図は同断面図、第6図は第3実施例の変形例を示す平面
図である。 3・・・反射面、 7・・・光導波路、 8a・・・光導波路端面、 10・・・出射面、 12・・・光学接着剤。
1 to 5 relate to embodiments of the present invention, in which FIG. 1 is a perspective view of an optical device, FIG. 2 is a sectional view thereof, FIG. 3 is a perspective view of the second embodiment, and FIG. 4 is a perspective view of the optical device. Perspective view of 3rd embodiment, 5th
The figure is a sectional view of the same, and FIG. 6 is a plan view showing a modification of the third embodiment. 3... Reflection surface, 7... Optical waveguide, 8a... Optical waveguide end surface, 10... Output surface, 12... Optical adhesive.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザの出射面と光導波路の端面とを光学
接着剤を介して結合することを特徴とする半導体レーザ
と光導波路との結合方法。
(1) A method for coupling a semiconductor laser and an optical waveguide, characterized by coupling the emission surface of the semiconductor laser and the end face of the optical waveguide via an optical adhesive.
(2)請求項(1)の結合方法により半導体レーザと光
導波路とが結合されてなる光学デバイス。
(2) An optical device in which a semiconductor laser and an optical waveguide are coupled by the coupling method according to claim (1).
JP4816189A 1989-02-27 1989-02-27 Coupling method of semiconductor laser and optical waveguide, and optical device obtained by same coupling method Pending JPH02226783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4816189A JPH02226783A (en) 1989-02-27 1989-02-27 Coupling method of semiconductor laser and optical waveguide, and optical device obtained by same coupling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4816189A JPH02226783A (en) 1989-02-27 1989-02-27 Coupling method of semiconductor laser and optical waveguide, and optical device obtained by same coupling method

Publications (1)

Publication Number Publication Date
JPH02226783A true JPH02226783A (en) 1990-09-10

Family

ID=12795660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4816189A Pending JPH02226783A (en) 1989-02-27 1989-02-27 Coupling method of semiconductor laser and optical waveguide, and optical device obtained by same coupling method

Country Status (1)

Country Link
JP (1) JPH02226783A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297218A (en) * 1991-12-20 1994-03-22 Sony Corporation Optical semiconductor laser and optical waveguide alignment device
JP2009093093A (en) * 2007-10-11 2009-04-30 Furukawa Electric Co Ltd:The Optical module
JP2009290066A (en) * 2008-05-30 2009-12-10 Toshiba Corp Semiconductor light-emitting device
US20130163993A1 (en) * 2011-12-27 2013-06-27 Electronics And Telecommunications Research Institute Directly-coupled wavelength-tunable external cavity laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297218A (en) * 1991-12-20 1994-03-22 Sony Corporation Optical semiconductor laser and optical waveguide alignment device
JP2009093093A (en) * 2007-10-11 2009-04-30 Furukawa Electric Co Ltd:The Optical module
JP2009290066A (en) * 2008-05-30 2009-12-10 Toshiba Corp Semiconductor light-emitting device
US20130163993A1 (en) * 2011-12-27 2013-06-27 Electronics And Telecommunications Research Institute Directly-coupled wavelength-tunable external cavity laser

Similar Documents

Publication Publication Date Title
US6987906B2 (en) Optical connection device
US10082625B2 (en) Optical component with angled-facet waveguide
US8358892B2 (en) Connection structure of two-dimensional array optical element and optical circuit
US6345139B1 (en) Semiconductor light emitting element coupled with optical fiber
US7218804B2 (en) Method and device for establishing an optical connection between an optoelectronic component and an optical waveguide
US6862388B2 (en) High density fibre coupling
US5757830A (en) Compact micro-optical edge-emitting semiconductor laser assembly
US6819840B2 (en) Optical transmitting/receiving module and method for manufacturing the same
US5297218A (en) Optical semiconductor laser and optical waveguide alignment device
JPH02226783A (en) Coupling method of semiconductor laser and optical waveguide, and optical device obtained by same coupling method
JPH01307707A (en) Optical coupling circuit
JP2000056168A (en) Optical transmitter
US20200266604A1 (en) Mounting structure for optical module
JPH0973026A (en) Integrated type optical connecting structure
JPH04208905A (en) Optical semiconductor module
JPH03249611A (en) Light-convergent grating coupler device
KR0155507B1 (en) The method of manufacturing a luminous module for optical communication
US20180284344A1 (en) Waveguide corner structure
CN116745666A (en) Optical waveguide element, light guide plate, and optical axis adjustment method
JPH01241030A (en) Optical output monitoring device
JPH01113704A (en) Optical circuit board
JPH02226782A (en) Semiconductor laser device and coupling method of semiconductor laser device and optical fiber
JPS6319842B2 (en)
JPH06103542B2 (en) Waveguide type optical head
JP2001356248A (en) Optical module