JPS58156599A - Preparation of 3-5 group compound semiconductor single crystal - Google Patents

Preparation of 3-5 group compound semiconductor single crystal

Info

Publication number
JPS58156599A
JPS58156599A JP3978582A JP3978582A JPS58156599A JP S58156599 A JPS58156599 A JP S58156599A JP 3978582 A JP3978582 A JP 3978582A JP 3978582 A JP3978582 A JP 3978582A JP S58156599 A JPS58156599 A JP S58156599A
Authority
JP
Japan
Prior art keywords
boat
temperature
thermocouple
single crystal
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3978582A
Other languages
Japanese (ja)
Other versions
JPS6229394B2 (en
Inventor
Seiji Mizuniwa
清治 水庭
Junkichi Nakagawa
中川 順吉
Toshiya Toyoshima
豊島 敏也
Tomoki Inada
稲田 知己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3978582A priority Critical patent/JPS58156599A/en
Publication of JPS58156599A publication Critical patent/JPS58156599A/en
Publication of JPS6229394B2 publication Critical patent/JPS6229394B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a high-quality single crystal, by applying a definite temperature gradient in a high temperature furnace containing a quartz boat for the growth of a III-V group compound, and shifting the boat along the direction of length keeping the temperature of the boat constant as detected by the thermocouple mounted near the boat. CONSTITUTION:A reaction tube 3 is inserted into the high temperature furnace 1 composed of a plurality of zones M, S1, S2 and S3, and a boat 4 containing molten GaAs 6 and a seed 5 is inserted into the reaction tube 3. A definite temperature gradient is formed along the reaction tube 3 by using the thermocouple T1 mounted at the zone M near the boat 4 as a reference temperature detector, and controlling the other zones with reference to the zone M. The thermocouple T2 placed near the boat 4 is shifted along the length of the boat 4 while controlling the heating current of each zone to maintain the temperature detected by the thermocouple T2 to the melting point of GaAs. A GaAs single crystal having low dislocation density can be prepared by this process, easily, economically, in high yield.

Description

【発明の詳細な説明】 本発明はポート成長法による■−■族化合物半導体単結
晶の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ■-■ group compound semiconductor single crystal by a port growth method.

■−v族化合物半導体の製造方法の例として砒化ガリウ
ム(Ga As )の場合を説明する。ボート成長法に
よる単結晶製法としては水平ブリッジマン法(HB法)
が一般的である。この方法は均熱管等の支えによシ石英
ガラス反応管を電気炉と独立に固定し、電気炉をポート
の長さ方向に移動させて結晶化させる方法であるが、次
のような欠点をもっている。
(2) The case of gallium arsenide (GaAs) will be explained as an example of the method for manufacturing a V-group compound semiconductor. Horizontal Bridgman method (HB method) is a single crystal production method using the boat growth method.
is common. In this method, the quartz glass reaction tube is fixed independently of the electric furnace using a support such as a soaking tube, and the electric furnace is moved in the length direction of the port for crystallization, but it has the following drawbacks. There is.

(1)装置全体が長くなり大型となる。(1) The entire device becomes long and large.

(2)電気炉の移動機構が必要なため複雑高価となる。(2) A moving mechanism for the electric furnace is required, which is complicated and expensive.

(3)均熱管等の支えが高価であシ熱変形し易い。(3) Supports for heat soaking tubes and the like are expensive and easily deformed by heat.

このような見地から次に述べる温度傾斜法(OF法)が
見直されている。OF法はボートの長さ方向に温度勾配
を設け、この温度勾配を一定に保ったまま降温すること
により結晶化させる方法である。即ち、電気炉もポート
も移動させることなく温度制御のみによる方法である。
From this viewpoint, the temperature gradient method (OF method) described below has been reviewed. The OF method is a method in which a temperature gradient is provided in the length direction of the boat, and the temperature is lowered while keeping this temperature gradient constant to crystallize. That is, this is a method that only uses temperature control without moving the electric furnace or ports.

この方法は系の温度を1260〜1280℃まで昇温さ
せるので、反応管等の変形が若干問題にはなるが、機械
的な駆動を必要としないので装置は単純となシ、電気炉
の移動による振動で結晶化を乱すこともない。
This method raises the temperature of the system to 1260-1280°C, so deformation of the reaction tube etc. is a slight problem, but since no mechanical drive is required, the equipment is simple, and the electric furnace can be moved. Vibrations caused by this do not disturb crystallization.

更に、長い均熱管は必要とせず単に炉内に反応管を設置
する支えがあればよい等の利点をもっている。
Further, it has the advantage that a long soaking tube is not required and only a support for installing the reaction tube in the furnace is required.

しかしGF法での大きな問題点の一つは結晶の成長速度
を一定に保つことが難かしいということでちる。即ち、
電気炉を長手方向に数ゾーンに分割して各部の温度勾配
を一定に保つのであるが、実際は均一な温度勾、配を得
ることは困難で、ゾーンの数だけ長さ方向の温度分布に
凹凸が発生してしまう。通常は一定の降温速度で結晶化
させるため温度勾配に凹凸があれば成長速度に差異を生
じてしま、う。
However, one of the major problems with the GF method is that it is difficult to maintain a constant crystal growth rate. That is,
An electric furnace is divided into several zones in the longitudinal direction to keep the temperature gradient constant in each part, but in reality it is difficult to obtain a uniform temperature gradient, and the temperature distribution in the longitudinal direction is uneven by the number of zones. will occur. Normally, crystallization occurs at a constant rate of cooling, so if there are irregularities in the temperature gradient, a difference will occur in the growth rate.

また、低転位結晶を得るには結晶成長における固液界面
をやや凸又は平らに制御することが必要であるが、この
ような界面形状は成長速度に大きく依存する。成長速度
を一定に保つには次のごとく制御することが必要である
Furthermore, in order to obtain a low-dislocation crystal, it is necessary to control the solid-liquid interface during crystal growth to be slightly convex or flat, but such an interface shape largely depends on the growth rate. In order to keep the growth rate constant, it is necessary to control it as follows.

(1)  電気炉のゾーン数を増すことにより温度内(
2)伺等かの方法で固液界面を検出し、成長速度が一定
になるように降温速度をフィードバク制御する。
(1) By increasing the number of zones in the electric furnace, the temperature (
2) Detect the solid-liquid interface using the method described by Iki et al., and control the cooling rate in feedback so that the growth rate remains constant.

等の方法が考えられるが、装置が複雑高価になるという
欠点をもっている。
The following methods are conceivable, but they have the disadvantage that the equipment is complicated and expensive.

本発明はボートの長さ方向の温度分布に若干の凹凸はあ
っても結晶成長速度を一定にして良質の単結晶を得るこ
とができるI−V族化合物半導体単結晶の製造方法を提
供することを目的とし、その特徴とするところは、複数
ゾーンよシなる電気炉のボートに近いゾーンMに設置し
た熱電対Tlを標準とし、他のゾーンはゾーンMとの温
度差を設定して制御することによシ所定の温度勾配を作
成すると共に、ポート近傍に設置した他の熱電対T2の
検知温度を一定に保つごとく各ゾーンの加熱電流を制御
し乍ら、熱電対T2をボートの長さ方向に移動させるこ
とにある。
The present invention provides a method for manufacturing a group IV compound semiconductor single crystal, which can maintain a constant crystal growth rate and obtain a high-quality single crystal even if there is some unevenness in the temperature distribution in the longitudinal direction of the boat. The aim is to control the thermocouple Tl installed in zone M near the boat of the electric furnace, which has multiple zones, as the standard, and control the other zones by setting the temperature difference with zone M. In particular, the thermocouple T2 is connected to the length of the boat while controlling the heating current in each zone to create a predetermined temperature gradient and to maintain a constant temperature sensed by the other thermocouple T2 installed near the port. The purpose is to move in the direction.

第1図は本発明の一実施例℃ある製造方法を実施する電
気炉の断面図である。電気炉は高温炉1と低温炉202
つの部分よりなり、高温炉lは81”83およびMの4
つのゾーンより構成されている。GaAs  成長用の
石英ボート4はMゾーンに一番近い所にあシ、とのMゾ
ーンに近づけて熱電対T1 を置いて温度を検出する。
FIG. 1 is a sectional view of an electric furnace in which a manufacturing method according to an embodiment of the present invention is carried out. The electric furnace is a high temperature furnace 1 and a low temperature furnace 202.
The high temperature furnace is made up of 81"83 and 4" parts.
It consists of two zones. The quartz boat 4 for GaAs growth has reeds closest to the M zone, and a thermocouple T1 is placed close to the M zone to detect the temperature.

また、このTI温度を基準として他のゾーン81  、
 82  +  83に設置された熱電対TS1 r 
TS2 、 TS3の温度との差(偏差)をall  
82  > 83各ゾーンの偏差調節器へ導ひき、偏差
を一定に保つ様な温度調節を行なわせる。そしテTl 
 とTSI 、 TS2 + TS3 (!: (D偏
差値を適当に決めることにより高温炉]内に一定の温度
勾配を設ける。
Also, other zones 81,
Thermocouple TS1 r installed at 82 + 83
The difference (deviation) between the temperatures of TS2 and TS3 is all
82 > 83 The temperature is guided to the deviation controller of each zone and the temperature is adjusted to keep the deviation constant. Soshite Tl
and TSI, TS2 + TS3 (!: (By appropriately determining the D deviation value, a constant temperature gradient is provided in the high temperature furnace).

反応管3の中の石英ボート4にはシード5とGaAs融
液6を収容し、反応管3の右端にはAs7を設置してい
る。T2の温度計を石英ボート4の近傍に位置させてそ
の温度をQa Asの融点1280℃に調節することに
よシ次の様な温度分布をもたせる。
A quartz boat 4 in the reaction tube 3 accommodates a seed 5 and a GaAs melt 6, and an As 7 is installed at the right end of the reaction tube 3. By positioning the T2 thermometer near the quartz boat 4 and adjusting its temperature to 1280° C., which is the melting point of QaAs, the following temperature distribution is obtained.

第2図は第1図の電気炉内の温度分布を示す線図である
。実線9は電気炉内の温度分布を示し、温度計T2の先
端はGa Asの融点1238℃のTmとしてシード5
側の温度は低く、石英ボート40本体側を高く保つこと
によってGaAa@液を生じさせる。そしてこのまま石
英ボート4を降温させれば通常のOF法と同じであるが
、本実施例においては温度計T2をL方向に移動させ乍
ら温度Tmを保持させるようにする。即ち、最初は破線
8の状態で溶融した後実線9の状態とし、この状態を維
持し乍ら左方に移動させる。
FIG. 2 is a diagram showing the temperature distribution in the electric furnace of FIG. 1. The solid line 9 shows the temperature distribution in the electric furnace, and the tip of the thermometer T2 is set at Tm, which is the melting point of GaAs at 1238°C, and the seed 5 is
The temperature on the side is low, and by keeping the temperature on the main body side of the quartz boat 40 high, GaAa@ liquid is generated. If the temperature of the quartz boat 4 is lowered as it is, it is the same as the normal OF method, but in this embodiment, the temperature Tm is maintained while the thermometer T2 is moved in the L direction. That is, it is first melted in the state shown by the broken line 8 and then brought to the state shown by the solid line 9, and while this state is maintained, it is moved to the left.

電気炉1内に上記のような温度勾配を設けであるので、
T2の温度を一定に保ったまま高温側(L方向)へ移動
させることは、温度分布を一定に保ったまま降温するの
と全く同じ効果を生じる。
Since the above temperature gradient is provided in the electric furnace 1,
Moving to the high temperature side (L direction) while keeping the temperature of T2 constant produces exactly the same effect as lowering the temperature while keeping the temperature distribution constant.

また、結晶の成長速度は多少の温度分布の凹凸に無関係
にT2の移動速度で規定されるので、温度分布の精度も
緩和されることになる。
Furthermore, since the crystal growth rate is determined by the moving speed of T2 regardless of the degree of irregularity in the temperature distribution, the accuracy of the temperature distribution is also relaxed.

次にGa As単結晶の育成を例として実施例を説明す
る。
Next, an example will be described using the growth of a GaAs single crystal as an example.

(実施例) 長さ約23(Mlの石英ボート4にGa400fとドー
パントとしての5i120〜とを混合して収容し、その
石英ボート4の右端に糧結晶を置く。
(Example) Ga400f and 5i120~ as a dopant are mixed and housed in a quartz boat 4 having a length of about 23 (Ml), and a food crystal is placed at the right end of the quartz boat 4.

これを石英ガラス製の反応管3の左端に設置すると共に
他端にはAs 7を444を入れ、5X10’Torr
以下の減圧下で1時間真空引きを行なった後溶封して第
1図に示すような2連式電気炉内に設置する。
This was installed at the left end of the reaction tube 3 made of quartz glass, and 444 As7 was put in the other end, and the temperature was set at 5X10'Torr.
After evacuation was performed for one hour under the following reduced pressure, the product was sealed and placed in a two-barrel electric furnace as shown in FIG.

As側の低温炉2を約610℃に保ってAsの蒸気圧は
1 atm、に維持する。一方高温炉1は熱電対T2を
シード5の付近位置に置いて昇温させ、1200℃付近
でGa As合成反応を行なわせた後、更に昇温して熱
電対T2を1238℃とすると共に、Ga As融液中
の温度勾配を0.5 deg/crnに調整して7−ド
付けを行なう。その後は熱電対T2をL方向へlOm/
hrの速度で移動させる。
The low temperature furnace 2 on the As side is maintained at about 610° C., and the vapor pressure of As is maintained at 1 atm. On the other hand, in the high-temperature furnace 1, a thermocouple T2 is placed near the seed 5 and the temperature is raised to perform a GaAs synthesis reaction at around 1200°C, and then the temperature is further raised to bring the temperature of the thermocouple T2 to 1238°C. The temperature gradient in the GaAs melt is adjusted to 0.5 deg/crn to perform 7-dot deposition. After that, move the thermocouple T2 in the L direction by lOm/
Move at a speed of hr.

このようにして石英ボート4の左端にまで移動させた後
30時間経過して結晶全体が固化したことを確認したな
らば、その後は約100 deg/ hrの速度で室温
まで冷却する。これによって幅5crn、長さ23Iy
nのGa As単結晶8232が得られ、これの結晶成
長の様子を観察した結果、成長速度はtlfflo±1
 wm/ hrの範囲に入り、しかも、固液界面は平面
のまま変動しないことが判明した。
When it is confirmed that the entire crystal has solidified 30 hours after being moved to the left end of the quartz boat 4 in this manner, the crystal is cooled to room temperature at a rate of about 100 deg/hr. This results in a width of 5 crn and a length of 23 Iy.
n GaAs single crystal 8232 was obtained, and as a result of observing its crystal growth, the growth rate was tlfflo±1
wm/hr, and it was found that the solid-liquid interface remained flat and did not fluctuate.

また、この単結晶の(1001面出しを行ない、溶融K
OHでエツチングして転位密度を測定したところ、石英
ボート4に接触している部分の周囲5mを除いて500
個/−以下の低転位密度(EPD)の単結晶であること
を確認した。
In addition, the (1001 plane) of this single crystal was carried out, and the molten K
When the dislocation density was measured by etching with OH, it was found that the dislocation density was 500 m except for the 5 m circumference of the part in contact with the quartz boat 4.
It was confirmed that it was a single crystal with a low dislocation density (EPD) of less than 1/-.

本実施例のGa As半導体単結晶の製造方法は、石英
ボートのシードに接近して置かれた温度計でGa As
の溶融点を確認し乍らその温度計をボート端にゆっくり
移動させることによって、従来のように電気炉を移動さ
せることなく温度計を移動させるという簡単な機構を用
いて製造する事が可能となるという効果が得られる。
In the method for manufacturing a GaAs semiconductor single crystal of this example, GaAs is heated using a thermometer placed close to a seed in a quartz boat.
By slowly moving the thermometer to the end of the boat while checking the melting point of You can get the effect of

上記実施例はGa As単結晶の育成について説明した
が、インジウムリン(InP ) 、ガリウムアンチモ
ン(Garb )等信の化合物半導体への応用も可能で
ある。
Although the above embodiment describes the growth of a GaAs single crystal, application to compound semiconductors such as indium phosphide (InP) and gallium antimony (Garb) is also possible.

本発明の■−■族化合物半導体単結晶の製造方法は、次
のよう彦効果をもっている。
The method for producing a single crystal of a ■-■ group compound semiconductor of the present invention has the following Hiko effect.

(1)単純、廉価な手法でOF法における成長速度管理
の難しさを改善できる。
(1) The difficulty of controlling the growth rate in the OF method can be improved using a simple and inexpensive method.

(2)  石英ボート内の温度分布に凹凸があっても結
晶成牛に支障なく成長速度を確保できる。
(2) Even if there are irregularities in the temperature distribution inside the quartz boat, the growth rate can be maintained without causing any problems to the crystallized cow.

又は自由に変化させることができる。Or it can be changed freely.

(3)  結晶成長の固液界面のふらつきがなくなる。(3) Eliminates fluctuations at the solid-liquid interface during crystal growth.

(4)上記の結果として低転位密度Ga As単結晶を
歩留り良く育成できる。
(4) As a result of the above, low dislocation density GaAs single crystals can be grown with good yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である製造方法を実施する電
気炉の断面図、第2図は第1図の電気炉内の温度分布を
示す線図である。 l・・・高温炉、2・・・低温炉、3・・・反応管、4
・・・石英ボート、5・・・シード、6・・・Ga A
s融液、7・・A%71 国 ZP r141f M
FIG. 1 is a sectional view of an electric furnace for carrying out a manufacturing method according to an embodiment of the present invention, and FIG. 2 is a diagram showing the temperature distribution in the electric furnace of FIG. 1. l...High temperature furnace, 2...Low temperature furnace, 3...Reaction tube, 4
...Quartz boat, 5...Seed, 6...Ga A
s Melt, 7...A%71 Country ZP r141f M

Claims (1)

【特許請求の範囲】[Claims] 1゜ ボートの長さ方向に設けた温度勾配を一定に保持
したまま降温して結晶化させる■−■族化合物半導体単
結晶の製造方法において、複数ゾーンよりなる電気炉の
上記ポートに近いゾーンMに設置した熱電対T、を標準
とし、他のゾーンは上記ゾーンMとの温度差を設定して
制御することにより所定の温度勾配を作成すると共に、
上記ポート近傍に設置した他の熱電対T2の検知温度を
一定に保つごとく上記各ゾーンの加熱電流を制御し乍ら
、上記熱電対T2を上記ボートの長さ方向に移動させる
ことを特徴とする■−■族化合物半導体単結晶の製造方
法。
1゜ In a method for producing a ■-■ group compound semiconductor single crystal in which the temperature is lowered and crystallized while maintaining a constant temperature gradient in the length direction of the boat, a zone M near the above-mentioned port of an electric furnace consisting of multiple zones is used. The thermocouple T installed in the zone M is set as the standard, and the other zones are controlled by setting the temperature difference with the zone M to create a predetermined temperature gradient,
The thermocouple T2 is moved in the length direction of the boat while controlling the heating current in each zone so as to keep the temperature detected by another thermocouple T2 installed near the port constant. ■-■ Method for producing group compound semiconductor single crystal.
JP3978582A 1982-03-12 1982-03-12 Preparation of 3-5 group compound semiconductor single crystal Granted JPS58156599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3978582A JPS58156599A (en) 1982-03-12 1982-03-12 Preparation of 3-5 group compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3978582A JPS58156599A (en) 1982-03-12 1982-03-12 Preparation of 3-5 group compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS58156599A true JPS58156599A (en) 1983-09-17
JPS6229394B2 JPS6229394B2 (en) 1987-06-25

Family

ID=12562585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3978582A Granted JPS58156599A (en) 1982-03-12 1982-03-12 Preparation of 3-5 group compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS58156599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145499A (en) * 1988-12-28 1990-06-04 Tsuaitowan Faaren Gonie Jishu Ienjiou Yuen Growing method for gallium arsenide single crystals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219990A (en) * 1988-02-19 1989-09-01 Internatl Business Mach Corp <Ibm> Paper money processor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215073A (en) * 1975-07-26 1977-02-04 Setozaki Tekkosho:Kk Cargo ship having movable deck
JPS56100200A (en) * 1980-01-17 1981-08-11 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing gallium arsenide single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215073A (en) * 1975-07-26 1977-02-04 Setozaki Tekkosho:Kk Cargo ship having movable deck
JPS56100200A (en) * 1980-01-17 1981-08-11 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing gallium arsenide single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145499A (en) * 1988-12-28 1990-06-04 Tsuaitowan Faaren Gonie Jishu Ienjiou Yuen Growing method for gallium arsenide single crystals

Also Published As

Publication number Publication date
JPS6229394B2 (en) 1987-06-25

Similar Documents

Publication Publication Date Title
KR100853842B1 (en) Method of manufacturing bulk single crystal of gallium nitride
JPS58156599A (en) Preparation of 3-5 group compound semiconductor single crystal
EP0102054B1 (en) Method for growing gaas single crystal by using floating zone
JPH02145499A (en) Growing method for gallium arsenide single crystals
EP1114884A1 (en) Process for producing compound semiconductor single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
KR930000903B1 (en) Temperature control method of low temperature part in simple crystal manufacture of iii-v compound semiconductor
JPS62162687A (en) Production of indium phosphide
JPS62288186A (en) Production of compound semiconductor single crystal containing high vapor pressure component
JPH0631192B2 (en) Method and apparatus for manufacturing semiconductor single crystal
JPH0329035B2 (en)
JPH02229783A (en) Method for growing single crystal of compound semiconductor by vertical type boat method
JPS61215292A (en) Apparatus for producing compound semiconductor single crystal
JPH04160091A (en) Production of single crystal
JPH05254979A (en) Mehtod and apparatus for producing compound semiconductor single crystal
JPS63134594A (en) Production of single crystal of iii-v compound semiconductor
JPS6335408A (en) Synthesis of polycrystalline indium phosphide
JPH0426593A (en) Apparatus for producing compound single crystal and production thereof
JPH08217589A (en) Production of single crystal
JPH04260684A (en) Production device of single crystal of compound semiconductor
JPH01119600A (en) Production of iii-v compound semiconductor
JPS62158186A (en) Production of single crystal of compound semiconductor
JPS5938183B2 (en) Single crystal manufacturing method
JPH0769773A (en) Production of single crystal
Hársy et al. Multiple zone furnaces for synthetizing and growing GaAs and InAs