JPS58154221A - Method of producing niobium electrolytic condenser - Google Patents

Method of producing niobium electrolytic condenser

Info

Publication number
JPS58154221A
JPS58154221A JP3657082A JP3657082A JPS58154221A JP S58154221 A JPS58154221 A JP S58154221A JP 3657082 A JP3657082 A JP 3657082A JP 3657082 A JP3657082 A JP 3657082A JP S58154221 A JPS58154221 A JP S58154221A
Authority
JP
Japan
Prior art keywords
niobium
voltage
leakage current
capacitor
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3657082A
Other languages
Japanese (ja)
Inventor
泰周 木原
加納 二朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3657082A priority Critical patent/JPS58154221A/en
Publication of JPS58154221A publication Critical patent/JPS58154221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、ニオブ素体を用い友電解コンデンサの改嵐さ
れた製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a modified method for manufacturing a friendly electrolytic capacitor using a niobium element.

従来、塩化物を電解質とする電解質溶液中でニオブ素体
を陽極酸化して誘電体層を形成させ九ものである。
Conventionally, a dielectric layer has been formed by anodizing a niobium element in an electrolyte solution containing chloride as an electrolyte.

〔従来技術とその間電点〕[Conventional technology and electric point]

従来の製造方法においては、ニオブ電解コンデンサの誘
電体層はホウ酸塩、リン酸塩、硫酸塩。
In traditional manufacturing methods, the dielectric layers of niobium electrolytic capacitors are borates, phosphates, and sulfates.

クエン酸塩などを電解質とする電解質溶液中でニオブ素
体を陽極酸化することによ抄形成されていえ。こうして
得られ九陽極酸化皮膜で被れたニオブ素体は適桶な電解
質溶液で満九されたコンデンナ容器内に適当な対極(陰
極)とともに(必要な場合はスペーサを介して)収容さ
れたのち、ニオブ陽極と陰極間に陽極酸化時の化成電圧
に等しいか、もしくはこれより低い直流電圧を印加して
エージング処理を施し、しかるのちコンデンサに仕上げ
られてい丸。
It is formed by anodizing a niobium element in an electrolyte solution containing citrate or the like. The niobium element thus obtained and coated with an anodic oxide film is housed in a condenser container filled with an appropriate electrolyte solution together with an appropriate counter electrode (cathode) (via a spacer if necessary). A DC voltage equal to or lower than the anodizing voltage during anodization is applied between the niobium anode and the cathode to perform an aging treatment, and then the capacitor is made into a round capacitor.

従来の製法により製造され九ニオ゛プ電解コンデンサに
おいて、作動可能な電圧領域全体に痕って漏れ電流が大
きく、かつ印加電圧に対する漏れ電流の1加が著しいた
めに定格電圧をサージ電圧に較べて著しく低くしなけれ
ばならない欠点があった。
Nine-op electrolytic capacitors manufactured using conventional manufacturing methods have a large leakage current throughout the operable voltage range, and the addition of leakage current to the applied voltage is significant, so it is difficult to compare the rated voltage with the surge voltage. There was a drawback that it had to be made significantly lower.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の従来の製法によ抄製造され九ニオブ電
解コンデンサの欠点を改善することを目的とし、その4
11徴はニオブ素体を塩化物電解質水#液中で陽m酸化
して、ニオブ素体表面Vcll電体層を形成し九のち酸
化性雰囲気中でアニール処理してから電解コンデンサを
構成するところにある〔発明の概要〕 本発明の製法によって製造したコンデンサ線従来の製法
により構造したコンデンサに比べて、印加電圧の変化に
対する漏れ電流の変化が小さい領域、すなわち漏れ電流
が印加電圧に比例して増加するいわゆるオームの法則に
従う領域が著しく広く、この領域のあとに顕れゐ漏れ電
流が印加電圧の上昇に従って急激に増加する領域、すな
わちプール・フレンケルの法則にしたがう領域が非常に
狭いという特長を持っている。□・ したがってI!東の場合よりもコンデンサの定格電圧1
<等しいす−ジ電圧に対して)著しく高く定めることが
できる。
The present invention aims to improve the drawbacks of the 9 niobium electrolytic capacitor produced by the above-mentioned conventional manufacturing method.
Characteristic 11 is that the niobium element is positively oxidized in a chloride electrolyte water solution to form a Vcll electric layer on the surface of the niobium element, and then annealed in an oxidizing atmosphere to form an electrolytic capacitor. [Summary of the Invention] The capacitor wire manufactured by the manufacturing method of the present invention has a region in which the change in leakage current with respect to a change in applied voltage is small compared to a capacitor constructed by a conventional manufacturing method, that is, the leakage current is proportional to the applied voltage. The characteristic is that the region where the leakage current increases rapidly according to Ohm's law is extremely wide, and the region where the leakage current that appears after this region increases rapidly as the applied voltage increases, that is, the region where the leakage current follows the Poole-Frenkel law is very narrow. ing. □・ Therefore I! Rated voltage of the capacitor 1 than in the case of east
(for equal surge voltages) can be set significantly higher.

例を用いて発明の効果を具体的−示せば、図1にみられ
るように、従来の製法によるコンデンサ(参照例)では
、漏れ電流がオームの法則に従う領域は化成電圧(サー
ジ電圧)のおよそ115の電圧までの極めて狭い領域で
ある。
To concretely demonstrate the effects of the invention using an example, as shown in Figure 1, in a conventionally manufactured capacitor (reference example), the region where the leakage current follows Ohm's law is approximately the formation voltage (surge voltage). This is a very narrow range up to a voltage of 115.

一方、本発明の製法によるコンデンサ(実施例)の漏れ
電流がオームの法則に従って流れる領域社化成電圧(サ
ージ電圧)のおよそv5からv5以上の電圧まで及ぶ非
常に広い範囲を占める。
On the other hand, the leakage current of the capacitor (embodiment) manufactured by the manufacturing method of the present invention occupies a very wide range from about v5 to voltages above v5 of the surge voltage, which flows according to Ohm's law.

さらにオームの法則領域における漏れ電流の印加電圧に
対する勾配も、従来の製法によるコンデンサの場合に比
べて非常に小さく、図にみられるように1720−1/
4倍の小ささであり、印加電圧の増大に伴う漏れ電流の
増加が極めて小さいことを示している。
Furthermore, the slope of the leakage current with respect to the applied voltage in the Ohm's law region is also very small compared to the case of conventionally manufactured capacitors, as shown in the figure.
It is four times smaller, indicating that the increase in leakage current as the applied voltage increases is extremely small.

ニオブ素体ぼ箱、状、HA状、焼結体状、スパッタ膜状
、蒸着膜状のいφれの形状でも用いることができる。
It can be used in any shape such as a niobium element box, HA shape, sintered body shape, sputtered film shape, or vapor deposited film shape.

ニオブ素体の陽極酸化は塩化水素、アルカリ金属塩化物
、アルカリ土類金属塩化物、アンモニウムおよび第一級
、第二級、第三級、第四級オルガノアンモニウムの塩化
−,鉄族金属塩化愉、亜鉛族金属塩化物、アル1−ラム
金属塩化物およびクロム、マ/ガ/などの遷移金属珈化
吻、および遷移金属のクロロ錯塩の水溶液中で行う。
Anodization of niobium elements can be carried out using hydrogen chloride, alkali metal chlorides, alkaline earth metal chlorides, ammonium and primary, secondary, tertiary, and quaternary organoammonium chlorides, iron group metal chlorides, etc. , a zinc group metal chloride, an aluminum metal chloride and a transition metal chloride such as chromium, mag/ga/, etc., and a chloro complex salt of a transition metal in an aqueous solution.

これらの塩化物電解質の練直は温度、化成電流vli度
、度数化成電圧考慮して選ばれるが、その有効範囲は塩
素イオン濃度で2〜25?・1 ov’−8である。
The modification of these chloride electrolytes is selected taking into consideration the temperature, formation current vli degree, degree formation voltage, but the effective range is chloride ion concentration of 2 to 25? -1 ov'-8.

なお2?・i ovJ以下の場合は漏れ電R特性の改善
は望めず、を九25f弓0ν1以上の場合はコンデ/l
の容量特性が非常に悪くなる。
Furthermore, 2?・If it is less than i ovJ, no improvement in leakage current R characteristics can be expected, and if it is more than 925f bow 0ν1, conde/l
The capacitance characteristics become very poor.

11度は溶液の塩素イオンam、化成電流密度。11 degrees is the chlorine ion am of the solution and the chemical formation current density.

シ/チレーシ瑳ン電圧などを考慮に入れて一15〜10
0cの範囲内で選ばれる。
-15 to 10, taking into account the current/chilling voltage etc.
Selected within the range of 0c.

化成電滝書度は漏れ電流特性にあt抄影畳を及はさない
Kaseiden Takishodo has no effect on leakage current characteristics.

化成電圧は漏れ電流特性に顕著な影響を及埋し、シンチ
レーシ冒ン電圧以下では化成電圧が高いはど麹れ電l!
IIC%性はよくなる。しかし、シンチレーシ冒ン電圧
を越えると逆に著しく悪くなる。
Forming voltage has a significant effect on leakage current characteristics, and below the scintillation voltage, forming voltage is high;
IIC% property improves. However, if the voltage exceeds the scintillation voltage, it becomes significantly worse.

アニールは通常酸素雰囲気、酸素と窒素の混合ガス雰囲
気、酸素と貴ガスの混合ガス雰囲気中で行なうが一酸化
窒素、二酸化窒素、塩素などの酸化性ガス雰囲気中でも
行なうことができる。しかし水素などの遷元性ガス雰囲
気中や真空中で行なうむとはで亀ない。遷元性ガス雰囲
気中および真空中でのアニールは酸化皮膜の漏れ電流を
逆に増大させてしまう。
Annealing is normally carried out in an oxygen atmosphere, a mixed gas atmosphere of oxygen and nitrogen, or a mixed gas atmosphere of oxygen and a noble gas, but it can also be carried out in an oxidizing gas atmosphere such as nitrogen monoxide, nitrogen dioxide, or chlorine. However, it is difficult to carry out the process in an atmosphere of a transitional gas such as hydrogen or in a vacuum. Annealing in a transient gas atmosphere or in a vacuum will conversely increase the leakage current of the oxide film.

アニール温度は3ON00Cの範囲が好ましく、aoo
c以下ではアニールの効果が#1とんど顕れず、ま九5
oor以上では酸化皮膜の結晶化などによって逆lIc
1Iれ電流の増大をまねくので好ましくない。
The annealing temperature is preferably in the range of 3ON00C, aoo
Below c, the effect of annealing is hardly noticeable #1, and
oor or higher, reverse lIc occurs due to crystallization of the oxide film, etc.
This is not preferable because it causes an increase in the current.

アニール時間は温度が高いときは短く、温度が低いと勤
は長くなるのは轟然であるが、5oocのと龜は5分@
度、700G Oときは10分m度、6001:’のと
きは20分Ii度、goorのとき紘4o分程度、40
0tノと龜は70分程度、300C12)ときは120
分程変度適轟である。
It is obvious that the annealing time is short when the temperature is high, and long when the temperature is low, but the anneal time of 5ooc is 5 minutes @
degree, 700G O is 10 minutes m degree, 6001:' is 20 minutes Ii degree, goor is about 40 minutes, 40
It takes about 70 minutes for 0t and 120 for 300C12)
It's a moderate amount of change.

次に行われるエージングは濃い塩化物f#液液中社行う
ことができ危い。エージングはハロゲンイオンが含まれ
ないか含まれていてもその濃度が10  ?・+ o 
JtJ以下の電解質溶液中で行わなければならない。エ
ージングに際して印加する直流電圧は化成電圧に等しい
かもしくはそれ以下の電圧であり、印加時間と温度は従
来と変らない。
The subsequent aging may be done with a strong chloride f# liquid liquid medium, which is dangerous. Does aging mean that halogen ions are not included, or even if they are included, the concentration is 10?・+o
Must be carried out in an electrolyte solution below JtJ. The DC voltage applied during aging is equal to or lower than the formation voltage, and the application time and temperature are the same as before.

エージング工程以後の電解コンデンサを製造するに!A
って必要な緒技術はすべて従来の技術が適用される。
To manufacture electrolytic capacitors after the aging process! A
Conventional techniques are applied to all necessary techniques.

本発明に係わるニオブ電解コンデンサの構造は箔形、ス
パッタ膜および蒸着膜形、焼結体および1形のそれぞれ
の場合次のようになる。
The structure of the niobium electrolytic capacitor according to the present invention is as follows for each of the foil type, sputtered film type, vapor deposited film type, sintered body, and type 1.

(1)  膜形コンデンサ ニオブ箔の全面に酸化皮膜を形成させたのちイオン透過
性の多孔質隔膜をはさんで陰極となる適当な金鵬箔と重
巻きにして適当な電解質溶液を含浸させ九のち、同じ電
解質溶液で構えされ九適当な容器に収−し、リードを取
出1て密封する。
(1) After forming an oxide film on the entire surface of the membrane-type capacitor niobium foil, it was wrapped with an ion-permeable porous diaphragm in between and wrapped with a suitable gold foil to serve as the cathode, and then impregnated with an appropriate electrolyte solution. Then, fill it with the same electrolyte solution, place it in a suitable container, remove the lead, and seal it.

(−)  スパッタ膜および蒸着膜形コンデンサ基板の
両面にニオブをスパッタリングまたは蒸着してからニオ
ブ膜表面に酸化皮膜を形成させ九のちイオン透過性多孔
質11M膜をはさんで111i憔となる適当な金楓箔と
積層して適当な電解JXX液液含浸させ九のち、同じ電
解質溶液で満たされた迩轟な容器に収幽し、リード取出
して密封する。
(-) After sputtering or vapor depositing niobium on both sides of the sputtered film and vapor-deposited film type capacitor substrate, an oxide film is formed on the surface of the niobium film, and then an ion-permeable porous 11M film is sandwiched between them to form a 111i film. After laminating it with gold maple foil and impregnating it with a suitable electrolytic JXX liquid, it is housed in a loud container filled with the same electrolyte solution, and the lead is taken out and sealed.

(iM)  焼結体および線形コンデンサ二オブ焼結体
または巻線の全表面に酸化皮膜を形成させて、適当な電
解質溶液を含浸させ九のち、同じ電解質溶液で満たされ
た陰極を兼ねる適当な金属缶に酸化皮膜が缶と接触しな
いように収缶し、陽極リードを取出して密封する。
(iM) Sintered body and linear capacitor An oxide film is formed on the entire surface of the niobium sintered body or the winding, and an appropriate electrolyte solution is impregnated. Place it in a metal can so that the oxide film does not come into contact with the can, take out the anode lead, and seal it.

〔発明の実施例〕[Embodiments of the invention]

次に本発−を実施例によ#)説明する。 Next, the present invention will be explained using examples.

寸法、巾2.Ocm 、畏さ25.□z、厚さ205m
の純度99.985重量−のニオブ箔を脱m後、7M畝
性フッ化アン%ニウム水溶液を用いて表面処理したのち
、次の要領で、化成してニオブ表向に1lil他酸化皮
膜を形成させた。  4); 実施例1 : 25Cの11.0M @ @ (CJ漬
度11r・Ion/看)中にニオブ箔を浸漬してS他と
なし、対極として白金極を浸漬したのち、両極間に電流
VVfJ[2,5mA/dの直流を印加して両極間の電
位差が50Vに適するまで陽ti酸化した。
Dimensions, width 2. Ocm, fear 25. □z, thickness 205m
After removing the niobium foil with a purity of 99.985 weight, the surface was treated with a 7M ammonium fluoride aqueous solution, and then chemically formed to form a 1 liter oxide film on the niobium surface in the following manner. I let it happen. 4); Example 1: A niobium foil was immersed in 25C 11.0M@@ (CJ soaking strength 11r Ion/view) to form S and the like, and a platinum electrode was immersed as a counter electrode, and then a current was applied between the two electrodes. A direct current of VVfJ [2.5 mA/d was applied to perform anodic oxidation until the potential difference between the two electrodes was suitable for 50 V.

ついで次の要領で陽極酸化皮膜にアニール処理を施した
The anodic oxide film was then annealed in the following manner.

試料m : 5oorの空気中で5分処理し九試料b 
: 700Cの空気中で10分処理し九試料c : 5
00Cの空気中で40分処理した試料d : 300C
’の空気中で120分処理した賦科@ニアニール処履せ
ず 実施例2ニア0Uの7.OM塩塩化アン−ニウム水溶液
四−1濃度7t・ionβ)中にニオブ箔を浸漬して陽
極となし、対極として白金極を浸漬したのち、両極間に
電流密JlLOm齢省の直流を印加して両極間の電位差
がSOY K達する壕で陽極鹸化し九。
Sample M: 9 samples b treated for 5 minutes in 5oor air
: 9 samples treated in air at 700C for 10 minutes c: 5
Sample d treated in air at 00C for 40 minutes: 300C
Example 2 near 0U treated for 120 minutes in the air at 7. A niobium foil was immersed in an aqueous solution of ammonium chloride (4-1 concentration: 7t ion β) to serve as an anode, a platinum electrode was immersed as a counter electrode, and a direct current with a current density of JlLOm was applied between the two electrodes. The anode is saponified in a trench where the potential difference between the two electrodes reaches SOY K9.

ついで次の要領で陽極酸化皮膜にアニール処理を施し喪
Then, perform an annealing treatment on the anodic oxide film as follows.

試料y : 5oocの空気中で5分処理し廠試料Gニ
アニール処理せず 実施例3 : IOGの4.S MtJi化≠ドリグム
水溶液(0−濃度4.5t・tov’J 、)中にニオ
ブ箔を浸漬して陽極となし、対極として白金極を浸漬し
たのち、両極間に電流密度4.0mA/dの直流を印加
して、両極間の電位差が50Vに達するまで陽極酸化し
た。
Sample y: Treated for 5 minutes in 5 ooc air, sample G without near-annealing Example 3: IOG 4. S MtJi conversion≠Drygum aqueous solution (0-concentration 4.5t・tov'J,) A niobium foil was immersed as an anode, a platinum electrode was immersed as a counter electrode, and a current density of 4.0 mA/d was applied between the two electrodes. DC current was applied to perform anodic oxidation until the potential difference between the two electrodes reached 50V.

ついで、次の要領で陽極酸化皮膜にナニール処゛理を施
した。
Then, the anodized film was subjected to a nanyl treatment in the following manner.

試料H: 800Cの空気中で5分処理し九試料■ニア
ニール処理せず 実施例4 : 100Cの1.0M塩化カルシウム水溶
液(Q″″濃度2.01i o Q/J )中にニオブ
箔を浸漬して陽極となし、対極として白金極を浸漬した
のち、両極間に電流密度0.5mA/a11の直流を印
加して両極、  間の電位差が50Vに達するまで陽極
酸化した。
Sample H: 9 samples treated in air at 800C for 5 minutes without near-annealing Example 4: Niobium foil immersed in 1.0M calcium chloride aqueous solution at 100C (Q″″ concentration 2.01i o Q/J) After immersing a platinum electrode as a counter electrode, a direct current with a current density of 0.5 mA/a11 was applied between the two electrodes to perform anodization until the potential difference between the two electrodes reached 50 V.

ついで次の要領で陽極酸化皮膜にアニール処理を施し友
Next, apply annealing treatment to the anodic oxide film using the following procedure.

試料J : 800Cの空気中で5分処理した試料にニ
アニール処理せず 壕九従来のニオブ電解コンデンサを代表する参照試料と
して、次の要領でニオブ表面に五酸化ニオブ膜を形成さ
せた。すなわち参照試料=25cの0.5Mホウ酸アン
モニウム水溶液中に、ニオブ箔を浸漬して陽極となし、
対極として白金極を浸漬したのち両極間に電流密度1.
0−ム/−の直流を印加して両極間の電位差がSOVに
達するまで陽極酸化した。
Sample J: A sample treated in air at 800C for 5 minutes without near-annealing. As a reference sample representative of a conventional niobium electrolytic capacitor, a niobium pentoxide film was formed on the niobium surface in the following manner. That is, a niobium foil was immersed in a 0.5M ammonium borate aqueous solution of reference sample = 25c to serve as an anode,
After immersing a platinum electrode as a counter electrode, a current density of 1.
Anodic oxidation was performed by applying a direct current of 0 μm/− until the potential difference between the two electrodes reached SOV.

ついで次の要領で、得られた酸化皮膜にアニール処理を
施した。
The obtained oxide film was then annealed in the following manner.

参照試料1 : 800Cの空気中で5分処理参照試料
2ニアニール処理せず 以上1311の試料をそれぞれ別個に25Cの0.5M
五ホウ酸アンモニウム水溶液に浸漬して白金極を対極(
陰極)として両極間に50vの直流を印加し、2.5時
間保持してエージング(再化成)処理を施した。
Reference sample 1: Treated in air at 800C for 5 minutes Reference sample 2 No near annealing treatment Each of the above 1311 samples was separately heated at 25C for 0.5M
The platinum electrode was immersed in an aqueous ammonium pentaborate solution.
A direct current of 50 V was applied between the two electrodes (as a cathode) and maintained for 2.5 hours to perform aging (reformation) treatment.

しかるのち、それぞれの試料箔に、巾2.03.長さ2
5LO3、厚さ50−の低書直りラフF紙(アルミ電解
コンデンサ用)を介して、中2.Otx 、長さ2!L
O1、厚さ10縛の純* 99.99重量−のスズ#i
t重ね′1: て、円筒状に巻いてコンデンサ素子を作成し友。
After that, each sample foil was coated with a width of 2.03 mm. length 2
5LO3, medium 2. Otx, length 2! L
O1, thickness 10 bound* 99.99 weight - tin #i
t-overlap '1: Wrap it into a cylindrical shape to create a capacitor element.

でき上つ九13個のコンデンサ素子を2M五ホウ酸アン
モニクム・エチレングリコール溶液に浸けて、素子全体
に五ホウ酸アンモニウム・エチレングリコール溶液を減
圧下に含浸させ丸。含浸後円筒形のプラスチック製答器
に収−して2M五ホウ酸アンモニウム・エチレングリコ
ール#液で満したのちリードを取出して密封した。
Soak the 13 completed capacitor elements in a 2M ammonium pentaborate/ethylene glycol solution, and impregnate the entire element with the ammonium pentaborate/ethylene glycol solution under reduced pressure. After impregnation, it was placed in a cylindrical plastic container and filled with 2M ammonium pentaborate/ethylene glycol # solution, and the lead was taken out and sealed.

しかして、本発明の実施例に当る11鴇類のコンデンサ
と従来のニオブ電解コンデンサに相当する参照例の2種
類のコンデンサ、計13個のコンデンサを製造した。
Thus, a total of 13 capacitors were manufactured, including 11 types of capacitors according to examples of the present invention and two types of capacitors, a reference example corresponding to a conventional niobium electrolytic capacitor.

次に、13種類のコンデンサの漏れ電1%E%性を比軟
するために、25C下で50Vの直流正バイアスを印加
して一昼夜エージングしたのち、1h」じ25C下で所
定の直流正バイアスを印加して、コンデンサの両端子間
を流れる電流が完全に一定になったと1の電流値を漏れ
電流として、印加電圧に対してプロットした。その結果
を図1および図2に図8L“・    1(i 〔発明の効果〕 図にみられるように本発明のニオブ電解コンデンサは漏
れ電流特性において従来のものに比べて著しく優れてい
る。
Next, in order to soften the leakage current 1%E% of the 13 types of capacitors, we applied a 50V DC positive bias under 25C and aged them for a day and night, and then applied a specified DC positive bias under the same 25C for 1 hour. was applied, and when the current flowing between both terminals of the capacitor became completely constant, the current value of 1 was taken as the leakage current and plotted against the applied voltage. The results are shown in FIGS. 1 and 2. [Effects of the Invention] As can be seen in the figures, the niobium electrolytic capacitor of the present invention is significantly superior to conventional capacitors in terms of leakage current characteristics.

によりm造しえニオブ電解コンデンサの漏れ電流の印加
電圧に対する変化を示す一線図である。
FIG. 2 is a line diagram showing changes in leakage current of a niobium electrolytic capacitor manufactured by M with respect to applied voltage.

代理人弁理土 則近憲佑(ほか1名) 第  1  図 卵mt五(v)Attorney: Kensuke Norichika (and 1 other person) Figure 1 egg mt five (v)

Claims (1)

【特許請求の範囲】 ニオブ電解コンデンサの製造方法において、2−25P
−iiの鑓の塩素イオン、を含む塩化物電解質水溶液中
でニオブ素体を陽極酸化し九のち空気。 酸素などの酸化性tS気中でアニール処理し、さらに1
0′″JFioa/J以上のハロゲンイオンを含まない
電解質溶液中で適当な対極(、陰極)間に陽極酸化時の
化成電圧に等しいかもしくはこれより低い直流電圧を印
加、エージング処理を施し、しかるのち電解コンデンサ
に仕上げることをq#徴とするニオブ電解コンデンサの
製造方法。
[Claims] In a method for manufacturing a niobium electrolytic capacitor, 2-25P
The niobium element was anodized in an aqueous chloride electrolyte solution containing the chloride ions of -ii, and then exposed to air. Annealing treatment in an oxidizing tS atmosphere such as oxygen, and further 1
A DC voltage equal to or lower than the anodizing voltage during anodization is applied between a suitable counter electrode (and cathode) in an electrolyte solution containing no halogen ions of 0'''JFioa/J or more, followed by an aging treatment. A method of manufacturing a niobium electrolytic capacitor whose q# characteristic is to be later finished into an electrolytic capacitor.
JP3657082A 1982-03-10 1982-03-10 Method of producing niobium electrolytic condenser Pending JPS58154221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3657082A JPS58154221A (en) 1982-03-10 1982-03-10 Method of producing niobium electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3657082A JPS58154221A (en) 1982-03-10 1982-03-10 Method of producing niobium electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS58154221A true JPS58154221A (en) 1983-09-13

Family

ID=12473420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3657082A Pending JPS58154221A (en) 1982-03-10 1982-03-10 Method of producing niobium electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS58154221A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051044A (en) * 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US6165623A (en) * 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6375704B1 (en) 1999-05-12 2002-04-23 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
US6402066B1 (en) 1999-03-19 2002-06-11 Cabot Corporation Method of making niobium and other metal powders

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165623A (en) * 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6420043B1 (en) 1996-11-07 2002-07-16 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6051044A (en) * 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US6338816B1 (en) 1998-05-04 2002-01-15 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US6616728B2 (en) 1998-05-04 2003-09-09 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US6896715B2 (en) 1998-05-04 2005-05-24 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US6402066B1 (en) 1999-03-19 2002-06-11 Cabot Corporation Method of making niobium and other metal powders
US6706240B2 (en) 1999-03-19 2004-03-16 Cabot Corporation Method of making niobium and other metal powders
US7156893B2 (en) 1999-03-19 2007-01-02 Cabot Corporation Method of making niobium and other metal powders
US6375704B1 (en) 1999-05-12 2002-04-23 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
US6702869B2 (en) 1999-05-12 2004-03-09 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
US7749297B2 (en) 1999-05-12 2010-07-06 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes

Similar Documents

Publication Publication Date Title
US4781802A (en) Solid tantalum capacitor process
Hoare A Study of the Rest Potentials in the Gold‐Oxygen‐Acid System
JPS58154221A (en) Method of producing niobium electrolytic condenser
JPH0794369A (en) Solid electrolytic capacitor
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JPH01266712A (en) Preparation of electrode foil for aluminum electrolytic capacitor
JPS5935169B2 (en) capacitor
JP2617734B2 (en) Method for manufacturing solid electrolytic capacitor
JP2950575B2 (en) Electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JPS62185307A (en) Solid electrolytic capacitor
JPH05182869A (en) Solid electrolytic capacitor and manufacture thereof
JPH03252117A (en) Solid electrolytic capacitor
JPH05335186A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
US20200058449A1 (en) Capacitor and forming method of capacitor
JPH02166715A (en) Solid electrolytic capacitor
JPH01232712A (en) Fixed electrolytic capacitor and manufacture thereof
JP4947888B2 (en) Manufacturing method of solid electrolytic capacitor
JPH06124854A (en) Manufacture of solid-state capacitor
JPS62274615A (en) Manufacture of winding type solid electrolytic capacitor
JPH02256224A (en) Manufacture of electrolytic capacitor
JPS6328026A (en) Manufacture of winding type solid electrolytic capacitor
JPS61278123A (en) Solid electrolytic capacitor
JPH01278713A (en) Electrolytic capacitor
JPS63140517A (en) Manufacture of solid electrolytic capacitor