JPS581536B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor

Info

Publication number
JPS581536B2
JPS581536B2 JP52078492A JP7849277A JPS581536B2 JP S581536 B2 JPS581536 B2 JP S581536B2 JP 52078492 A JP52078492 A JP 52078492A JP 7849277 A JP7849277 A JP 7849277A JP S581536 B2 JPS581536 B2 JP S581536B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
manufacturing
manganese dioxide
combustion flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52078492A
Other languages
Japanese (ja)
Other versions
JPS5413960A (en
Inventor
別所國晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP52078492A priority Critical patent/JPS581536B2/en
Publication of JPS5413960A publication Critical patent/JPS5413960A/en
Publication of JPS581536B2 publication Critical patent/JPS581536B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は固体電解コンデンサの製造方法、特に熱分解に
よる二酸化マンガンの形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing solid electrolytic capacitors, and in particular to a method for forming manganese dioxide by pyrolysis.

固体電解コンデンサの二酸化マンガン焼成方法は、次の
ような含水硝酸マンガン熱分解によって行なわれる。
The method for firing manganese dioxide for solid electrolytic capacitors is carried out by thermal decomposition of hydrous manganese nitrate as follows.

Mn ( NO3 ) 2 ・xH2 0−+Mn (
NO3 ) 2+XH2 0Mn ( No 3 )
2 →Mn ONO s + No 2Mn ONO
3→Nn 0 2 +NO 2これらの反応は吸熱反
応であって、温度130〜200℃の範囲において完了
することが知られており、発明者は195℃において完
了することを確めた。
Mn (NO3) 2 ・xH2 0-+Mn (
NO3) 2+XH2 0Mn (No 3)
2 →Mn ONO s + No 2Mn ONO
3→Nn 0 2 +NO 2 These reactions are endothermic reactions, and are known to be completed at a temperature in the range of 130 to 200°C, and the inventors have confirmed that they are completed at 195°C.

しかし急速に加熱する場合には、含水硝酸マンガンを付
着させた陽極素子の表面温度が280℃のときに、上記
硝酸マンガンの熱分解が完了することを推定した。
However, in the case of rapid heating, it was estimated that the thermal decomposition of the manganese nitrate would be completed when the surface temperature of the anode element to which the hydrous manganese nitrate was attached was 280°C.

従来、この二酸化マンガン焼成は電気炉内で行なわれた
Conventionally, this manganese dioxide calcination was performed in an electric furnace.

この場合、電気炉内部は1000℃程度になっており、
陽極素子を炉内に挿入してから、その表面温度が280
℃に上昇するまでの時間は、これらの素子の熱容量が大
きいため約1分を必要とする。
In this case, the temperature inside the electric furnace is around 1000℃,
After inserting the anode element into the furnace, its surface temperature reaches 280℃.
It takes about 1 minute for the temperature to rise to 0.degree. C. because the heat capacity of these elements is large.

この間に含水硝酸マンガンの熱分解によって生成する水
と二酸化窒素とは、素子面にすでに形成されている酸化
皮膜を部分的に浸食して、弁金属まで達する漏電路を形
成しやすい欠臓がある。
During this time, the water and nitrogen dioxide produced by thermal decomposition of hydrated manganese nitrate partially erode the oxide film already formed on the element surface, creating a defect that tends to form a leakage path that reaches the valve metal. .

本発明の目的は上記欠点を解消することである。The aim of the invention is to eliminate the above-mentioned drawbacks.

本発明の上記目的は、陽極素子に酸化皮膜を形成し、二
酸化マンガンを焼成せしめる工程を含む固体電解コンデ
ンサの製造方法において、前記二酸化マンガン焼成工程
が、陽極素子に付着させた硝酸マンガンを燃焼炎中にお
いて熱分解することによって二酸化マンガン層を形成せ
しめるものであることを特徴とする、固体電解コンデン
サの製造方法によって達成することができる。
The above object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor including a step of forming an oxide film on an anode element and firing the manganese dioxide, in which the manganese dioxide firing step burns the manganese nitrate attached to the anode element. This can be achieved by a method for manufacturing a solid electrolytic capacitor, which is characterized in that a manganese dioxide layer is formed by thermal decomposition inside the solid electrolytic capacitor.

本発明で使用する燃焼炎は、都市ガス、LPG、石油お
よび石炭など炎を生じて燃焼する通常の燃料を燃焼させ
て得ることができる。
The combustion flame used in the present invention can be obtained by burning ordinary fuels that produce flame and burn, such as city gas, LPG, oil, and coal.

燃焼炎の上部に、不燃性材料たとえば金属、セラミック
またはアスベストの網を挿入して、網を赤熱し、網の上
方の炎の温度を均一に1000℃程度に保つことができ
る。
A screen made of non-combustible material, such as metal, ceramic or asbestos, can be inserted above the combustion flame to make the screen red hot and maintain a uniform temperature of the flame above the screen at about 1000°C.

本発明の特徴は、二酸化マンガン焼成すべき含水硝酸マ
ンガンを付着させた陽極素子を、通常1000℃程度で
ある燃焼炎中に入れるので、急速に加熱されて上記二酸
化マンガン焼成に必要な表面温度280℃に達するまで
に僅か数秒を必要とするにすぎない。
A feature of the present invention is that the anode element to which hydrated manganese nitrate to be fired is placed in a combustion flame, which is usually about 1000°C, so that it is rapidly heated to a surface temperature of 280°C, which is necessary for firing the manganese dioxide. It takes only a few seconds to reach °C.

第1図は、本発明の方法による二酸化マンガン焼成温度
一時間曲線aを従来方法による同様な曲線bに比較して
示す。
FIG. 1 shows a manganese dioxide calcination temperature one hour curve a according to the method of the invention in comparison with a similar curve b according to the conventional method.

二酸化マンガン焼成が完了する280℃に達するまでの
時間は、従来の電気炉による場合は55秒を必要とした
のに対して、本発明の燃焼炎による場合は6秒で十分で
ある。
The time it takes to reach 280°C to complete manganese dioxide firing is 55 seconds when using a conventional electric furnace, whereas 6 seconds is sufficient when using the combustion flame of the present invention.

なお電気炉の場合には、炉体の昇温に1〜2時間、降温
に2時間を必要とし、設備が比較的大きく、かつ作業時
間が長い。
In the case of an electric furnace, it takes 1 to 2 hours to raise the temperature of the furnace body and 2 hours to lower the temperature, so the equipment is relatively large and the working time is long.

第2図は本発明の方法の特徴を示す、二酸化マンガン焼
成を行なう装置の説明図である。
FIG. 2 is an explanatory diagram of an apparatus for firing manganese dioxide, showing the features of the method of the present invention.

燃焼炎1の上部に金網2を挿入すると、金網の上方に赤
色炎3を生ずる。
When a wire mesh 2 is inserted above the combustion flame 1, a red flame 3 is generated above the wire mesh.

含水硝酸マンガンを付着させた2 X 3 X 3.
5mmのアルミニウム素子4を一例に懸垂することによ
って、順次処理すべき素子4を赤色炎3中に6秒間滞留
させた後、A矢印の方向に移動させる。
2 x 3 x 3 with hydrous manganese nitrate attached.
By suspending a 5 mm aluminum element 4 as an example, the elements 4 to be sequentially treated are allowed to stay in the red flame 3 for 6 seconds and then moved in the direction of arrow A.

こうして二酸化マンガン焼成工程を簡単な装置で容易に
行なうことができる。
In this way, the manganese dioxide firing step can be easily performed using a simple device.

本発明による固体電解コンデンサは、従来方法によるも
のと比較して、静電容量はほぼ等しいが、誘電正接はや
や小さく、漏れ電流は顕著に小さいことが特徴である。
The solid electrolytic capacitor according to the present invention is characterized in that the capacitance is almost the same, but the dielectric loss tangent is slightly smaller, and the leakage current is significantly smaller than those produced by the conventional method.

このように上記いずれの特性.においても、本発明の固
体電解コンデンサの製造方法が秀れていることを、図面
を参照しながら、次の実施例において説明する。
In this way, any of the above characteristics. The superiority of the solid electrolytic capacitor manufacturing method of the present invention will be explained in the following examples with reference to the drawings.

実施例 エッチングされた2×3×3.5mmのアルミニウム素
子を陽極とし、ほう酸一くえん酸系化成液中で電解して
酸化アルミニウム皮膜を形成し、次に硝酸マンガン水溶
液に浸した。
EXAMPLE An etched aluminum element of 2 x 3 x 3.5 mm was used as an anode, electrolyzed in a boric acid-citric acid based chemical solution to form an aluminum oxide film, and then immersed in an aqueous manganese nitrate solution.

第2図に示すようにガス炎中に鉄網を挿入し、この鉄網
を赤熱させて約1000℃とし、鉄網を透って出た赤色
炎中でさぎの含水硝酸マンガンを付着させた素子を焼成
した。
As shown in Figure 2, an iron mesh was inserted into a gas flame, and the iron mesh was red-hot to about 1000℃, and the hydrated manganese nitrate of the rabbit was attached to it in the red flame that came out through the iron mesh. The device was fired.

このとき焼成時間が約6秒となるように一連の素子を順
次移動させた。
At this time, a series of elements were moved one after another so that the firing time was about 6 seconds.

次に上記工程と同様な再化成、二酸化マンガン焼成ケ5
回反復した。
Next, re-formation and manganese dioxide firing step 5 similar to the above steps.
Repeated times.

その後グラファイトの塗布と焼付けおよび銀塗料の塗布
と焼付けを行ない、外装した。
The exterior was then coated with graphite and baked, and silver paint and baked.

この固体電解コンデンサ50個の試料について、従来方
法によって得られた同様な固体電解コンデンサと比較し
た結果を第3ないし5図に示す。
The results of comparing the 50 solid electrolytic capacitor samples with similar solid electrolytic capacitors obtained by the conventional method are shown in FIGS. 3 to 5.

第3図は電圧25Vにおける漏れ電流囚、第4図は周波
数120Hzにおける静電容量(μF)、1第5図は周
波数120Hzにおける誘電正接(ト)に対するそれぞ
れの製品累積百分率を示す。
FIG. 3 shows the leakage current at a voltage of 25 V, FIG. 4 shows the capacitance (μF) at a frequency of 120 Hz, and FIG.

第3図より明かなように本発明の方法によって製造した
アルミニウム固体電解コンデンサは従来方法によるもの
と比較して、同一漏れ電流を示す製品の累フ積百分率が
極めて大きい。
As is clear from FIG. 3, the aluminum solid electrolytic capacitor manufactured by the method of the present invention has a significantly larger cumulative area percentage of products exhibiting the same leakage current than those manufactured by the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法および従来方法における、含水硝
酸マンガン熱分解温度対分解時間の関係を示すグラフで
あり、第2図は本発明の方法を実施ヌする装置の説明図
であり、第3図は本発明の方法および従来方法によって
製造した固体電解コンデンサの、25Vにおける漏れ電
流対累積百分率の関係を示すグラフであり、第4図は本
発明の方法および従来方法によって製造した固体電解コ
ンデフンサの、1 2 0 Hzにおける静電容量対累
積百分率の関係を示すグラフであり、第5図は本発明の
方法および従来方法によって製造した固体電解コンデン
サの、120Hzにおける誘電正接対累積百分率の関係
を示すグラフである。 ia・・・・・・本発明の方法による場合、b・・・・
・・従来方法による場合、1・−・・・偲焼炎、2・・
・・・・網、3・・・・・・網を透って出た燃焼炎、4
・・゜・・・陽極素子。
FIG. 1 is a graph showing the relationship between hydrous manganese nitrate thermal decomposition temperature versus decomposition time in the method of the present invention and the conventional method, and FIG. 2 is an explanatory diagram of an apparatus for implementing the method of the present invention. FIG. 3 is a graph showing the relationship between leakage current at 25 V and cumulative percentage of solid electrolytic capacitors manufactured by the method of the present invention and the conventional method, and FIG. FIG. 5 is a graph showing the relationship between the capacitance and the cumulative percentage at 120 Hz, and FIG. This is a graph showing. ia... When using the method of the present invention, b...
・・When using the conventional method, 1・−・Kaiyaki flame, 2・・
...Net, 3...Combustion flame coming out through the net, 4
・・・゜・・・Anode element.

Claims (1)

【特許請求の範囲】 1 陽極素子に酸化皮膜を形成し、二酸化マンガンを焼
成せしめる工程を含む固体電解コンデンサの製造方法に
おいて、前記二酸化マンガン焼成エ程が、可燃性ガスを
燃焼させて熱源とし、この燃焼炎中において、陽極素子
に付着させた硝酸マンガンを熱分解することによって二
酸化マンガン層を形成せしめるものであることを特徴と
する、固体電解コンデンサの製造方法。 2 該燃焼炎は、金属、セラミック
およびアスベストからなる群から選択された少なくとも
一つの材料からなる網を燃焼炎中に挿入し、この網を透
して出た燃焼炎であることを特徴とする特許請求の範囲
第1項記載の固体電解コンデンサの製造方法。
[Scope of Claims] 1. A method for manufacturing a solid electrolytic capacitor including a step of forming an oxide film on an anode element and firing manganese dioxide, wherein the manganese dioxide firing step burns a flammable gas as a heat source; A method for manufacturing a solid electrolytic capacitor, characterized in that a manganese dioxide layer is formed by thermally decomposing manganese nitrate attached to an anode element in this combustion flame. 2. The combustion flame is characterized in that a mesh made of at least one material selected from the group consisting of metal, ceramic, and asbestos is inserted into the combustion flame, and the combustion flame comes out through the mesh. A method for manufacturing a solid electrolytic capacitor according to claim 1.
JP52078492A 1977-07-02 1977-07-02 Manufacturing method of solid electrolytic capacitor Expired JPS581536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52078492A JPS581536B2 (en) 1977-07-02 1977-07-02 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52078492A JPS581536B2 (en) 1977-07-02 1977-07-02 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS5413960A JPS5413960A (en) 1979-02-01
JPS581536B2 true JPS581536B2 (en) 1983-01-11

Family

ID=13663465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52078492A Expired JPS581536B2 (en) 1977-07-02 1977-07-02 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS581536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121390A (en) * 1983-09-15 1985-06-28 ヴアヴイン・ベスロ−テム・ヴエンノツトシヤツプ Pipe joint

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037188A (en) * 1983-08-10 1985-02-26 Agency Of Ind Science & Technol Gas laser oscillator
JPS61128585A (en) * 1984-11-28 1986-06-16 Inoue Japax Res Inc Laser oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121390A (en) * 1983-09-15 1985-06-28 ヴアヴイン・ベスロ−テム・ヴエンノツトシヤツプ Pipe joint

Also Published As

Publication number Publication date
JPS5413960A (en) 1979-02-01

Similar Documents

Publication Publication Date Title
US896876A (en) Process for controlling the combustion of fuel.
JPS581536B2 (en) Manufacturing method of solid electrolytic capacitor
SE8406008L (en) PROCEDURE FOR CONTINUOUS PREPARATION OF LONG-TERM COB
FR2370248A1 (en) IMPROVEMENTS TO PAINT DRYING OVENS
GB1495200A (en) Method for fabrication of manganese oxide solid electrolyte capacitor
JPS5615830A (en) Cleaning device for exhaust gas
EP0069009B1 (en) Process for degreasing cold rolled metal strip
JPS594504B2 (en) liquid fuel combustion tube
US1039034A (en) Method of manufacturing electrodes.
KR0135469B1 (en) Plasticity method of tantalium electrolytic condenser
EP0897017B1 (en) Tower furnace for heat treatment of metal strips
US3115925A (en) Method of burning fuel
CN212930973U (en) But heat-resisting heat preservation stove of remote control
JP3099607B2 (en) Heat treatment method for ceramic electronic components
JP2001158921A (en) Bell type annealing furnace
JPS6029858B2 (en) High temperature heat treatment equipment
KR950001135B1 (en) High temperating firing method for tantal electrolytic capacitor
SE7603443L (en) PAINT BURNING DEVICE
Ivleva et al. Effect of gas pressure on the laws of propagation of spinning waves during filtration combustion
SU663674A1 (en) Roasting method
RU2085338C1 (en) High-porosity sponge metal production method
DE540969C (en) Ironless induction furnace with gas-tight boiler room
US2970067A (en) Halogen treatment of combustion chambers
SU52488A1 (en) Furnace for continuous cementation with gases or gas pyrolysis products
JPS5614417A (en) Manufacture of crude zinc oxide