JPS5815190B2 - 100% of the population - Google Patents

100% of the population

Info

Publication number
JPS5815190B2
JPS5815190B2 JP50150886A JP15088675A JPS5815190B2 JP S5815190 B2 JPS5815190 B2 JP S5815190B2 JP 50150886 A JP50150886 A JP 50150886A JP 15088675 A JP15088675 A JP 15088675A JP S5815190 B2 JPS5815190 B2 JP S5815190B2
Authority
JP
Japan
Prior art keywords
heavy metal
exchange resin
wastewater
metal ions
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50150886A
Other languages
Japanese (ja)
Other versions
JPS5275053A (en
Inventor
河杉忠昭
間処威俊
山田豊
鳴上善久
和泉清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP50150886A priority Critical patent/JPS5815190B2/en
Publication of JPS5275053A publication Critical patent/JPS5275053A/en
Publication of JPS5815190B2 publication Critical patent/JPS5815190B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 本発明はメッキ廃水の如き重金属含有廃水から重金属イ
オンを回収する為の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment method for recovering heavy metal ions from heavy metal-containing wastewater, such as plating wastewater.

重金属イオンは人体にとって極めて有害でありメッキ廃
水等の工業廃水を無処理のままで河川や海等に放流する
ことは禁じられている。
Heavy metal ions are extremely harmful to the human body, and it is prohibited to discharge untreated industrial wastewater such as plating wastewater into rivers, oceans, etc.

カドミウム、ニッケル、クロム、亜鉛、鉛等の重金属の
除去法としては吸着法、沈澱法、イオン交換法等が知ら
れているが、イオン交換法はもつとも簡便な方法として
知られている。
Adsorption methods, precipitation methods, ion exchange methods, and the like are known as methods for removing heavy metals such as cadmium, nickel, chromium, zinc, and lead, but the ion exchange method is known as the simplest method.

しかるにイオン交換法ではイオン交換樹脂を再生使用す
ることが汎用の前提条件であり再生法として効率よ〈実
施し得るものでなければ工業的に利用することができな
い。
However, in the ion exchange method, recycling and reusing the ion exchange resin is a general-purpose prerequisite, and unless it is efficient as a regeneration method, it cannot be used industrially.

第1図に示すブローシートは重金属イオンをイオン交換
樹脂塔によって除去する場合に考えられたもつとも簡単
な方法の一例を示すもので重金属含有廃水貯留部1から
導びかれた重金属含有廃水は弱酸性陽イオン交換樹脂塔
8(以下WACという)に通されるが前記重金属は通常
硫酸塩や塩酸塩の如き塩として存在しているので重金属
イオンをMe+Fとして示した場合例えば R−Na+MeSO4→R−Me+Na2SO4(1)
R−に+MeSO4→R−Me+に2SO4(2)で示
される反応式によって重金属イオンの吸着が行なわれ、
重金属イオンの除かれた処理水は処理水回収部2に入る
The blow sheet shown in Figure 1 shows an example of the simplest method considered when removing heavy metal ions using an ion exchange resin tower.The heavy metal-containing wastewater led from the heavy metal-containing wastewater storage section 1 is weakly acidic. The heavy metals are passed through a cation exchange resin column 8 (hereinafter referred to as WAC), but since the heavy metals usually exist as salts such as sulfates and hydrochlorides, when heavy metal ions are expressed as Me+F, for example, R-Na+MeSO4→R-Me+Na2SO4 (1)
Heavy metal ions are adsorbed according to the reaction formula shown by +MeSO4 on R-→2SO4 on R-Me+ (2),
The treated water from which heavy metal ions have been removed enters the treated water recovery section 2.

他方再生液貯留部3からは再生液として塩酸が誘導され
てWAC8に通水されR−Me 十HC1→R−H+M
eCt2 (3)で示される反応式によって
イオン交換樹脂が再生され、重金属イオンはMeC12
として重金属イオン回収部5に入る。
On the other hand, hydrochloric acid is induced as a regenerating liquid from the regenerating liquid storage section 3 and is passed through the WAC 8 to form R-Me HC1→R-H+M.
The ion exchange resin is regenerated according to the reaction formula shown in eCt2 (3), and the heavy metal ions are converted to MeC12.
The metal ions enter the heavy metal ion recovery section 5 as ions.

ところがこの方法では処理水回収部2中の処理水にに2
SO4やNa2SO4の如き備酸アルカリが混入するの
で、回収水としてそのまま使用することができないとい
う欠点がある。
However, in this method, the treated water in the treated water recovery section 2 is
Since alkalis such as SO4 and Na2SO4 are mixed into the water, it has the disadvantage that it cannot be used as is as recovered water.

そこで考えられるのが第2図に示す様な方式で、この方
式は第1図の方式に公知の純水製造方式を直結したもの
である。
Therefore, a method as shown in FIG. 2 can be considered, which is a direct connection of the method shown in FIG. 1 with a known pure water production method.

従って重金属含有廃水は第1図の場合と同様にWAC8
に通水され、例えば前記反応式(1)或いは(2)と同
一の反応形式に従って重金属イオンの吸着が行なわれる
Therefore, the wastewater containing heavy metals is WAC8 as in the case of Figure 1.
For example, heavy metal ions are adsorbed according to the same reaction format as the reaction formula (1) or (2).

重金属イオンの除かれた処理水はただちに処理水貯留部
に入らず強酸性陽イオン交換樹脂塔9(以下SACとい
と)に通水され、処理水中に混入しているWAC8由来
のアルカリ金属イオン例えばナトリウムイオンやカリウ
ムイオンの除去が行なわれる。
The treated water from which heavy metal ions have been removed does not immediately enter the treated water storage section, but is passed through the strongly acidic cation exchange resin tower 9 (hereinafter referred to as SAC), where it removes the alkali metal ions derived from WAC8 that are mixed in the treated water. Sodium ions and potassium ions are removed.

この場合の反応式は次式の如くあられすことができるR
−H−+Na2SO4→R−Na+H2SO4(5)R
−H+に2SO4→R−に+H2SO4(6)従って5
AC9では硫酸が生成し、このままでは純水として使用
できないのでアルカリ金属イオンの除去された処理水は
更に強塩基性陰イオン交換樹脂塔10(以下SBAとい
う)に通水され、R−OH+HSo→R−80,州20
(7)で示される反応式に従って酸根が除かれ、得られ
た純水は処理水貯留部2に入る。
The reaction formula in this case can be expressed as R
-H-+Na2SO4→R-Na+H2SO4(5)R
-H+ to 2SO4→R- to +H2SO4 (6) Therefore 5
In AC9, sulfuric acid is produced and cannot be used as pure water as it is, so the treated water from which alkali metal ions have been removed is further passed through a strong basic anion exchange resin column 10 (hereinafter referred to as SBA), where R-OH+HSo→R -80, state 20
The acid radicals are removed according to the reaction formula shown in (7), and the obtained pure water enters the treated water storage section 2.

他方これらイオン交換樹脂塔を再生する必要があるので
、再生液貯留部3並びに4が付設されており、再生液貯
留部3には塩酸が貯留され、再生液貯留部4には苛生ソ
ーダが貯留されている。
On the other hand, since it is necessary to regenerate these ion exchange resin towers, regeneration liquid storage sections 3 and 4 are provided. Hydrochloric acid is stored in the regeneration liquid storage section 3, and caustic soda is stored in the regeneration liquid storage section 4. It is stored.

まず再生用塩酸は5AC9に入り前記反応式(5)或い
は(6)によってR−Na或いはR−Kに変換されてい
た樹脂と下記の如く反応し、 R−Na+HC1→R−H十NaC1(8)SiC2は
当初のH型に戻される。
First, hydrochloric acid for regeneration enters 5AC9 and reacts with the resin that has been converted to R-Na or R-K by the reaction formula (5) or (6) as shown below, resulting in R-Na + HC1 → R-H + NaC1 (8 ) SiC2 is returned to its original H form.

5AC9を通過した再生塩酸は更にWAC8に通水され
る。
The regenerated hydrochloric acid that has passed through 5AC9 is further passed through WAC8.

WAC8の樹脂は反応式(1)或いは(2)によって、
R−Me型に変換されているが、再生用塩酸と下記の如
く反応し、 R−Me+HCl→R−H+MeC12(9)WAC8
はいったんH型になる。
According to reaction formula (1) or (2), WAC8 resin is
Although it is converted to the R-Me type, it reacts with hydrochloric acid for regeneration as shown below, resulting in R-Me+HCl→R-H+MeC12(9)WAC8
Once it becomes H type.

尚この再生用塩酸中には反応式(8)によってNaC1
が含まれているので、下記反応式 %式%(10) に従って当初のNa型に戻るものもあるが、実際にはH
Clの量が多いので式(9)で示される反応が中心にな
るものと考えられる。
In this hydrochloric acid for regeneration, NaC1 is added according to reaction formula (8).
Some of them return to their original Na form according to the following reaction formula (% formula 10), but in reality, H
Since the amount of Cl is large, it is thought that the reaction represented by formula (9) takes center stage.

式(9) 、 (10)によって生成したMeC12は
重金属イオン回収部5に入る。
MeC12 generated according to equations (9) and (10) enters the heavy metal ion recovery section 5.

次に再生液貯留部4からは再生苛性ソーダが導びかれ、
5BA10に通水される。
Next, recycled caustic soda is led from the recycled liquid storage section 4,
Water is passed through 5BA10.

5BA10内の樹脂は反応式(7)によってSO4型に
なっているので、5BA10内では下記の如く反応し、
R−8O4+NaOH→R−OH+Na2SO4(11
)樹脂は当初のOH型に戻される。
Since the resin in 5BA10 is in the SO4 type according to reaction formula (7), it reacts in 5BA10 as follows,
R-8O4+NaOH→R-OH+Na2SO4(11
) The resin is returned to its original OH form.

5BA10を通過した再生液は更にWAC8に通水され
、反応式(9)によってH型に変換されていた樹脂と反
応するが、再生液中には過剰のNaOHと反応式(11
)によって生成したNa2SO4が含まれているので、
R−H+NaOH→R−Na+H20(12)R−H+
Na2SO4→R−Na+H2804(13)で示され
る反応が進み樹脂が当初のNa型に戻されると共にH2
OとH2SO4が生成する。
The regenerated liquid that has passed through 5BA10 is further passed through WAC8, where it reacts with the resin that has been converted to H type according to reaction formula (9), but the regenerated liquid contains excess NaOH and reaction formula (11).
), so it contains Na2SO4 produced by
R-H+NaOH→R-Na+H20(12)R-H+
The reaction shown by Na2SO4→R-Na+H2804 (13) progresses and the resin returns to its original Na form, and H2
O and H2SO4 are produced.

このH2SO4は過剰量のNaOHと中和反応を起すが
、NaOHは更に大過剰存在しているので、中和処理部
6に誘導された後完全に中和される。
This H2SO4 causes a neutralization reaction with an excess amount of NaOH, but since NaOH is present in an even larger excess, it is completely neutralized after being guided to the neutralization processing section 6.

尚WAC8としてに型のものを使用した時は再生液とし
てNaOHの代りにKOHを使用すればよいことは言う
までもない。
It goes without saying that when a type of WAC8 is used, KOH may be used instead of NaOH as the regenerating liquid.

この方法は一応所期の目的を達成し得るものであるが、
一般的に重金属含有廃水中に存在している無機酸の濃度
が高く、無機酸濃度に対する重金属イオンの相対濃度が
低い場合には、WAC8に通水した時に前記(1)式や
(2)式で示したイオン交換の他に、例えば R−Na+H2SO4→R−H+Na2SO4(14)
で示される反応が進んでWACB内の樹脂がH型に再生
され、重金属イオン吸着という所期の目的に悪影響を与
え、十分に満足すべき処理が行ない得ない場合もある。
Although this method can achieve the intended purpose,
In general, when the concentration of inorganic acids present in heavy metal-containing wastewater is high and the relative concentration of heavy metal ions to the inorganic acid concentration is low, when water is passed through WAC8, the above equations (1) and (2) In addition to the ion exchange shown in, for example, R-Na+H2SO4→R-H+Na2SO4 (14)
As the reaction shown in (1) progresses, the resin in the WACB is regenerated into the H type, which may have an adverse effect on the intended purpose of adsorbing heavy metal ions, making it impossible to perform a fully satisfactory treatment.

本発明は以上の如き事情に着目してなされたものであっ
て、重金属含有廃液中の酸濃度や重金属イオン濃度の如
何にかかわらず常に安定した重金属イオン除去効果を挙
げ、且つ安定した純水を与え得る様な重金属含有廃水の
処理法を提供せんとするものである。
The present invention has been made in view of the above-mentioned circumstances, and it is capable of always achieving a stable heavy metal ion removal effect regardless of the acid concentration or heavy metal ion concentration in heavy metal-containing waste liquid, and producing stable pure water. The purpose of the present invention is to provide a method for treating wastewater containing heavy metals.

かかる目的を達成し得た本発明の構成とは、重金属含有
廃水を予め弱塩基性陰イオン交換樹脂で処理してから弱
酸性陽イオン交換樹脂に接触させて重金属イオンを吸着
除去せしめ、しかる後に強酸性陽イオン交換樹脂及び強
塩基性陰イオン交換樹脂で処理する様にした点に要旨が
存在する。
The structure of the present invention that achieves this objective is that heavy metal-containing wastewater is treated in advance with a weakly basic anion exchange resin, and then brought into contact with a weakly acidic cation exchange resin to adsorb and remove heavy metal ions. The gist lies in that the treatment is performed using a strongly acidic cation exchange resin and a strongly basic anion exchange resin.

従って本発明の構成は第2図に示した様な処理方式の前
に更に弱塩基性陰イオン交換樹脂処理工程を付した点に
特徴があり、これによって重金属含有廃液中に存在する
遊離の酸を可及的に除去し、もって重金属イオンの除去
回収効果を高めようとしている。
Therefore, the structure of the present invention is characterized in that a weakly basic anion exchange resin treatment step is added before the treatment method shown in FIG. We are trying to remove as much as possible, thereby increasing the removal and recovery effect of heavy metal ions.

以下実施例たる図面に基づいて本発明の構成及び作用効
果を説明するが、もとより本発明は下記実施例に限定さ
れるべきものではない。
The configuration and effects of the present invention will be explained below based on the drawings which are examples, but the present invention should not be limited to the following examples.

第3図は本発明に係る処理工程の一例を示すフローシー
トであり、重金属含有廃水貯留部1から出た廃水はまず
弱塩基性陰イオン交換樹脂塔7(以下WBAという)に
通される。
FIG. 3 is a flow sheet showing an example of the treatment process according to the present invention, in which wastewater discharged from the heavy metal-containing wastewater storage section 1 is first passed through a weak basic anion exchange resin tower 7 (hereinafter referred to as WBA).

WBA7は遊離酸を除去回収するものであるから一般的
にはOH型が使用されるが、WBA7における反応は例
えば下記の如く示される。
Since WBA7 is used to remove and recover free acids, the OH type is generally used, and reactions in WBA7 are shown, for example, as follows.

R−OH+H2804→R−804+H20(15)か
くして遊離酸が可及的に除去された廃水は、引き続きW
AC8,5AC9及び5BA10に順次通水されていく
が、この処理工程の概要は第2図において説明したのと
同一であるから記述を省略する。
R-OH+H2804→R-804+H20 (15) The wastewater from which free acids have been removed as much as possible is then treated with W.
Water is sequentially passed through AC8, 5AC9, and 5BA10, but the outline of this treatment process is the same as that explained in FIG. 2, so a description thereof will be omitted.

次にこれらイオン交換樹脂の再生であるが。WAC8,
5AC9及び5BA10の再生方法は第2図において説
明したのと同一であるから省略する。
Next is the regeneration of these ion exchange resins. WAC8,
The reproduction method of 5AC9 and 5BA10 is the same as that explained in FIG. 2, so a description thereof will be omitted.

しかしながら、再生液貯留部4から出た再生用苛性ソー
ダは5BA10及びWAC8を再生した後そのまま中和
処理部6に通されるのではなく、更にWBA7の再生に
利用される。
However, the regenerating caustic soda discharged from the regenerating liquid storage section 4 is not directly passed through the neutralization processing section 6 after regenerating 5BA10 and WAC8, but is further utilized for regenerating WBA7.

即ちこの再生液には過剰の苛性ソーダが存在しているの
で、これをWBA7に通水すると、反応式(15)によ
って生じたR−8O4との間に下記の如きイオン交換反
応が行なわれ、R−8O4は当初のOH型に戻される。
That is, since this regeneration solution contains excess caustic soda, when this water is passed through WBA7, the following ion exchange reaction takes place with R-8O4 produced by reaction formula (15), and R -8O4 is returned to its original OH form.

R−8O4+NaOH→R−OH+Na2SO4(16
)ここに生じた硫酸ナトリウム及び過剰量のNaOH含
有液は、そのまま中和処理部6に導かれてから完全な中
和反応に付される。
R-8O4+NaOH→R-OH+Na2SO4(16
) The sodium sulfate and excess amount of NaOH-containing liquid produced here are directly led to the neutralization treatment section 6 and then subjected to a complete neutralization reaction.

前記実施例は本発明の代表的実施態様に過ぎず各イオン
交換樹脂における酸根や塩基板の種類、H型、Na型、
K型等の活性状態の如何、樹脂の再生工程等については
全く限定されず、重金属含有廃水中の遊離酸除去、重金
属イオン除去、前工程において生成した塩の除去を所定
の順序によって行なうものは全て本発明の技術的範囲に
包含される。
The above examples are merely representative embodiments of the present invention, and the types of acid groups and salt substrates in each ion exchange resin, H type, Na type,
There are no limitations on the active state of the K-type, etc., or the resin regeneration process, etc., and those that remove free acids from heavy metal-containing wastewater, heavy metal ions, and salts generated in the previous process in a predetermined order. All are included within the technical scope of the present invention.

また本発明の適用される重金属はアルカリ金属やアルカ
リ土類金属の如き軽金属を除く全ての重金属を含むもの
であり、重金属含有廃水としては重金属を含む廃液全て
が対象になるが代表的なものを例示すればメッキ廃液、
精練廃液、選鉱廃液、杭内水、電線工場廃液等各種産業
廃液が挙げられる。
Furthermore, the heavy metals to which the present invention is applied include all heavy metals except for light metals such as alkali metals and alkaline earth metals, and the heavy metal-containing wastewater includes all wastewater containing heavy metals, but representative examples include: For example, plating waste liquid,
Examples include various industrial waste liquids such as scouring waste liquid, mineral processing waste liquid, pile water, electric wire factory waste liquid, etc.

本発明は以上の如く構成されWAC処理による重金属除
去工程の前にWBA処理工程が行なわれるので、廃水中
の遊離酸はWBAによって可及的に除去される。
Since the present invention is constructed as described above and the WBA treatment step is performed before the heavy metal removal step by WAC treatment, free acids in wastewater are removed as much as possible by WBA.

従ってWAC処理に際して重金属イオンの吸着に障害を
与えることがすく、はぼ完全に吸着除去される。
Therefore, during WAC treatment, the adsorption of heavy metal ions is less likely to be hindered, and heavy metal ions are almost completely adsorbed and removed.

その為、重金属吸着不十分に伴なうSACやSBAの過
負荷も軽減され、イオン交換樹脂の寿命が延びる他、回
収された処理液の純度も極めて高いものになりその利用
率が高められる。
Therefore, the overload of SAC and SBA due to insufficient adsorption of heavy metals is reduced, the life of the ion exchange resin is extended, and the purity of the recovered treatment liquid is extremely high, increasing its utilization rate.

またWBAの再生に際して格別の再生液を使用する必要
がなくWACの再生液をそのまま使用できるから、再生
廃液が増大するという恐れもない。
Furthermore, since there is no need to use a special regenerating liquid when regenerating WBA and the WAC regenerating liquid can be used as is, there is no fear that the amount of regenerated waste liquid will increase.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は重金属含有廃液の処理工程を示すフローシ
ートであり、第1図は公知方法、第2図は改良して考え
られる方法、第3図は本発明方法を夫々示している。 1・・・・・・重金属含有廃水貯留部、2・・・・・・
処理水回収部、3,4・・・・・・再生液貯留部、5・
・・・・・重金属イオン回収部、6・・・・・・中和処
理部、7・・・・・・弱塩基性陰イオン交換樹脂(WB
A)、8・・・・・・弱酸性陽イオン交換樹脂(WAC
)、9・・・・・強酸性陽イオン交換樹脂(SAC)、
10・・・・・・強塩基性陰イオン交換樹脂(SBA)
Figures 1 to 3 are flow sheets showing the steps for treating waste liquid containing heavy metals, with Figure 1 depicting a known method, Figure 2 depicting an improved method, and Figure 3 depicting the method of the present invention. 1... Heavy metal-containing wastewater storage section, 2...
Treated water recovery section, 3, 4... Regeneration liquid storage section, 5.
... Heavy metal ion recovery section, 6 ... Neutralization processing section, 7 ... Weak basic anion exchange resin (WB
A), 8... Weakly acidic cation exchange resin (WAC
), 9...strongly acidic cation exchange resin (SAC),
10... Strong basic anion exchange resin (SBA)
.

Claims (1)

【特許請求の範囲】[Claims] 1 重金属含有廃水をイオン交換樹脂と接触させて重金
属イオンを除去回収し且つ前記廃水を浄化回収するに際
し、前記廃水を弱塩基性陰イオン交換樹脂で処理した後
、弱酸性陽イオン交換樹脂によって重金属を吸着し、次
いで強酸性陽イオン交換樹脂及び強塩基性陰イオン交換
樹脂で処理することを特徴とする重金属含有廃水の処理
法。
1. When removing and recovering heavy metal ions by contacting heavy metal-containing wastewater with an ion exchange resin and purifying and recovering the wastewater, the wastewater is treated with a weakly basic anion exchange resin, and then heavy metals are removed using a weakly acidic cation exchange resin. 1. A method for treating wastewater containing heavy metals, which comprises adsorbing heavy metals and then treating with a strongly acidic cation exchange resin and a strongly basic anion exchange resin.
JP50150886A 1975-12-17 1975-12-17 100% of the population Expired JPS5815190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50150886A JPS5815190B2 (en) 1975-12-17 1975-12-17 100% of the population

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50150886A JPS5815190B2 (en) 1975-12-17 1975-12-17 100% of the population

Publications (2)

Publication Number Publication Date
JPS5275053A JPS5275053A (en) 1977-06-23
JPS5815190B2 true JPS5815190B2 (en) 1983-03-24

Family

ID=15506521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50150886A Expired JPS5815190B2 (en) 1975-12-17 1975-12-17 100% of the population

Country Status (1)

Country Link
JP (1) JPS5815190B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475159A (en) * 1977-11-25 1979-06-15 Kurita Water Ind Ltd Method of disposing plating waste water
JPS5715885A (en) * 1980-06-30 1982-01-27 Nippon Rensui Kk Method for recovery of high-purity waste water of washing
JP4665154B2 (en) * 2004-05-13 2011-04-06 独立行政法人産業技術総合研究所 Coexisting anion treatment apparatus and method
EP2204250A1 (en) * 2008-12-16 2010-07-07 Akzo Nobel Coatings International B.V. Aqueous dispersions of silver particles
JP2019118891A (en) * 2018-01-09 2019-07-22 栗田工業株式会社 Pure water producing apparatus and pure water producing method

Also Published As

Publication number Publication date
JPS5275053A (en) 1977-06-23

Similar Documents

Publication Publication Date Title
US2155318A (en) Processes for the deacidification of liquids, especially water
CN101838749A (en) Ion exchange extraction vanadium method of vanadium-containing solution
CN110734169A (en) Method for removing chlorine from acidic solutions
JPS5815190B2 (en) 100% of the population
CN113666561A (en) High-salt sulfur-containing fluorine-containing wastewater treatment process
KR101549089B1 (en) Method for acidic gas absorption comprising regenerating process of anion exchang resin using anion metal hydroxide regenerent
TWI399342B (en) Process for the preparation of waste liquid containing tetraalkylammonium ion
CN115353249B (en) Wastewater treatment process for recovering high-purity sodium bicarbonate by carbon dioxide solidification
EP0840805A1 (en) Process for regeneration of ion-exchange resins used for sugar decolorization
US3790535A (en) Method of regenerating chelate resins having mercury adsorbed thereto
JP3519112B2 (en) Method and apparatus for treating liquid to be treated such as waste liquid containing ammonia compound
US3407129A (en) Process for reclaiming spent electrolytes used for electrolytically descaling steel
WO2023074442A1 (en) Method for producing lithium-containing solution and method for producing lithium hydroxide
US5356610A (en) Method for removing impurities from an alkali metal chlorate process
JPS5945438B2 (en) Ion exchange resin recycling waste liquid treatment method
USH1661H (en) Ion exchange removal of cations under chelating/complexing conditions
SU1726379A1 (en) Process for recovering lithium from natural water by ion exchange
JPS622875B2 (en)
JP4314647B2 (en) SOx removal method in exhaust gas
JPS591396B2 (en) How to treat water containing boron and COD
US2502120A (en) Removal of silicon compounds from water
JPS6210927B2 (en)
JP2915043B2 (en) Regeneration method of diffusion dialysis membrane
KR930004187B1 (en) Waste acid regenerating method
JPH0140676B2 (en)