JPS58146837A - Water quality measuring device - Google Patents

Water quality measuring device

Info

Publication number
JPS58146837A
JPS58146837A JP2931282A JP2931282A JPS58146837A JP S58146837 A JPS58146837 A JP S58146837A JP 2931282 A JP2931282 A JP 2931282A JP 2931282 A JP2931282 A JP 2931282A JP S58146837 A JPS58146837 A JP S58146837A
Authority
JP
Japan
Prior art keywords
cell
sample
water quality
sliding body
span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2931282A
Other languages
Japanese (ja)
Inventor
Keigoro Shigiyama
鴫山 桂五郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2931282A priority Critical patent/JPS58146837A/en
Publication of JPS58146837A publication Critical patent/JPS58146837A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/276Calibration, base line adjustment, drift correction with alternation of sample and standard in optical path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enhance measurement accuracy, by providing the inside of a cell with a slidable body consisting of an element and vessels contg. correction solns. fixed to the element, removing matters attached to the inside of the cell, and always executing corrections. CONSTITUTION:A slidable body 24 slidably inserted into the inside of a cell consists of an element 24a made of a magnetic material, such as a magnet, and vessels 24b, 24c contain a zero point correcting soln. 24d and a span correcting soln. 24e, respectively. When the body 24 is located in the right side of the cell 22, a sample (A) passing through a path 20 comes into the cell 22, and UV rays pass through the sample (A). When a power supply controller 25 is controlled to change over currents flowing to coils 23, 23', the body 24 shifts to the left side of the cell 22, a sample (B) flowing through a path 21 enters the cell 22, and the UV rays pass through this sample (B). Sliding the body 24 to the right and left sides permits alternate measurements of the samples (A), (B), and removal of matters attached to the inside of the cell 22, and hence, both of zero point and span corrections.

Description

【発明の詳細な説明】 本発明は、水質汚濁を計測する水質計測器、特に紫外線
吸光度法を利用する水質計測器に関し、2種類の試料の
水質汚濁を比較検討できるとともに、試料を入れる(又
は通す)セルの汚れを除去することができる高精度の水
質計測器を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water quality meter that measures water pollution, particularly a water quality meter that uses ultraviolet absorbance method. The objective is to provide a highly accurate water quality measuring instrument that can remove dirt from cells (through which water passes).

一般に、吸光度方式の水質計測器は、試料である水を入
れる(又は通す)セルに紫外線等を照射し、セルを介し
て透過する光を検出することにより吸光度を得て水質汚
濁を計測するものである。
In general, absorbance-type water quality measuring instruments measure water pollution by irradiating ultraviolet rays, etc., onto a cell that contains (or passes through) sample water, and detects the light that passes through the cell to obtain absorbance. It is.

この棟の水質計測器においては、試料(水)内Qて溶存
する物質かセルの内壁に吸着、堆積した場合、正確な水
質汚濁を計測できない。
The water quality measuring instruments in this building cannot accurately measure water pollution if substances dissolved in the sample (water) are adsorbed or deposited on the inner wall of the cell.

このため、従来より、セルの内壁に吸着した物質を除去
することができる水質計測器が開発されCいる。これら
の中には、ブラシによりセルを洗どf[するもの、超音
波や気泡を一定時間毎に出してセルを洗浄するもの等か
ある。
For this reason, water quality measuring instruments that can remove substances adsorbed on the inner walls of cells have been developed. Among these, there are those that wash the cell with a brush, and those that wash the cell by emitting ultrasonic waves or air bubbles at regular intervals.

第1図は従来の水質計測器の一例を示している。FIG. 1 shows an example of a conventional water quality meter.

第1図において、1は試料2か入れられるセル、3はセ
ル1内を摺動し、セル1の内壁に吸着した物質を除去す
るためのブラシであり、このブラシ3はピストンモータ
4により駆動され、セル1内を往復するものである。6
は低圧水銀灯等の光源であり、この光源6より出た光は
セル1を透過する。6,6′はそれぞれ回転板7に取付
けられたフィルターであり、フィルター6は紫外光を透
過させ、フィルター6′は可視光を透過させるものであ
る。8は回転板7を回転させるモータである。セル1を
透過し、さらにフィルター6.6′を透過した紫外線お
よび可視光は、順次光電素子9で電気信号に変換される
。10は光電素子9からの信号を処理する信号処理部で
あり、この信号処理部1゜において、紫外線、可視光の
透過量およびその比が求められる。11は制御部であり
、この制御部11は信号処理部1oの出力に基いて光源
6の発光強度を制御するとともに、ピストンモータ4を
制御する。12は吸光度、又は試料が一定物質の溶液で
ある場合には濃度を表示する指示計である。
In FIG. 1, 1 is a cell into which a sample 2 is placed, and 3 is a brush that slides inside the cell 1 to remove substances adsorbed to the inner wall of the cell 1. This brush 3 is driven by a piston motor 4. It moves back and forth within the cell 1. 6
is a light source such as a low-pressure mercury lamp, and the light emitted from this light source 6 is transmitted through the cell 1. Reference numerals 6 and 6' denote filters respectively attached to the rotary plate 7, with the filter 6 transmitting ultraviolet light and the filter 6' transmitting visible light. 8 is a motor that rotates the rotary plate 7. The ultraviolet rays and visible light that have passed through the cell 1 and further passed through the filter 6.6' are sequentially converted into electrical signals by the photoelectric element 9. Reference numeral 10 denotes a signal processing unit that processes the signal from the photoelectric element 9. In this signal processing unit 1°, the transmitted amount of ultraviolet rays and visible light and the ratio thereof are determined. 11 is a control section, and this control section 11 controls the light emission intensity of the light source 6 based on the output of the signal processing section 1o, and also controls the piston motor 4. Reference numeral 12 is an indicator that displays absorbance or concentration if the sample is a solution of a certain substance.

しかしながら、上記従来の水質計測器では、光源の安定
度、光路の光学系の汚れ、受光素子の安定度などがすべ
て吸光度の測定精度に影響を与えるため、光源電源等の
安定化を行っているが、他の部分のドリフトに対しては
、基準液又はゼロ較正液との比較を定期的に手動で行な
わなければならない欠点かあった。
However, in the conventional water quality measuring instruments mentioned above, the stability of the light source, the dirt on the optical system in the optical path, the stability of the light receiving element, etc. all affect the accuracy of absorbance measurement, so the light source power source, etc. must be stabilized. However, for drift in other parts, there is a drawback that comparisons with a reference liquid or zero calibration liquid must be periodically performed manually.

本発明は上記従来の欠点を除去するものであり、以−ド
に本発明の一実施例について第2図とともに説明する。
The present invention eliminates the above-mentioned drawbacks of the conventional art, and one embodiment of the present invention will now be described with reference to FIG. 2.

第2図において、20は試料人か流れる流路、21は試
料Bが流れる流路であり、流路20と21とは、石英等
からなるセル22で連絡されている。
In FIG. 2, 20 is a channel through which the sample B flows, 21 is a channel through which the sample B flows, and the channels 20 and 21 are connected by a cell 22 made of quartz or the like.

23.23’は」−記セル22の左右外周部(て配置さ
れたコイル、24は上記セル22内に摺動自在に仲人さ
れた摺動体であり、この摺動体24は第3図eて示すよ
うに磁石または軟鉄等の磁性体からなる素子部24&と
、この素子部24&の両端に固定された容器部24b、
240で形成されている。
23. 23' is a coil placed on the left and right outer periphery of the cell 22, and 24 is a sliding body slidably inserted in the cell 22, and this sliding body 24 is shown in FIG. As shown, an element part 24& made of a magnetic material such as a magnet or soft iron, and a container part 24b fixed to both ends of this element part 24&,
240.

容器部24b、240にはそれぞれゼロ校正液24d、
スパン校正液246が入れられている。
The container parts 24b and 240 contain zero calibration liquid 24d, respectively.
A span calibration liquid 246 is contained.

また素子部24&の表面は試料中の物質により侵されな
いようにテフロン等で被覆されている。
Further, the surface of the element portion 24& is coated with Teflon or the like to prevent it from being attacked by substances in the sample.

26は電源制御部であり、この電源制御部26は紫外線
光源26およびコイル23.23’を制御するものであ
る。紫外線光源26から出た紫外線は集光用光学系27
を介してセル22を透過した後、集光用光学系28で集
光され、紫外線受光センサ29で受光され、電気信号に
変換される。3oは紫外線受光センサ29の出力を増幅
するとともに、演算する増幅演算部、31は吸光の度合
または濃度換算値を表示する指示部である。
26 is a power supply control section, and this power supply control section 26 controls the ultraviolet light source 26 and the coils 23 and 23'. The ultraviolet rays emitted from the ultraviolet light source 26 are collected by a condensing optical system 27
After passing through the cell 22, the light is collected by a light collecting optical system 28, received by an ultraviolet light receiving sensor 29, and converted into an electrical signal. 3o is an amplification calculating section that amplifies and calculates the output of the ultraviolet light receiving sensor 29, and 31 is an indicating section that displays the degree of light absorption or the converted concentration value.

第2図に示すように、摺動体24かセル22の右側に位
置している場合は、流路20内を流れる試料ムかセル2
2内に入り、紫外線はこの試料Aを透過することになる
。第2図に示す状態より、電源制御部26を制御し、コ
イル23’、23への電流を切換えると、摺動体24は
、第2図に破線で示すように、セル22内の左側に移動
し、流路21内を流れる試料Bがセル22内に入り、紫
外線はこの試料Bを透過することになる。摺動体24が
セル22内の右側より左側に移動する過程において、紫
外線受光センサ29より順次以下の出力か得られる。
As shown in FIG. 2, when the slider 24 is located on the right side of the cell 22, the sample flowing in the channel 20 or the cell 2
2 and the ultraviolet rays will pass through this sample A. When the power supply control section 26 is controlled to switch the current to the coils 23' and 23 from the state shown in FIG. 2, the sliding body 24 moves to the left side in the cell 22, as shown by the broken line in FIG. However, the sample B flowing in the channel 21 enters the cell 22, and the ultraviolet rays pass through this sample B. In the process of the sliding body 24 moving from the right side to the left side in the cell 22, the following outputs are sequentially obtained from the ultraviolet light receiving sensor 29.

(1)試料人の透過光による出力 (2)  ゼロ較正液24dの透過光による出力(3)
  素子部24&の遮光による暗電流(4)  スパン
較正液24θの透過光による出力(6)試料Bの透過光
による出力 逆に摺動体24かセル22内の左側より右側に移動する
過程においては、6→4→3→2→1の1嗅乏なる。
(1) Output due to the transmitted light of the sample person (2) Output due to the transmitted light of the zero calibration liquid 24d (3)
Dark current due to light shielding of element section 24 & (4) Output due to transmitted light of span calibration liquid 24θ (6) Output due to transmitted light of sample B Conversely, in the process of moving the sliding body 24 from the left side to the right side in the cell 22, 6 -> 4 -> 3 -> 2 -> 1 - 1 odor becomes poor.

このように、本実施例によれは、摺動体24を左右に摺
動させることにより、試料ムとBの測定を交互に行なう
ことかできるとともに、摺動体24の摺動運動により、
セル22の内壁に付着する物質を除去でき、さらにゼロ
較正およびスパン較正が行なえるものである。
In this way, according to this embodiment, by sliding the sliding body 24 left and right, it is possible to alternately measure the samples M and B, and by the sliding movement of the sliding body 24,
It is possible to remove substances adhering to the inner wall of the cell 22, and also to perform zero calibration and span calibration.

なお、」二記実施例においては、摺動体24K。In addition, in the second embodiment, the sliding body 24K.

ゼロ較正液24dを入れた容器部24bと、スパン較正
液24elを入れた容器部240とを設けているか、ど
ちらか一方でもよく、また容器部24b。
A container part 24b containing the zero calibration liquid 24d and a container part 240 containing the span calibration liquid 24el may be provided, or either one of them may be provided.

24cの取付個所は、素子部24!Lの端部に限らず、
素子部24&に貫通孔を形成し、容器部24b。
The mounting point of 24c is the element part 24! Not limited to the end of L,
A through hole is formed in the element part 24&, and the container part 24b.

240をこの貫通孔内に固定してもよいものである。240 may be fixed within this through hole.

また、上記実施例において、集光用光学系27゜28は
レンズで構成しているか、レンズに限らずオプティカル
ガイドでもよく、また場合によっては1略してもよい。
Further, in the above embodiments, the condensing optical systems 27 and 28 are constituted by lenses, or may be not limited to lenses but may be optical guides, or may be omitted in some cases.

すなわち、セル22が円筒形の場合、この円筒形を利用
し、円筒形のセル22の焦点にそれぞれ光源26と紫外
線受光センサ29を配置することにより、集光用光学系
2了、28を省略することかできるものである。
That is, when the cell 22 is cylindrical, the cylindrical shape is used and the light source 26 and ultraviolet light receiving sensor 29 are placed at the focal point of the cylindrical cell 22, thereby omitting the light collecting optical systems 2 and 28. It is something that can be done.

また、上記実施例において、常に新しい試料を測定する
たぬには、摺動体24の左右への摺動時に、摺動体24
の両端面がそれぞれ、゛流路20゜21とセル22との
境界面で停止することが好ましく、また、摺動体24が
流路20,21内に突出することは動作上好ましくない
。このたぬ、流路20,21とセル22との境界部に摺
動体24用のストッパーを設けておくことが好ましい。
In addition, in the above embodiment, in order to always measure a new sample, when the slider 24 slides from side to side, the slider 24
It is preferable that both end surfaces of the flow path 20 and 21 stop at the interface between the flow paths 20 and 21 and the cell 22, respectively, and it is not preferable for the sliding body 24 to protrude into the flow paths 20 and 21 from the viewpoint of operation. It is preferable to provide a stopper for the sliding body 24 at the boundary between the channels 20, 21 and the cell 22.

また、上記実施例では、紫外線のみにより測定を行って
いるが、光源の光成分中の紫外線と可視光とをフィルタ
で分け、交互に受光し紫外線と可視光で測定を行ない懸
濁物補正等を行ってもよいものである。
In addition, in the above embodiment, measurement is performed using only ultraviolet rays, but the ultraviolet rays and visible light in the light component of the light source are separated by a filter, the ultraviolet rays and visible light are received alternately, and the measurement is performed using ultraviolet rays and visible light. It is acceptable to do so.

本発明は上記のような構成であり、本発明によれは、以
)゛に示す効果が得られるものである。
The present invention has the above-mentioned configuration, and the following effects can be obtained according to the present invention.

(1)摺動体をセル内で摺動させるため、セル内壁に付
着する物質を除去することができ、測定精度を向上する
ことができる。
(1) Since the sliding body slides within the cell, substances adhering to the inner walls of the cell can be removed, and measurement accuracy can be improved.

(2)試料を測定する過程において、常時ゼロ較正およ
び/またはスパン較正が行なえ、測定精度か向上する。
(2) In the process of measuring a sample, zero calibration and/or span calibration can be performed at all times, improving measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水質計測器の概略図、第2図は本発明の
一実施例における水質計測器の概略図、第3図は同水質
計測器の摺動体の断面図である。 20.21・・・・・・流路、22・・・・・セル、2
3.23’・・・・・コイル、24・・・・・・摺動体
、241L・・・・・素子部、24b、24C・・・容
器部、24d・・・・・・ゼロ較正液、24el・・・
・・スパン較正液、26・・・・・・電源制御部、26
・・・・・・紫外線光源、27.28・・・・・・集光
用光学系、29・・・・・・紫外線受光センサ、30・
・・・・・増幅演算部、31・・・・・・指示部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a schematic diagram of a conventional water quality meter, FIG. 2 is a schematic diagram of a water quality meter according to an embodiment of the present invention, and FIG. 3 is a sectional view of a sliding body of the same water quality meter. 20.21...Flow path, 22...Cell, 2
3.23'... Coil, 24... Sliding body, 241L... Element section, 24b, 24C... Container section, 24d... Zero calibration liquid, 24el...
...Span calibration liquid, 26...Power control section, 26
......Ultraviolet light source, 27.28...Condensing optical system, 29...Ultraviolet light receiving sensor, 30.
...Amplification calculation section, 31...Instruction section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (2)

【特許請求の範囲】[Claims] (1)試料が導入されるセルと、このセル内に摺動可能
に収容された素子部およびこの素子部に固定された少な
くとも1個の容器部およびこの容器部内に入れられた較
正液とからなる摺動体と、この摺動体を磁気駆動する磁
気駆動手段と、」−記セル内に導入された試料または上
記較正液の吸光度を計測する計測手段とを具備してなる
水質計測器。
(1) A cell into which a sample is introduced, an element part slidably housed in this cell, at least one container part fixed to this element part, and a calibration liquid placed in this container part. A water quality measuring instrument comprising: a sliding body; a magnetic driving means for magnetically driving the sliding body; and a measuring means for measuring the absorbance of the sample introduced into the cell or the calibration solution.
(2)磁石、軟鉄等の磁性体からなる素子部の両端部に
、それぞれゼロ較正液が入れられた第1の容器およびス
パン較正液が入れられた第2の容器を固定して摺動体を
構成してなる特許請求の範囲第1項記載の水質計測器。
(2) A sliding body is constructed by fixing a first container containing zero calibration liquid and a second container containing span calibration liquid to both ends of an element made of a magnetic material such as a magnet or soft iron. A water quality measuring instrument according to claim 1, comprising:
JP2931282A 1982-02-25 1982-02-25 Water quality measuring device Pending JPS58146837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2931282A JPS58146837A (en) 1982-02-25 1982-02-25 Water quality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2931282A JPS58146837A (en) 1982-02-25 1982-02-25 Water quality measuring device

Publications (1)

Publication Number Publication Date
JPS58146837A true JPS58146837A (en) 1983-09-01

Family

ID=12272694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2931282A Pending JPS58146837A (en) 1982-02-25 1982-02-25 Water quality measuring device

Country Status (1)

Country Link
JP (1) JPS58146837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674959A1 (en) * 1991-04-05 1992-10-09 Ecovalor Metering system for the spectroscopic measurement of a liquid sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674959A1 (en) * 1991-04-05 1992-10-09 Ecovalor Metering system for the spectroscopic measurement of a liquid sample

Similar Documents

Publication Publication Date Title
JP3230751B2 (en) Turbidity measurement
EP0137157A2 (en) Fluid analysis technology using fluorescence type sensors
KR20050002822A (en) Method for analysing liquids, in addition to a device therefor
FI64862C (en) REQUIREMENTS FOR PHOTOMETRIC MAINTENANCE OF THE REQUIREMENTS AND REACTIONS
US3826577A (en) Gas analyzing apparatus
US3691391A (en) Optical testing apparatus comprising means for flowing liquids in free fall condition at constant flow rate
JPH07218423A (en) Instrument for optically measuring liquid
JPS5852550A (en) Dissolution method for ghost peak of flow injection analysis
JP4158314B2 (en) Isotope gas measuring device
JPS58146837A (en) Water quality measuring device
JPS58146838A (en) Water quality measuring device
JP4048139B2 (en) Concentration measuring device
JP2009085708A (en) Measuring method of organic substance concentration in sample liquid, and ultraviolet absorbance measuring device
GB2163553A (en) Method and apparatus for chemiluminescence analysis
ATE194425T1 (en) METHOD AND DEVICE FOR GAS ANALYSIS
JPS62228145A (en) Ultraviolet type organic substance measuring apparatus
CN113588579A (en) Blood ion concentration detection device and method, and calcium ion concentration detection method
JPS62228146A (en) Ultraviolet type organic substance measuring apparatus
JP2945050B2 (en) Method for determining performance degradation of zero gas generator in ozone concentration measurement device
JPS58162842A (en) Measuring instrument of quality of water
JP3301049B2 (en) Gas analyzer using ultraviolet fluorescence analysis
SU734270A1 (en) Instrument for fluorescent investigation of biological objects in aqueous sample
JP3264090B2 (en) Measuring device for nitrogen compounds, phosphorus compounds and organic pollutants
JPS59107223A (en) Spectrochemical analyzer
RU2081406C1 (en) Method of evaluating pollution of waste water