JPS58146838A - Water quality measuring device - Google Patents

Water quality measuring device

Info

Publication number
JPS58146838A
JPS58146838A JP2931382A JP2931382A JPS58146838A JP S58146838 A JPS58146838 A JP S58146838A JP 2931382 A JP2931382 A JP 2931382A JP 2931382 A JP2931382 A JP 2931382A JP S58146838 A JPS58146838 A JP S58146838A
Authority
JP
Japan
Prior art keywords
cell
sample
magnetic element
water quality
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2931382A
Other languages
Japanese (ja)
Inventor
Keigoro Shigiyama
鴫山 桂五郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2931382A priority Critical patent/JPS58146838A/en
Publication of JPS58146838A publication Critical patent/JPS58146838A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path

Abstract

PURPOSE:To enhance accuracy, by sliding a slidable magnetic element to the right and left sides in the inside of a cell, alternately measuring transmittance of samples, and removing matters attached to the inside wall. CONSTITUTION:When a magnetic element 24 is located in the right side of a cell 22, a sample (A) flowing through a path 20 enters the cell 22, and UV rays pass through this sample (A). When a power supply controller 25 is controlled to change over currents flowing to coils 23, 23', the element 24 shifts to the left side of the cell 22, a sample (B) flowing through a path B enters the cell 22, and the UV rays pass through this sample (B). Thus sliding the element 24 to both sides permits alternate measurements of the samples (A) and (B), and removal of matters attached to the inside wall of the cell 22. When the sample (A) is the liquid to be examined, and the sample (B) is a reference standard soln., the measurement for the sample (A) can be always executed in comparison with the standard soln. B.

Description

【発明の詳細な説明】 本発明は、水質汚濁を計測する水質計測器、判に紫外線
吸光度法を利用する水質計測器に関し、2種類の試料の
水質汚濁を比較計測できるとともに、試料を入れる(又
は通す)セルの汚れを除去することができる高精度の水
質計測器を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water quality meter that measures water pollution, a water quality meter that uses ultraviolet absorbance method for reading, and is capable of comparatively measuring the water pollution of two types of samples. The purpose of the present invention is to provide a high-precision water quality measuring instrument that can remove dirt from a cell (or pass through).

一般に、吸光度方式の水質計測器は試料である水を入れ
る(又は通す)セルに紫外線等を照射し、セルを介して
透過する光を検出することにより吸光度を得て水質汚濁
を計測するものである。
In general, absorbance-type water quality measuring instruments measure water pollution by irradiating ultraviolet rays, etc., onto a cell that contains (or passes through) sample water, and detects the light that passes through the cell to obtain the absorbance. be.

この種の水質計測器においては、試料(水)内に溶存す
る物質がセルの内壁に吸着、堆積した場合、正確な水質
汚濁を計測できない。
This type of water quality meter cannot accurately measure water pollution if substances dissolved in the sample (water) are adsorbed and deposited on the inner wall of the cell.

1    このため、従来よυ、セルの内壁に吸′着し
た物質を除去することができる水質計測器が開発されて
いる。これらの中には、ブラシによりセルを洗浄するも
の、超音波や気泡を一定時間毎に出してセルを洗浄する
もの等がある。
1 For this reason, water quality measuring instruments have been developed that can remove substances that have been adsorbed on the inner walls of cells. Among these, there are those that clean the cell with a brush, and those that clean the cell by emitting ultrasonic waves or bubbles at regular intervals.

第1図は従来の水質計測器の一例を示している。FIG. 1 shows an example of a conventional water quality meter.

第1図において、1は試料2が入れられるセル、3はセ
ル1内を摺動じ、セル1の内壁に吸着した物質を除去す
るだめのブラシであシ、このブラシ3はピストンモータ
4により駆動され、セル1内を往復するものである。6
は低圧水銀灯等の光源であり、この光源6よシ出た光は
セル1を透過する。6.6′はそれぞれ回転板7に取付
けうれたフィルターであり、フィルター6は紫外光を透
過させ、フィルターdは可視光を透過させるものである
。8は回転板7を回転させるモータである。セル1を透
過し、さらにフィルターe、eを透過した紫外線および
可視光は順次光電素子9で電気信号に変換される。1o
は光電素子9からの信号を処理する信号処理部でアリ、
この信号処理部1゜において、・紫外線、可視光の透過
量およびその比が求められる。11は制御部であり、こ
の制御部11は信号処理部10の出力に基いて光源6の
発光強度を制御するとともに、ピストンモータ4を制御
する。12は吸光度または試料が一定物質の溶液である
場合には濃度を表示する指示計である。
In FIG. 1, 1 is a cell into which a sample 2 is placed, and 3 is a brush that slides inside the cell 1 to remove substances adsorbed to the inner wall of the cell 1. This brush 3 is driven by a piston motor 4. It moves back and forth within the cell 1. 6
is a light source such as a low-pressure mercury lamp, and the light emitted from this light source 6 is transmitted through the cell 1. Reference numerals 6 and 6' designate filters respectively attached to the rotary plate 7, with the filter 6 transmitting ultraviolet light and the filter d transmitting visible light. 8 is a motor that rotates the rotary plate 7. The ultraviolet rays and visible light that have passed through the cell 1 and further passed through the filters e and e are sequentially converted into electrical signals by the photoelectric element 9. 1o
is a signal processing section that processes the signal from the photoelectric element 9,
In this signal processing section 1°, the amount of transmitted ultraviolet light and visible light and their ratio are determined. 11 is a control section, and this control section 11 controls the light emission intensity of the light source 6 based on the output of the signal processing section 10, and also controls the piston motor 4. 12 is an indicator that displays absorbance or concentration if the sample is a solution of a certain substance.

しかしながら、上記従来の水質計測器では、単一の試料
しか計測できない欠点がある。またこのように単一の試
料しか計測できない水質計測器においては、光源の安定
度、光路の光学系の汚れ、受光素子の安定度などがすべ
て吸光度の測定精度に影響を与えるため、光源電源等の
安定化を行っているが、他の部分のドリフトに対しては
、基準液またはゼロ較正液との比較を定期的に手動で行
なわなければならない欠点があった。
However, the conventional water quality measuring instruments described above have the disadvantage that they can only measure a single sample. In addition, in water quality measuring instruments that can only measure a single sample, the stability of the light source, the dirt on the optical system in the optical path, the stability of the light receiving element, etc. all affect the absorbance measurement accuracy. However, there is a drawback that drift in other parts must be manually compared periodically with a reference liquid or zero calibration liquid.

本発明は上記従来の欠点を除去するものであシ、以下に
本発明の一実施例について第2図とともに説明する。
The present invention is intended to eliminate the above-mentioned drawbacks of the conventional art, and one embodiment of the present invention will be described below with reference to FIG. 2.

第2図において、20は試料ムが流れる流路、21は試
料Bが流れる流路で11)、流路2oと21とは、石英
等からなるセル22で連結されている。23.23′は
上記セル22の左右外周部に配置されたコイル、24は
上記セル22内に摺動自在に挿入された磁性素子であり
、この磁性素子24は磁石または軟鉄等の磁性体で形成
されている。また磁性素子240表面は試料中の物質に
より侵されないようにテフロン等で被覆されている。
In FIG. 2, reference numeral 20 denotes a flow path through which the sample B flows, 21 represents a flow path through which the sample B flows (11), and the flow paths 2o and 21 are connected by a cell 22 made of quartz or the like. 23 and 23' are coils arranged on the left and right outer peripheries of the cell 22, and 24 is a magnetic element slidably inserted into the cell 22. The magnetic element 24 is made of a magnet or a magnetic material such as soft iron. It is formed. Further, the surface of the magnetic element 240 is coated with Teflon or the like to prevent it from being attacked by substances in the sample.

26は電源制御部であり、この電源制御部26は紫外線
光源26およびコイル23 、2iを制御するものであ
る。紫外線光源26から出た紫外線は集光用光学系27
を介してセル22を透過した後、集光用光学系28で集
光され、紫外線受光センサ29で受光され、電気信号に
変換される。3oは紫外線受光センサ29の出力を増幅
するとともに演算する増幅演算部、31は吸光の度合ま
たは濃度換算値を表示する指示部である。
26 is a power supply control section, and this power supply control section 26 controls the ultraviolet light source 26 and the coils 23 and 2i. The ultraviolet rays emitted from the ultraviolet light source 26 are collected by a condensing optical system 27
After passing through the cell 22, the light is collected by a light collecting optical system 28, received by an ultraviolet light receiving sensor 29, and converted into an electrical signal. 3o is an amplification calculation unit that amplifies and calculates the output of the ultraviolet light receiving sensor 29, and 31 is an indicator unit that displays the degree of light absorption or the converted concentration value.

第2図に示すように、磁性素子24がセル22の右側に
位置している場合は、流路2o内を流れる試料ムがセル
22内に入シ、紫外線はこの試料ムを透過することにな
る。第2図に示す状態より、電源制御部26を制御し、
コイル2s 、23への電流を切換えると、磁性素子2
4は第2図に破線で示すように、セル22内の左側に移
動し、流路21内を流れる試料Bがセル22内に入シ、
紫外線はこの試料Bを透過することになる。
As shown in FIG. 2, when the magnetic element 24 is located on the right side of the cell 22, the sample flowing in the flow path 2o enters the cell 22, and the ultraviolet rays pass through this sample. Become. From the state shown in FIG. 2, the power supply control unit 26 is controlled,
When the current to the coils 2s and 23 is switched, the magnetic element 2
4 moves to the left side in the cell 22 as shown by the broken line in FIG. 2, and the sample B flowing in the channel 21 enters the cell 22.
The ultraviolet rays will pass through this sample B.

このように、本実施例によれば、磁性素子24を左右に
摺動させることにより、試料ムとBの測定を交互に行な
うことができるとともに、磁性素子24の摺動運動によ
シ、セル22の内壁に付着する物質を除去できるもので
ある。
As described above, according to this embodiment, by sliding the magnetic element 24 left and right, it is possible to measure the samples M and B alternately, and the sliding movement of the magnetic element 24 also allows the measurement of the sample B to be carried out alternately. It is possible to remove substances adhering to the inner wall of 22.

第2図において、試料ムを被測定液、試料Bを比較基準
液とすれば、被測定液ムの測定を、常に比較基準液Bと
比較して行うことができ、紫外線受光センサ29には、
試料ム、Bの濃度に応じた信号電流が交互に現われ、一
方を基準とした吸光度(場合によっては濃度)を比較し
ながら、精度よく測定できるものである。
In FIG. 2, if sample M is the liquid to be measured and sample B is the comparison standard liquid, the measurement of the liquid to be measured can always be performed by comparing it with the comparison standard liquid B. ,
Signal currents corresponding to the concentrations of samples M and B appear alternately, and measurements can be made with high accuracy while comparing the absorbance (concentration in some cases) using one as a reference.

なお上記実施例において、集光用光学系27゜28はレ
ンズで構成しているが、レンズに限らずオプティカルガ
イドでもよく、また場合によっては省略してもよい。す
なわち、セル22が円筒形の場合、この円筒形を利用し
、円筒形のセル22の焦点にそれぞれ光源26と紫外線
受光センサ29を配置することにより、集光用光学系2
7゜28を省略することができるものである。
In the above embodiment, the condensing optical systems 27 and 28 are composed of lenses, but they are not limited to lenses and may be optical guides, or may be omitted depending on the case. That is, when the cell 22 is cylindrical, by utilizing this cylindrical shape and arranging the light source 26 and the ultraviolet light receiving sensor 29 at the focal point of the cylindrical cell 22, the light collecting optical system 2
7°28 can be omitted.

また、上記実施例において、常に新しい試料を測定する
ためには、磁性素子24の左右への摺動時に、磁性素子
240両端面がそれぞれ流路20゜21とセル22との
境界面で停止することが好ましく、また、磁性素子24
が流路20.21内に突出することは動作上好ましくな
い。このため、流路20,21とセル22との境界部に
磁性素子24用のストッパーを設けておくことが好まし
い。
In addition, in the above embodiment, in order to always measure a new sample, when the magnetic element 24 slides left and right, both end surfaces of the magnetic element 240 are stopped at the interface between the flow channel 20° 21 and the cell 22. It is preferable that the magnetic element 24
It is undesirable for the flow to protrude into the flow path 20.21 from an operational point of view. For this reason, it is preferable to provide a stopper for the magnetic element 24 at the boundary between the channels 20, 21 and the cell 22.

また、上記実施例では、紫外線のみにより測定を行って
いるが、光源の光成分中の紫外線と可視光とをフィルタ
で分け、交互に受光し紫外線と可視光で測定を行ない懸
濁物補正等を行なってもよいものである。
In addition, in the above embodiment, measurement is performed using only ultraviolet rays, but the ultraviolet rays and visible light in the light component of the light source are separated by a filter, the ultraviolet rays and visible light are received alternately, and the measurement is performed using ultraviolet rays and visible light. It is acceptable to do so.

本発明は上記のような構成でアシ、本発明によれば、以
下に示す効果が得られるものである。
The present invention has the above configuration, and according to the present invention, the following effects can be obtained.

(1)磁性素子をセル内で摺動させるため、セル内壁に
付着する物質を除去することができ、測定精度を向上す
ることができる。
(1) Since the magnetic element is slid within the cell, substances adhering to the inner wall of the cell can be removed, and measurement accuracy can be improved.

(2) 2つの試料を比較して測定できる。特に一方の
試料を基準液またはゼロ較正液にすると、ドリフト等に
よる較正が容易に行なえる。
(2) Two samples can be compared and measured. In particular, if one of the samples is used as a reference solution or a zero calibration solution, calibration due to drift or the like can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水質計測器の概略図、第2図は本発明の
一実施例における水質計測器の概略図である。 20.21・・・・・・流路、22・・・・・・セル、
23゜23′・・・・・・コイル、24・・・・・・磁
性素子、26・・・・・・電源制御部、26・・・・・
・紫外線光源、27,28・・・・・・集光用光学系、
29・・・・・・紫外線受光センサ、30・・・・・・
増幅演算部、31・・・・・・指示部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 質 遁
FIG. 1 is a schematic diagram of a conventional water quality meter, and FIG. 2 is a schematic diagram of a water quality meter according to an embodiment of the present invention. 20.21...flow path, 22...cell,
23゜23'... Coil, 24... Magnetic element, 26... Power control unit, 26...
・Ultraviolet light source, 27, 28... optical system for condensing light,
29... Ultraviolet light receiving sensor, 30...
Amplification calculation section, 31... instruction section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2: Quality Release

Claims (1)

【特許請求の範囲】[Claims] (1)第1の試料が流れる第10流路と、第2の辞料が
流れる第2の流路と、上記第1の流路と第2の流路とを
連結するセルト、このセル内に摺動可能に収容された磁
性素子と、この磁性素仔を磁気駆動する磁気駆動手段と
、上記磁性素仔の摺動運動に応じて上記セル内に導入さ
れた]記第1の試料または第2の試料の吸光度を計測す
る計測手段とを具備してなる水質計測器。 C;2)セルの左右に配置された第1.第2のコイAと
、この第1.第2のコイルへの通電を切換える制御部と
で磁気駆動手段を構成してなる特許請求の範囲第1項記
載の水質計測器。
(1) A tenth flow path through which the first sample flows, a second flow path through which the second sample flows, and a cell that connects the first flow path and the second flow path; a magnetic element slidably housed in the cell; a magnetic driving means for magnetically driving the magnetic element; A water quality measuring instrument comprising a measuring means for measuring the absorbance of a second sample. C; 2) The first . The second carp A and this first carp. 2. The water quality measuring instrument according to claim 1, wherein the control unit for switching the energization to the second coil constitutes a magnetic drive means.
JP2931382A 1982-02-25 1982-02-25 Water quality measuring device Pending JPS58146838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2931382A JPS58146838A (en) 1982-02-25 1982-02-25 Water quality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2931382A JPS58146838A (en) 1982-02-25 1982-02-25 Water quality measuring device

Publications (1)

Publication Number Publication Date
JPS58146838A true JPS58146838A (en) 1983-09-01

Family

ID=12272723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2931382A Pending JPS58146838A (en) 1982-02-25 1982-02-25 Water quality measuring device

Country Status (1)

Country Link
JP (1) JPS58146838A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039350A (en) * 1983-08-11 1985-03-01 Sanyo Electric Co Ltd Manufacture of cup-shaped armature coil unit
JPS6039349A (en) * 1983-08-11 1985-03-01 Sanyo Electric Co Ltd Manufacture of cup-shaped armature coil unit
JPS6062854A (en) * 1983-09-13 1985-04-11 Sanyo Electric Co Ltd Manufacture of cup-shaped armature coil unit
EP2985591A1 (en) * 2014-08-13 2016-02-17 Inntal systemEnergie GmbH System for determining the fill level of a bulk material store

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039350A (en) * 1983-08-11 1985-03-01 Sanyo Electric Co Ltd Manufacture of cup-shaped armature coil unit
JPS6039349A (en) * 1983-08-11 1985-03-01 Sanyo Electric Co Ltd Manufacture of cup-shaped armature coil unit
JPH0546188B2 (en) * 1983-08-11 1993-07-13 Sanyo Electric Co
JPS6062854A (en) * 1983-09-13 1985-04-11 Sanyo Electric Co Ltd Manufacture of cup-shaped armature coil unit
EP2985591A1 (en) * 2014-08-13 2016-02-17 Inntal systemEnergie GmbH System for determining the fill level of a bulk material store

Similar Documents

Publication Publication Date Title
GR3029446T3 (en) Method of preparing a radioactive rhenium complex solution.
GB1007224A (en) Method and apparatus for performing multiple analysis
KR930701739A (en) Reservoir chemistry sensor with any removable reservoir cell
JP2706616B2 (en) Liquid optical measuring device
JP2005345464A5 (en)
JPH01116438A (en) Apparatus for measuring foreign matter content in fluid liquid
JP3176770B2 (en) Fluid inspection device
JPS58146838A (en) Water quality measuring device
JP4158314B2 (en) Isotope gas measuring device
JPS58146837A (en) Water quality measuring device
EP2777062A2 (en) Apparatus and method for determining the amounts of two or more substances present in a liquid
JPH09257701A (en) Surface plasmon resonance sensor
JPS58162842A (en) Measuring instrument of quality of water
SU734270A1 (en) Instrument for fluorescent investigation of biological objects in aqueous sample
JP4113987B2 (en) Optical analyzer and ozone water concentration meter
JPH01165939A (en) Apparatus for measuring foreign matter contained in fluidizing liquid
JPH08313438A (en) Fluid modulation type ultraviolet gas analyzer
SU1402867A1 (en) Device for determining concentration and heterogeneity factor of mixture
JPS6044851A (en) Spectrophotometer
SU947080A1 (en) Device for controlling concentration of active silt during purification of effluents
JPH0785122B2 (en) Optical fiber sensor
JPS6244647A (en) Flow cell for measuring particle characteristic
JPH0136133Y2 (en)
JPS62228146A (en) Ultraviolet type organic substance measuring apparatus
SU282734A1 (en)