JPS58145690A - Production of compound semiconductor - Google Patents

Production of compound semiconductor

Info

Publication number
JPS58145690A
JPS58145690A JP57025919A JP2591982A JPS58145690A JP S58145690 A JPS58145690 A JP S58145690A JP 57025919 A JP57025919 A JP 57025919A JP 2591982 A JP2591982 A JP 2591982A JP S58145690 A JPS58145690 A JP S58145690A
Authority
JP
Japan
Prior art keywords
polycrystals
gap
hydrofluoric acid
raw material
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57025919A
Other languages
Japanese (ja)
Inventor
Jisaburo Ushizawa
牛沢 次三郎
Masayuki Watanabe
正幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57025919A priority Critical patent/JPS58145690A/en
Publication of JPS58145690A publication Critical patent/JPS58145690A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:In the production of single crystals of compound semiconductor containing volatile components by the liquid capsule method, the polycrystals as a raw material is previously treated with hydrofluoric acid to prevent the formation of polycrystals and increase the yield. CONSTITUTION:Polycrystals as a raw material, such as GaP polycrystals, are dipped in hydrofluoric acid at room temperature for about 24hr and treated with aqua regia under boiling or may be boiled in a combination of hydrofluoric acid and aqua regia. Then, the resultant polycrystals (3) of, e.g., GaP, as a raw material, and B2O3 (4) as the liquid capsule are placed in a quartz crucible (2) in the pressure vessel (1) and melted by heating with heater (5) to cover the surface of GaP melt with B2O3 melt. Further, the vessel (1) is pressurized with a nitrogen gas up to about 70 atmospheric pressure. Then, a seed crystal (6) is dipped through the layer of B2O3 in the melt of GaP (3) and pulled up while rotating to form the single crystal (7).

Description

【発明の詳細な説明】 発明の属する技術分野 この発明は化合物半導体の製造方法の改良に関する。[Detailed description of the invention] Technical field to which the invention belongs This invention relates to improvements in methods for manufacturing compound semiconductors.

従来技術とその問題点 一般に揮発性成分を含む化合物半導体単結晶は液体カプ
セル法(LEC法)により製造されている。
Prior art and its problems Compound semiconductor single crystals containing volatile components are generally produced by the liquid encapsulation method (LEC method).

ここでは代表的な例としてGaP単結晶の製造について
述べる。
Here, the production of GaP single crystal will be described as a typical example.

図はLEC法によるGaP単結晶成長装置の説明図で圧
力容器(11内部の石英るつぼ(2)内に収容したGa
P (3)および液体カプセルであるB203(4)は
カーボンヒーター(5)により加熱溶解され、GaP 
(3)の液面はB 203 (4)で覆われる。圧力容
器(1)内部は予じめ真空置換により、N2ガスで満た
され、温度上昇と共に加圧して溶融時には70気圧程度
に保ってGaPの分解・蒸発を防ぐ。その状態で柚子結
晶(6)をB 203 (4)層を通してGaP溶融液
に浸漬して回転させながら徐々に引上げ、GaP単結晶
(7)を作成する。
The figure is an explanatory diagram of a GaP single crystal growth apparatus using the LEC method.
P (3) and liquid capsule B203 (4) are heated and melted by a carbon heater (5), and GaP
The liquid surface of (3) is covered with B 203 (4). The inside of the pressure vessel (1) is filled in advance with N2 gas by vacuum displacement, and as the temperature rises, the pressure is increased and maintained at about 70 atmospheres during melting to prevent decomposition and evaporation of GaP. In this state, the yuzu crystal (6) is immersed in the GaP melt through the B 203 (4) layer and gradually pulled up while rotating to create a GaP single crystal (7).

原料としてのGaP多結晶は一般にPの蒸気圧を制御し
なからGaとPとを反応させ、専用の高圧容器内で直接
合成され、かなり高価である。また前記LEC法による
単結晶製造において双晶の発生や多結晶化および装置ト
ラブルによる製造中止などにより、回収されたGaP多
結晶も原料として再使用する必要がある。その他製造し
たGaP単結晶の頭部および尾部なども回収して再使用
する。
GaP polycrystals as a raw material are generally synthesized directly in a dedicated high-pressure vessel by reacting Ga and P without controlling the vapor pressure of P, and are quite expensive. In addition, GaP polycrystals recovered must be reused as raw materials due to generation of twins, polycrystalization, and production discontinuation due to equipment trouble during single crystal production by the LEC method. The head and tail parts of other GaP single crystals produced will also be collected and reused.

従来これらを適当に粉砕しく10〜50ψ程度)、王水
(硝酸1容十塩酸3容)で10分程度煮沸処理した後純
水洗浄して乾燥し、石英るつぼ内にチャージしていた。
Conventionally, these were appropriately ground (about 10 to 50 ψ), boiled in aqua regia (1 volume of nitric acid, 3 volumes of hydrochloric acid) for about 10 minutes, washed with pure water, dried, and charged into a quartz crucible.

その後前記LEC法lこよりGaP単結晶引上げを行な
う。その場合種子結晶を融液面に付けてから徐々に温度
を下げ、引上げて頭部成長を開始すると融液面上に多結
晶が生成することがしばしば見られた。これをそのまま
引上げると多結晶インゴットしか得られないため、温度
を上げて多結晶部分を再溶融(メルトバック)して種子
結晶を液面から切離し、温度安定後再び種子結晶を液面
に付ける(シード付け)。このような多結晶の発生は原
料中の何らかの不純物が関与していると考えられるが明
らかではない。しかしシード付は操作を何回か繰返すと
多結晶が発生しなくなることがある。これは多結晶の核
となる不純物が次第にB2O3中に拡散してゆくためと
考えられる。
Thereafter, a GaP single crystal is pulled using the LEC method. In this case, when a seed crystal is attached to the melt surface, the temperature is gradually lowered, and the seed crystal is pulled up to initiate head growth, polycrystals are often observed to form on the melt surface. If this is pulled up as it is, only a polycrystalline ingot can be obtained, so the temperature is raised, the polycrystalline part is melted back, the seed crystals are separated from the liquid surface, and after the temperature stabilizes, the seed crystals are attached to the liquid surface again. (seeding). It is thought that some kind of impurity in the raw material is involved in the generation of such polycrystals, but it is not clear. However, if the seeding process is repeated several times, polycrystals may no longer occur. This is considered to be because impurities that form the core of polycrystals gradually diffuse into B2O3.

B2O3には金属酸化物を吸収するゲッタリング効果が
あることから不純物は何らかの酸化物である可能性もあ
る。このような成長初期の多結晶発生がない場合でも引
上げか終了し、高圧容器内から結晶を取出して見るとイ
ンゴットの途中から多結晶化していることかあり、Ga
P単結晶製造の歩留りを低下させている。またGaP原
料中にこの多結晶発生の要因としての不純物があるとい
うことは多結晶化しなかった場合でもGaP単結晶中に
微量の不純物が混入していることにより、品質の低下に
つながることは間違い7よい。その他考えられる不純物
として1JaP原料の作られる過程において接触するS
 i02やB2O3かある。石英るつぼ中で溶融後凝固
したGaP多結晶を叫べると石英(5i02)がGaP
表面に強固に接着している。又、B2O3は表面たけで
なく結晶塊の内部の空孔にまで混入していることがある
ことがわかった。多結晶発生の原因となる不純物を確定
することは困難であるが、GaP原料結晶中の考えられ
る不純物から、弗酸による前処理か多結晶発生を防ぐ効
果をもっと推定された。
Since B2O3 has a gettering effect of absorbing metal oxides, there is a possibility that the impurity is some kind of oxide. Even if polycrystals do not occur in the early stages of growth, when the pulling process is completed and the crystals are removed from the high-pressure vessel, polycrystals have formed from the middle of the ingot, and Ga
This reduces the yield of P single crystal production. It is also true that there are impurities in the GaP raw material that are a factor in the generation of polycrystals, which means that even if polycrystals do not form, trace amounts of impurities are mixed into the GaP single crystal, leading to a decrease in quality. 7 Good. Other possible impurities include S that comes into contact with the 1JaP raw material during the production process.
There are i02 and B2O3. Quartz (5i02) is a GaP polycrystal that is solidified after melting in a quartz crucible.
Strongly adheres to the surface. It was also found that B2O3 was sometimes mixed not only on the surface but also in the pores inside the crystal mass. Although it is difficult to determine the impurities that cause the generation of polycrystals, from the possible impurities in the GaP raw material crystals, it is assumed that pretreatment with hydrofluoric acid is more effective in preventing the generation of polycrystals.

従来の王水処理ではそれらの不純物が十分除去されず多
結晶が多発する要因になっていると考えられる。
It is thought that these impurities are not sufficiently removed in conventional aqua regia treatment, leading to the frequent occurrence of polycrystals.

発明の目的 この発明は多結晶の発生を防ぎ、化合物半導体単結晶製
造の歩留りを著しく向上させる方法を提供することを目
的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for preventing the generation of polycrystals and significantly improving the yield of compound semiconductor single crystal production.

発明の概要 多結晶の発生に対し、原料GaP多結晶中の何らかの不
純物が関与していると考えられ、かつ予想される不純物
として8 i02 、 B2O3、その他の金属酸化物
があることから原料の弗酸による前処理を試ろた。具体
的には従来の王水による煮沸処理の前に原料GaP多結
晶を常温の弗酸中に約24時間浸漬する工程を加えた。
Summary of the Invention It is believed that some impurity in the raw material GaP polycrystal is involved in the generation of polycrystals, and the expected impurities include 8 i02, B2O3, and other metal oxides. I tried pretreatment with acid. Specifically, a step of immersing the raw material GaP polycrystal in hydrofluoric acid at room temperature for about 24 hours was added before the conventional boiling treatment with aqua regia.

また、この処理を一つの工程で済ませるため、王水十弗
酸(硝酸1容十塩酸1容十弗酸1容)の溶液で煮沸処理
することをこよっても目的を達成できた。
In addition, in order to complete this treatment in one step, the objective could also be achieved by boiling in a solution of aqua regia decahydrofluoric acid (1 volume of nitric acid, 1 volume of hydrofluoric acid, 1 volume of decafluoric acid).

発明の効果 GaP原料結晶を予じめ弗酸または弗酸を含む溶液例え
ば王水に弗酸を加えた溶液でエツチング処理することを
こより、GaP単結晶製造における多結晶の発生原因と
なる不純物が除去され、その結果多結晶化を防止するこ
とができ、歩留りを著しく向上させることができた。
Effects of the Invention By etching the GaP raw material crystal in advance with hydrofluoric acid or a solution containing hydrofluoric acid, for example, a solution of hydrofluoric acid added to aqua regia, impurities that cause polycrystal formation in the production of GaP single crystals can be removed. As a result, polycrystalization could be prevented and the yield could be significantly improved.

発明の実施例 従来の王水による処理法と比較した実施例を示す。処理
法としては王水煮沸処理に対して王水に弗酸を加えた溶
液C硝酸1容十塩酸1容十弗酸1容)で煮沸処理した場
合と常温で24時間弗酸中に浸漬した後、王水煮沸処理
した場合の実験結果を比較した。その際原料GaP結晶
は従来より小さく砕いた方が良いことも明らかとなった
。従来の王水処理では引上結晶10本中4〜5本が多結
晶化しくシングル率5/10〜6/10)頭部成長時に
融液面上に目視できた多結晶の発生回数も16〜23回
と非常に多い。原料結晶は10〜50ψ程度よりは5〜
10ψ程度に細かくした方が多結晶の発生は少なくなっ
た。GaPは硬いため更に細かくすることは逆に汚染を
招くシ、工程も増えて好ましくないと思われる。上記王
水処理に対し弗酸を用いた場合は融液面上の多結晶発生
は5本の引上実験で1〜3回と激減し、引上結晶は10
本中多結晶化したものはなかった。これらの結果をまと
めて第1表に示した。
Embodiments of the Invention An example will be shown in comparison with a conventional treatment method using aqua regia. The treatment methods were boiling with aqueous aqua regia, solution C (1 volume of nitric acid, 1 volume of hydrofluoric acid, 1 volume of hydrofluoric acid) prepared by adding hydrofluoric acid to aqua regia, and immersion in hydrofluoric acid for 24 hours at room temperature. After that, we compared the experimental results when the samples were boiled in aqua regia. At this time, it has also become clear that it is better to crush the raw material GaP crystal into smaller pieces than before. In conventional aqua regia treatment, 4 to 5 out of 10 pulled crystals become polycrystalline (single rate 5/10 to 6/10) The number of times polycrystals that were visible on the melt surface during head growth was 16. ~23 times, which is very high. The raw material crystal is about 5 to 50 ψ rather than about 10 to 50 ψ.
The occurrence of polycrystals decreased when the grain size was made finer to about 10ψ. Since GaP is hard, making it even finer would result in contamination and increase the number of steps, which is considered undesirable. When hydrofluoric acid was used for the aqua regia treatment described above, the occurrence of polycrystals on the melt surface was drastically reduced to 1 to 3 times in 5 pulling experiments, and the number of pulled crystals was 10 times.
None of the samples were polycrystalline. These results are summarized in Table 1.

以下余白 第   1   表 また、本発明はGaPの他に()aA、s 、 InP
などの璽−V横比合物半導体に対しても有効である。
The following is a blank space: Table 1 In addition to GaP, the present invention also applies to
This method is also effective for compound semiconductors such as A-V.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はLEC法によるGaP単結晶成長を説明するため
の装置断面図である。 □ ■・・・高圧容器  2・・・石英るつぼ3−Ga
P融Q   4.、、]32o35・・・カーボンヒー
ター 6・・種子結晶  7・・・引上結晶
The drawing is a cross-sectional view of an apparatus for explaining GaP single crystal growth by the LEC method. □ ■...High pressure vessel 2...Quartz crucible 3-Ga
P-fusion Q 4. ,,]32o35... Carbon heater 6... Seed crystal 7... Pulled crystal

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体単結晶を製造するに際し、原料として用い
る化合物半導体結晶を予じめ弗酸または弗酸を含む溶液
で表面処理することを特徴とする化合物半導体の製造方
法。
1. A method for producing a compound semiconductor, which comprises surface-treating a compound semiconductor crystal used as a raw material in advance with hydrofluoric acid or a solution containing hydrofluoric acid when producing a compound semiconductor single crystal.
JP57025919A 1982-02-22 1982-02-22 Production of compound semiconductor Pending JPS58145690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025919A JPS58145690A (en) 1982-02-22 1982-02-22 Production of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025919A JPS58145690A (en) 1982-02-22 1982-02-22 Production of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS58145690A true JPS58145690A (en) 1983-08-30

Family

ID=12179182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025919A Pending JPS58145690A (en) 1982-02-22 1982-02-22 Production of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS58145690A (en)

Similar Documents

Publication Publication Date Title
US2776887A (en) Preparation of molybdenum
US5871580A (en) Method of growing a bulk crystal
JPS58145690A (en) Production of compound semiconductor
JPH0570288A (en) Method and appartatus for producing compound semiconductor single crystal
JPH0341433B2 (en)
US3004835A (en) Method of preparing silicon rods
US3353912A (en) Preparation of high-purity materials
Dutta et al. Bulk growth of GaSb and Ga 1-x In x Sb
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
US3671330A (en) Removal of acceptor impurities from high purity germanium
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6385100A (en) Production of gallium arsenide single crystal containing added silicon
JPS5994809A (en) Production of semiconductor element
JP3848409B2 (en) ZnSe epitaxial substrate and manufacturing method thereof
JPS60118696A (en) Method for growing indium phosphide single crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPS6027694A (en) Preparation of single crystal of semiconductor of compound by pulling method of liquid sealing
JPH0776160B2 (en) Heat treatment method for compound semiconductor single crystal
JPH0124760B2 (en)
JPH0412081A (en) Production of single crystal of compound of group iii-v
JPH08316249A (en) Ii-vi compound semiconductor substrate and its manufacture
Govinda Rajan et al. Synthesis and single crystal growth of gallium phosphide by the liquid encapsulated vertical Bridgman technique
JPS6313960B2 (en)
JPS59116194A (en) Manufacture of compound semiconductor single crystal
JPS59217698A (en) Production of inp single crystal