JPS58140825A - Generating circuit of reference voltage - Google Patents

Generating circuit of reference voltage

Info

Publication number
JPS58140825A
JPS58140825A JP2306082A JP2306082A JPS58140825A JP S58140825 A JPS58140825 A JP S58140825A JP 2306082 A JP2306082 A JP 2306082A JP 2306082 A JP2306082 A JP 2306082A JP S58140825 A JPS58140825 A JP S58140825A
Authority
JP
Japan
Prior art keywords
source
gate
channel
output terminal
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2306082A
Other languages
Japanese (ja)
Inventor
Masami Noda
野田 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2306082A priority Critical patent/JPS58140825A/en
Publication of JPS58140825A publication Critical patent/JPS58140825A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To prevent the fluctuation of reference voltage, by connecting the source and the gate of a P channel MOS to an end of a power supply and the drain of said P channel MOS to an output terminal and at the same time connecting the drain and the gate of an N channel MOS to the output terminal with the source connected to the other end of the power supply, respectively. CONSTITUTION:The source and the gate of a P channel depletion type MOS3 are connected to an end VDD of a power supply with the drain connected to an output terminal VOUT. At the same time, the drain and the gate of an N channel enhancement MOS4 are connected to the terminal VOUT with the source connected to the other end GND of the power supply. An equal conduction coefficient is set between the MOS3 and MOS4, and as a result, the reference voltage is obtained with extremely reduced variance to the fluctuation of threshold voltages VTN and VTD of MOS3 and MOS4, respectively.

Description

【発明の詳細な説明】 不発明はICの轟準司圧発生l!21路に関するもので
ある。
[Detailed Description of the Invention] The uninvention is the generation of low pressure in IC! This is related to Road 21.

従来の基準1圧発生回路は、絹1図に示すよう4C1N
チャネルデプレッションM081とNチャネルエノハン
スメン)MO82からなっていたが基準電圧は(l V
TIIL i + Vテmm lで表gn、yチャネル
スレッショルド甫圧であるVPklLとv?III+の
変動に対して、基準電圧値が変動するという欠点があっ
た。
The conventional reference 1 pressure generation circuit is 4C1N as shown in Figure 1.
The reference voltage was (l V
TIIL i + Vtemm l and gn, y channel threshold pressure VPklL and v? There was a drawback that the reference voltage value fluctuated in response to fluctuations in III+.

なおVOυテは基準重圧の出力端子である。Note that VOυte is an output terminal for reference pressure.

不発明は上記の欠点を克服するためになさ−rしたもの
τあり、スレッショルド重圧であるVテ鼠の変動に対し
ばらつきの少い基準1圧値を与えることを0門とした1
gl路を傍供するものである。
The invention was made in order to overcome the above-mentioned drawbacks, and the aim was to provide a standard pressure value with little variation in response to fluctuations in the threshold pressure.
It serves as a GL road.

以下不発明の実施例を82図を用いて詳細に説明する。Hereinafter, an embodiment of the present invention will be described in detail using FIG. 82.

第2図に示す逼り、Pチャネルデブレツショ7MO8!
SのソースとゲートFi電源の一端VDDK。
As shown in Fig. 2, P channel debt 7MO8!
One end of the S source and gate Fi power supply VDDK.

ドレインは出力端子700丁に接続芒n1又Nチャネル
エンハンスメントM084のドレインとゲートは出力端
子VOUTにソースはt+%Iの他端GNDにそnぞn
接1pjeざnている。
The drain is connected to the output terminal 700, and the drain and gate of the N-channel enhancement M084 are connected to the output terminal VOUT, and the source is connected to the other end GND of t+%I.
I'm close to 1 pje.

出力端子voatから出力嘔する基準電圧値をyoot
と丁n#i畢麹路をarする゛廖護はそnぞni =l
p(−1ip l )” −■i  = KM  (V
OU’r −V’rll  )諺−■CCに1m’、[
MはそnぞれM2B5とMO84の4111係砂て、v
tpとV?MH同じくM2B5とMOt34のスレッシ
ョルド電圧である。
The reference voltage value to be output from the output terminal voat is yoot.
And I'm going to go to Kojiro.
p(-1ip l)"-■i = KM (V
OU'r -V'rll) Proverb - ■ 1m' to CC, [
M is 4111 of M2B5 and MO84, respectively, and v
tp and V? Similarly to MH, this is the threshold voltage of M2B5 and MOt34.

KP=xmKa定すnば VoUT w qTM +l V?P l −$  ト
491源1圧の一端VDDと他端GN、D間の電圧に依
存しない一足の定弯圧基準回路となる。
If KP=xmKa is determined, then VoUT w qTM +l V? It becomes a constant pressure reference circuit that does not depend on the voltage between one end VDD and the other ends GN and D of the P l -$ source 1 voltage.

二股にプロ竜スによるvTHの変@UV?B−IVテP
1の和は一定の関係で変動する◎ よって不発IJKJ:fLばプロセスパラメータのVT
Mとytpの変@に対して椿めてばらつきの少ない基準
電圧値を祷ることができる。
VTH change @UV due to Proryusu in two forks? B-IVteP
The sum of 1 fluctuates in a certain relationship ◎ Therefore, misfire IJKJ: fL is the process parameter VT
It is possible to obtain a reference voltage value with very little variation with respect to variations in M and ytp.

更に基準電圧の−a度時性についてt正・負、ゼロいず
rLOlをとることも可りヒである。
Furthermore, it is also possible to take t positive/negative, zero or rLO1 for the -a degree temporality of the reference voltage.

即ち第2因において漏電−TにおけるM2B5のスレッ
ショルド電圧’t VTPs J鴫係数をKPと&倉、
又flllllK11fTKjIFけるMOB4のスレ
ッショルド電圧をV’rM、導電係数をKMとおくと、
基準電圧ij  Voat=Vtm+alVt+pl−
■ となる。
That is, in the second factor, the threshold voltage of M2B5 at leakage -T is t VTPs J Shizu coefficient is KP and &Kura,
Also, if the threshold voltage of MOB4 in flllllK11fTKjIF is V'rM and the conductivity coefficient is KM, then
Reference voltage ij Voat=Vtm+alVt+pl-
■ It becomes.

ここにα=C1τスj”である。Here, α=C1τsj''.

スレッショルド電圧V’rMとvtyomll係畿をそ
nぞTL Bl + B曹とおき、導電係数に菫とKP
のii*係数をそnぞれ01うC1とおくと、 Vtm =lin +B1 (T−T@ )−■VTP
+=VTP# +B、 (T−T、 )−■Vllφと
VTPφにそnぞn室温の値KM=KMφ+C1(T−
T6)  −■KP=[Pφ+O,(T−’r、 ) 
 −(jlK”* e KPφ はそnぞn室温の偵よ
って室温における基準電圧値は Voot$ = VTI +a。l Vtm41−5Q
)ここでαo=nグp百Tである。
Let's set the threshold voltage V'rM and vtyomll as TL Bl + B, and set the conductivity coefficient as violet and KP.
If the ii* coefficients of are respectively set as 01 and C1, then Vtm = lin + B1 (T-T@)-■VTP
+=VTP# +B, (T-T, )-■Vllφ and VTPφ respectively have the room temperature value KM=KMφ+C1(T-
T6) -■KP=[Pφ+O, (T-'r, )
-(jlK"* e KPφ is the same as the room temperature, so the reference voltage value at room temperature is Voot$ = VTI +a.l Vtm41-5Q
) where αo=ngp100T.

温[TKs?ける基準電圧値は Voat =Vtm +a 1Vypl    −qg
  となる。
Warm [TKs? The reference voltage value is Voat = Vtm +a 1Vypl -qg
becomes.

漏1fTKおける1準電圧の変化11に式(吟−■)t
−tl:JIして、■、■、■、■式を代人丁nばΔν
O(I?”!(Bl −〆αBy)(T   %)  
  と な 夛1準電圧のIIA縦係数は #Vout / Jt T −B* −rlB*   
Q  となる。
The change in quasi-voltage at leakage 1fTK 11 is expressed by the formula (Gin-■) t
-tl: JI and change the expressions ■, ■, ■, ■ to the representative number Δν
O(I?”!(Bl −〆αBy)(T %)
The IIA vertical coefficient of the first quasi-voltage is #Vout / Jt T -B* -rlB*
It becomes Q.

ココでBl m B菅口V?ll・VテPの固有の値で
あるがρ「はKPとKMの比に1って任意に選ぶことが
てきる。
Bl m B Sugaguchi V here? Although ρ is a unique value of ll·VteP, it can be arbitrarily selected as 1 for the ratio of KP and KM.

よって不発明の基準電圧によnば湛膚係Vを正、負、ゼ
aいずnが任意の債KAぶことが可能である。
Therefore, it is possible to set the voltage value V to be any value, whether positive or negative, using the uninvented reference voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のだ電圧基準回路図であり、182図は本
発明の貢勝例1の足電圧羞準U路図である。 1・・・・・・N+ヤネルデブレッショ7M0B2・・
・・・・UチャネルエンへンスメントM08VO+77
・・・出力趨子 vDD・・・電源電圧 IMD・・・接地電圧 Vtm11・・・NチャネルテブレッションMO8のス
レッショルド電圧 VTIII(・・・N+ヤネルエン八へスメントMOk
3q)スレッショルド電圧 3・・・・・・PチャネルデプレッションMO84・・
団・NチャネルエンハンスメントMO8KP・・・MO
8トランジスタ5の導電係数KM  ・・・M08トラ
ンジスタ4の導電係数以   上 第1図 第2図 1JD 165−
FIG. 1 is a conventional foot voltage reference circuit diagram, and FIG. 182 is a foot voltage standard U circuit diagram of Tribute Example 1 of the present invention. 1...N+Yanel Debrecho 7M0B2...
...U channel enhancement M08VO+77
... Output trend vDD ... Power supply voltage IMD ... Ground voltage Vtm11 ... Threshold voltage of N-channel tessellation MO8 VTIII ( ... N+Yanel en 8 hesment MOk
3q) Threshold voltage 3...P channel depression MO84...
Group/N channel enhancement MO8KP...MO
8 Conductivity coefficient of transistor 5 KM ...More than conductivity coefficient of M08 transistor 4 Figure 1 Figure 2 Figure 1 JD 165-

Claims (1)

【特許請求の範囲】[Claims] Pチャネルデプレッション場MOBIPWTと、Nチャ
ネルエンハンスメントIMMO8IPffiTOドレイ
ンどうしを接続して出力端子とすると共に、前i1Fチ
ャネルMO8FBljTのソースとゲートを1源の−1
に、ドレインをFiJ記出力熾子に各々接続し、灸に+
111紀NチャネルMOBFWTのゲートを陶配出力趨
子に誉綬するとともに、ソースを前記111#の他端に
接続して前記出力端子と前記’11源の他端から一足な
出力の1圧1直を得ることを%書とした1準電圧発生1
!!lW!I0
The drains of the P channel depletion field MOBIPWT and the N channel enhancement IMMO8IPffiTO are connected together to form an output terminal, and the source and gate of the previous i1F channel MO8FBljT are connected to the -1 source.
Then, connect the drains to the FiJ output terminals, and connect the moxibustion +
The gate of the 111th generation N-channel MOBFWT is connected to the output terminal, and the source is connected to the other end of the 111#, and a sufficient output voltage 1 is generated from the output terminal and the other end of the '11 source. 1 Quasi-voltage generation 1 with the aim of obtaining direct voltage as a percentage
! ! lW! I0
JP2306082A 1982-02-16 1982-02-16 Generating circuit of reference voltage Pending JPS58140825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2306082A JPS58140825A (en) 1982-02-16 1982-02-16 Generating circuit of reference voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2306082A JPS58140825A (en) 1982-02-16 1982-02-16 Generating circuit of reference voltage

Publications (1)

Publication Number Publication Date
JPS58140825A true JPS58140825A (en) 1983-08-20

Family

ID=12099880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2306082A Pending JPS58140825A (en) 1982-02-16 1982-02-16 Generating circuit of reference voltage

Country Status (1)

Country Link
JP (1) JPS58140825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200792A (en) * 2010-03-26 2011-09-28 罗姆股份有限公司 Constant voltage circuit, comparator and voltage supervision circuit equipped therewith
CN104035472A (en) * 2014-06-24 2014-09-10 吴江圣博瑞信息科技有限公司 Full-CMOS (complementary metal oxide semiconductor) reference voltage source generator circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200792A (en) * 2010-03-26 2011-09-28 罗姆股份有限公司 Constant voltage circuit, comparator and voltage supervision circuit equipped therewith
CN104035472A (en) * 2014-06-24 2014-09-10 吴江圣博瑞信息科技有限公司 Full-CMOS (complementary metal oxide semiconductor) reference voltage source generator circuit

Similar Documents

Publication Publication Date Title
EP0573240A2 (en) Reference voltage generator
US5204612A (en) Current source circuit
JP4703406B2 (en) Reference voltage generation circuit and semiconductor integrated device
US6388507B1 (en) Voltage to current converter with variation-free MOS resistor
KR0126911B1 (en) Circuit and method for voltage reference generating
JPS5890177A (en) Reference voltage circuit
US4217540A (en) Voltage regulated electronic timepiece
JPS58140825A (en) Generating circuit of reference voltage
CN107783586B (en) Voltage reference source circuit without bipolar transistor
TW202408161A (en) Low power oscillator circuit with temperature compensation and electronic apparatus
KR920008587A (en) Transconductor-Capacitor Integrator
US4424457A (en) Voltage level detecting circuit
US20130328621A1 (en) Semiconductor integrated circuit
KR910007232A (en) Inverted amplifier with stabilized amplitude
JPS5821856A (en) Semiconductor device
JPS62254073A (en) Cmos power-on detection circuit
JPS6228088Y2 (en)
JPH02161817A (en) Inverter circuit
JPS6272019A (en) Reference voltage generating circuit
JP2545374B2 (en) Differential amplifier circuit having constant current source circuit
JP3263434B2 (en) Constant voltage circuit
JP2783002B2 (en) Reference voltage circuit
JPS6331123B2 (en)
JPH0424813A (en) Constant voltage circuit
JPH03104412A (en) Delay circuit