JPS58140130A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58140130A
JPS58140130A JP2320382A JP2320382A JPS58140130A JP S58140130 A JPS58140130 A JP S58140130A JP 2320382 A JP2320382 A JP 2320382A JP 2320382 A JP2320382 A JP 2320382A JP S58140130 A JPS58140130 A JP S58140130A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
insulator
phosphorus
semiconductor device
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2320382A
Other languages
Japanese (ja)
Other versions
JPS6343886B2 (en
Inventor
Yoshiaki Yadoiwa
宿岩 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2320382A priority Critical patent/JPS58140130A/en
Publication of JPS58140130A publication Critical patent/JPS58140130A/en
Publication of JPS6343886B2 publication Critical patent/JPS6343886B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To eliminate the disconnection of a metallic wiring by a method wherein the first-third insulators are formed on the surface of a semiconductor substrate having stepwise differences by a vapor growing or a coating method, and a heat treat is performed, accordingly the stewise difference is smoothened. CONSTITUTION:A field oxide film 2, a gate oxide film 3 and a polycrystalline Si layer 4 are formed on an Si substrate 1. Next, the pattern of the polycrystalline Si layer which becomes a gate electrode 5 and a wiring 6 is formed by a photoetching, and an impurity is doped resulting in the formation of diffused layers 9 and 10 of a source and a drain regions. Then, the first PSG film 11 is formed by a vapor growing method, and the step part of the polycrystalline Si layer is some smoothened by performing a heat treatment. The second PSG film 12 is formed by a coating method, and succeedingly the third PSG film 13 is formed by a vapor growing method. A heat treatment is performed, and thus the step part of the polycrystal is further smoothened.

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法にかかシ、とくに段差
を有する半導体装置の段部を滑らかにし。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and in particular, to smoothing a stepped portion of a semiconductor device having a step.

容易に微細な金鵬配麹を可能にする製造方法に関する。The present invention relates to a manufacturing method that allows fine Kinpo-distributed koji to be easily produced.

近年、半導体装置は、高密度化、高速化を実現する為に
、微細パターン化が進むとともに、多結晶シリコン層を
積極的に用いる技術が利用されている。例えば、シリコ
ンゲート型MO8半導体装皺では、多結晶シリコン層を
ゲート電極及び配線ルとして用いておシ、絶縁物を介し
て削記多結晶シリコン階を横切って金属配線層が形成さ
れている。これら多結晶シリコン服を用いる半導体装置
では、多結晶シリコン層を横切る金属配IIIが多結晶
シリコン層の段部で断線しないように、多結晶シリコン
層の段部を滑らかにしている。本発明は、多結晶シリコ
ン層段部に於ける金属配線の断線を防止するとともに、
樹脂封入に耐え得る信頼性を有する半導体装置の製造方
法に関するものである。
2. Description of the Related Art In recent years, in order to achieve higher density and higher speed in semiconductor devices, fine patterning has progressed, and technology that actively uses polycrystalline silicon layers has been utilized. For example, in a silicon gate type MO8 semiconductor device, a polycrystalline silicon layer is used as a gate electrode and a wiring layer, and a metal wiring layer is formed across the etched polycrystalline silicon layer via an insulator. In semiconductor devices using these polycrystalline silicon layers, the stepped portions of the polycrystalline silicon layer are made smooth so that the metal wiring III that crosses the polycrystalline silicon layer is not disconnected at the stepped portions of the polycrystalline silicon layer. The present invention prevents disconnection of metal wiring in the stepped portion of a polycrystalline silicon layer, and
The present invention relates to a method for manufacturing a semiconductor device having reliability that can withstand resin encapsulation.

従来の多結晶シリコン層を用いている半導体装置の製法
について、シリコングー)5MO8ICを例に1g1図
を用いて説明する。
A conventional method for manufacturing a semiconductor device using a polycrystalline silicon layer will be explained using FIG.

シリコン基板1上に通常の選択酸化法を用いて、フィー
ルド酸化膜2を形成した彼、熱酸化によシ、ゲート酸化
膜3を形成する。次に多結晶シリコンFfI4を全面に
形成し通常のフォトエッチングエ稚を用いて、ゲート電
極5及び配線用の多結晶シリコン〜のパターン6を形成
する。この場合バターニングされた多結晶シリコン層の
断面形状は、非常に急峻であるので、絶縁物を介して前
記多結晶シリコシ層を横切って形成された金・属配線は
、前記多結晶シリコン層の段部で切断される。この金属
配線の断線を防止する為従来の技術では、多結晶シリコ
ン層のパターンを形成した後、高濃度のリンを含んだリ
ンガラス膜7を気相成長法によ多形成し、高温熱処理を
行うことによって、リンガラス膜の流動性を利用して多
結晶シリコン層の段部の形状を滑らかにし、多結晶シリ
コン層を横断する配線金属8の形成を可能にしていた。
A field oxide film 2 is formed on a silicon substrate 1 using a conventional selective oxidation method, and then a gate oxide film 3 is formed by thermal oxidation. Next, polycrystalline silicon FfI 4 is formed on the entire surface, and a pattern 6 of polycrystalline silicon for gate electrode 5 and wiring is formed using a normal photoetching process. In this case, since the cross-sectional shape of the patterned polycrystalline silicon layer is very steep, the metal/metal wiring formed across the polycrystalline silicon layer through the insulator is It is cut at the step. In order to prevent this metal wiring from breaking, in the conventional technology, after forming a pattern of a polycrystalline silicon layer, a phosphorus glass film 7 containing a high concentration of phosphorus is formed using a vapor phase growth method, and then subjected to high temperature heat treatment. By doing so, the shape of the stepped portion of the polycrystalline silicon layer is made smooth by utilizing the fluidity of the phosphorous glass film, and it is possible to form the wiring metal 8 that crosses the polycrystalline silicon layer.

しかしながら従来方法では、多結晶シリコン層段部を滑
らかにし、配線金属の断縁を防止することはできたが、
多結晶シリコン層の段部を滑らかKする為に形成してい
た高濃度のリンを含んだリンガラス膜と配線金属が反応
を起し、配線金属が腐食されるという欠点があった。つ
tb、従来方法で製造した半導体装置を樹脂封入し、高
湿中で動作させた場合、樹脂中を浸入してきた水分とリ
ンガラス中のリンによシ、リン酸ができ、このリン酸が
配線金属を溶解させ、半導体装置の動作を不能にすると
いう重大な欠点があった。
However, with the conventional method, it was possible to smooth the step part of the polycrystalline silicon layer and prevent the disconnection of the wiring metal.
There was a drawback that the wiring metal reacted with the phosphorus glass film containing a high concentration of phosphorus, which was formed to smooth the steps of the polycrystalline silicon layer, and the wiring metal was corroded. When a semiconductor device manufactured by the conventional method is encapsulated in resin and operated in high humidity, the moisture that has entered the resin and the phosphorus in the phosphorus glass combine to form phosphoric acid. This had the serious drawback of melting the wiring metal and rendering the semiconductor device inoperable.

仁の問題を解決する為に、リンガラス膜中のリン嬢度を
8モル参以下に下けれは配線金属の腐食は防止できたか
、リン濃度を下げたことによシリンガラス暎の充分な流
&性が得られず、多結晶シリコン服の段差部で配線金属
が断線する。また配線金属の断線を防止する為に1多結
晶シリコン簾のパターンエツチング工程で、多結晶シリ
コン層の工、チング拶の形状にテーパーをつけようとす
ると、加工寸法精度か悪くなる等の間組があシ容易にこ
の間勉の解決をみる方法がなかった。
In order to solve the phosphorus problem, it was found that if the phosphorus concentration in the phosphorus glass film was lowered to 8 mol phosphorus or less, corrosion of the wiring metal could be prevented. The metal wiring breaks at the stepped portion of the polycrystalline silicon clothing. In addition, in the pattern etching process of the polycrystalline silicon screen to prevent metal wiring from breaking, if you try to taper the shape of the polycrystalline silicon layer, the dimensional accuracy of the process will deteriorate, etc. There was no easy way to see Tsutomu's solution the other day.

本発明は、前述した欠点を解決しながら、多結晶シリコ
ン服の段部を滑らかにし、金楓配艙の断縁をなくすとと
もに、配線金属の腐食をなくし、かつ、微細パターン化
に逸した新規な製造方法に関するものである。つtb、
本発明の目的とするところは、段差を有する半導体装置
の表面を滑らかにし、絶縁物を介して割記段差部を横断
する金属配線の断縁な防止するとともに、配線金属の腐
食をも防止する新規な製造方法を提供することにある。
The present invention solves the above-mentioned drawbacks, smoothes the steps of polycrystalline silicon clothing, eliminates the disconnection of the metal maple distribution, eliminates corrosion of the wiring metal, and provides a new method that has not been achieved in the field of fine patterning. It relates to a manufacturing method. Tsutb,
It is an object of the present invention to smooth the surface of a semiconductor device having a step, to prevent metal wiring that crosses the marked step through an insulator from breaking, and to also prevent corrosion of the metal wiring. The objective is to provide a new manufacturing method.

すなわち本発明の%黴は、段差を有する半導体基板の表
面に、気相成長による第1の絶縁物を形成する工程と1
.塗布法による第2の絶縁物を形成する工程と、気相成
長による第3の絶縁物を形成する工程を含み、熱処理を
行うことによって、半導体基板の前記段部を滑らかにす
る半導体装置の製造方法にある。この場合気相成長によ
る第1及び第3の絶縁物が、4〜8モル優のリンガラス
膜であることが好ましい。又は、塗布法による第2の絶
縁物が8モル参以下のリンガラス膜であることが好まし
い。又は、気相成長による第1及び第3の絶縁物が、同
一のリン濃度を有するリンガラス膜であることが好まし
い。又は、気相成長による第1及び第3の絶縁物を形成
した彼の工程でそれぞれ高温熱処理を行い絶縁物の高温
における流動性を利用して段差部上の絶縁物形状を滑ら
かkすることが好ましい。
In other words, the mold of the present invention includes the step of forming a first insulator by vapor phase growth on the surface of a semiconductor substrate having steps, and step 1.
.. Manufacture of a semiconductor device including a step of forming a second insulator by a coating method and a step of forming a third insulator by vapor phase growth, and smoothing the stepped portion of the semiconductor substrate by performing heat treatment. It's in the method. In this case, it is preferable that the first and third insulators formed by vapor phase growth are phosphorus glass films having a concentration of 4 to 8 moles. Alternatively, it is preferable that the second insulator formed by coating is a phosphorous glass film having 8 mol sulfur or less. Alternatively, it is preferable that the first and third insulators formed by vapor phase growth are phosphorus glass films having the same phosphorus concentration. Alternatively, in his process of forming the first and third insulators by vapor phase growth, it is possible to perform high-temperature heat treatment on each insulator and use the fluidity of the insulator at high temperatures to smooth the shape of the insulator on the stepped portion. preferable.

以下1本発明をシリコングー)2MO8ICに適用した
実施例について第2図を用いて説明する。
An example in which the present invention is applied to a silicon 2MO8 IC will be described below with reference to FIG.

(1)  シリコン基板上lに、フィールド酸化膜2を
通常の選択熱酸化によって0.8〜1.0μ程度形成す
る。この場合フィールド部分のシリコン基板表面濃度は
、フィールド部分の1′界による反II2層の形成を防
ぐ為、他の部分よシも1桁程度濃くしておく。
(1) A field oxide film 2 of approximately 0.8 to 1.0 μm is formed on a silicon substrate by ordinary selective thermal oxidation. In this case, the silicon substrate surface concentration in the field portion is set to be about one order of magnitude higher than in other portions in order to prevent the formation of an anti-II2 layer due to the 1' field in the field portion.

(2)通常の熱酸化によってゲート酸化膜3を1000
A&度形成する。
(2) Gate oxide film 3 is coated with a thickness of 1,000 yen by normal thermal oxidation.
A & degree formation.

(3)  8iH,ガスの熱分解を利用した減圧気相成
長法により、多結晶シリコン層4を全面に0.3〜0.
7μ程度形成する。
(3) Polycrystalline silicon layer 4 is deposited on the entire surface with a thickness of 0.3 to 0.8iH by low pressure vapor phase growth using thermal decomposition of gas.
Form about 7μ.

(4)  通常のフォトエツチング工程を用いて、ゲー
ト電極5及び配置に6となる多結晶シリコン服のパター
ンを形成する微細パターンでかっh密な加工寸法を必要
とする場合、エツチング工程で社、平行平板型のドライ
エ、テング装置を用いているので、断面形状は、非常に
急峻となる。
(4) Using a normal photo-etching process to form a polycrystalline silicon cloth pattern with a gate electrode 5 and arrangement 6, if a fine pattern and dense processing dimensions are required, the etching process Since a parallel plate type dryer and proboscis device are used, the cross-sectional shape is very steep.

(5)  ソース、ドレイン領域及び多結晶シリコン4
5.6へ熱拡散法もしくはイオン注入法部によ)、不純
物をドープし、ソース、ドレイン領域の拡散層9.10
を形成する。
(5) Source, drain region and polycrystalline silicon 4
5.6) to dope impurities (by thermal diffusion method or ion implantation method) to form diffusion layers in the source and drain regions 9.10
form.

(6)  81H4,PH,ガスを用いて獣素雰曲気中
で気相成長法によ)、8モルチ以下のリンを含んだ第1
のリンガラス膜11をα2〜0.7μ程度形成する。
(6) 81H4, PH, by vapor phase growth method in a beastly atmosphere using gas), the
A phosphor glass film 11 with a thickness of about α2 to 0.7μ is formed.

(7)  900℃〜1100℃の温度で熱処理を行い
、リンガ2不膜の流動性を利用して、多結晶シリコン層
段部を若干滑らかkする。
(7) Heat treatment is performed at a temperature of 900° C. to 1100° C., and the step portion of the polycrystalline silicon layer is slightly smoothed by utilizing the fluidity of the ringer 2 non-film.

(8)塗布法によってリンを含んだリンガラス膜法によ
るリンガラス膜は、段部に厚く、平担部に薄く形成され
るので第2図(C)に示すように段部な埋めるような形
状に形成できる。
(8) The phosphorus glass film produced by the phosphorus glass film method, which contains phosphorus through the coating method, is formed thickly on the stepped portions and thinly on the flat portions. Can be formed into shapes.

(9)  8 in、 ;pH,ガスを用いて%腋素雰
囲気中で気相成長法によシ8モル憾以下のリンを含んだ
第3のリンガマス膜13をo、5〜LOμ程度形成する
。塗布法によるリンガラス膜が多結晶シリコン層段部を
埋めるように形成されているので、多結晶シリ;ン脂段
部では、かなシ滑らかなリンガラス膜を形成することが
できる。
(9) Form a third phosphorus mass film 13 containing 8 moles or less of phosphorus in a thickness of about 5 to LO μ by vapor phase growth in an atmosphere of 8 in. . Since the phosphorus glass film formed by the coating method is formed so as to fill the stepped portion of the polycrystalline silicon layer, a smooth phosphorus glass film can be formed at the stepped portion of the polycrystalline silicon layer.

Q(1900℃〜1100℃の温度で熱処理を行い、リ
ンガラス膜の流動性をオU用して多結晶シリコン層の段
部を更に滑らかにする。
Q (Heat treatment is performed at a temperature of 1900° C. to 1100° C., and the step portion of the polycrystalline silicon layer is further smoothed by utilizing the fluidity of the phosphorus glass film.

αυ 通常のフォトエツチング工程を用いて拡散層9及
び多結晶シリコン&6からの電極引き出し用のコンタク
トホールを形成する。
αυ Contact holes for leading out electrodes from the diffusion layer 9 and the polycrystalline silicon &6 are formed using a normal photoetching process.

醤 配緑金II4を全面に被着し、通常の7オトエ、チ
ング工程を用いて、金属配線8のパターンを形成を行う
The green metal II 4 is deposited on the entire surface, and a pattern of the metal wiring 8 is formed using the usual seven etching and etching processes.

(13400℃〜500℃のフォーミングガス中でシン
ターを行い、配線金lI48と拡散層9及び多結晶シリ
コン層6とのオーミックコンタクトを形成する。
(Sintering is performed in a forming gas at 13,400° C. to 500° C. to form ohmic contact between the interconnection gold lI 48, the diffusion layer 9, and the polycrystalline silicon layer 6.

α尋 バ、シペーシ、ン用のリン刀フスHt気相成長法
によシ全面に成形し、通常のフォトエツチング工程を用
いて電極引き出し用バット部を1孔して半導体装置の完
成となる。
The semiconductor device is completed by molding the entire surface using a phosphor film Ht vapor phase epitaxy method for α-thickness bars, plates, and plates, and using a normal photoetching process to make one hole for drawing out the electrodes.

上記実施例に示したように、本発明によれは、多結晶シ
リコン層段部を気相成長によるリンガラス膜を形成した
彼、高温熱処理によって段部を若干滑らかKし塗布法に
よるリンガラス膜を形成することによシ段部を埋め、再
び気相成長によるリンガラス膜を形成し熱処理によるリ
ンガラスの流動性を利用してさらに多結晶シリコン層段
部を滑らかにすることによって容易に微細な金属配線パ
ターンの形成を可能にできる。
As shown in the above embodiment, according to the present invention, a phosphorus glass film is formed on the stepped portion of a polycrystalline silicon layer by vapor phase growth, and the stepped portion is slightly smoothed by high temperature heat treatment, and then a phosphorous glass film is formed by a coating method. The step part is filled by forming a polycrystalline silicon layer, a phosphorus glass film is again formed by vapor phase growth, and the fluidity of phosphor glass is utilized by heat treatment to further smooth the step part of the polycrystalline silicon layer. This makes it possible to form a metal wiring pattern with a wide range of shapes.

本実雄側において塗布法によるリンガラス膜で多結晶シ
リコン層段部を滑らかにした後、直に金属配線を形成し
た場合は、段部の滑らかさは不充分であシ、配線金属の
断線を引き起し、また、塗布法によるリンガラス膜は非
常に軟らかく、後工程の配線金属のパターン形成の際工
、チングされてしまうという欠点がある。
If the step part of the polycrystalline silicon layer is smoothed with a phosphor glass film by coating method and then the metal wiring is formed directly, the step part will not be smooth enough and the metal wiring will break. Furthermore, the phosphorus glass film produced by the coating method is very soft and has the disadvantage that it is easily chipped during pattern formation of wiring metal in the subsequent process.

また、塗布法によってリンを含んだ酸化膜を形成し、多
結晶シリコン層段部を滑らかKした後、熱処理によるリ
ンガラス膜の流動性を利用してさらに段部を滑らかKし
ようとす為場合、塗布法によって形成したリンを含んだ
酸化膜を高温で熱処理を行うと酸化膜に亀裂が住じ、こ
の方法にも不具合がある。
In addition, after forming an oxide film containing phosphorus by a coating method and smoothing the step part of the polycrystalline silicon layer, an attempt is made to further smooth the step part using the fluidity of the phosphorus glass film by heat treatment. However, when an oxide film containing phosphorus formed by a coating method is heat-treated at a high temperature, cracks form in the oxide film, and this method also has problems.

従って本発明で示したように、気相成長によるリンガラ
ス膜を形成して、高温熱処理によって段部を若干溝らか
にし、塗布法によるリンガラス膜で多結晶シリコン層段
部をかなシ滑らかにした彼、気相成長によるリンガラス
膜を形成し熱処理を行い、さらに段部を滑らかKする方
法が、酸化膜亀裂を発生されることもなく、シかも多結
晶シリコン鳩段部を滑らかにし配線全島の断線を防止で
きる。
Therefore, as shown in the present invention, a phosphorus glass film is formed by vapor phase growth, the step part is made slightly grooved by high temperature heat treatment, and the step part of the polycrystalline silicon layer is slightly smoothed with a phosphor glass film by coating. He found that the method of forming a phosphorous glass film by vapor phase growth, heat treatment, and smoothing the stepped portions could smooth out the stepped portions of polycrystalline silicon without causing cracks in the oxide film. Can prevent disconnection of all wiring islands.

次に、樹脂封止を行った前記製法を用いて作製した半導
体装置において、リンガラス膜中のリン濃度とAJの腐
食の関係を調べてみると、リンガラス膜中のリン濃度を
8モルチ以下にすれば配糾金−の腐食が起シ難くなる。
Next, when we investigated the relationship between the phosphorus concentration in the phosphorus glass film and the corrosion of AJ in a semiconductor device manufactured using the above-mentioned manufacturing method in which resin sealing was performed, it was found that the phosphorus concentration in the phosphorus glass film was 8 molar or less. If this is done, corrosion of the metal oxide will be less likely to occur.

しかし、リンガラス膜の熱処理による流動性を−べた結
果、4モルラ以下では、リンガラス膜の熱処理による流
動性を観察することはできなかった。従って本発明に示
すように4モルIs〜8モルー〇リンガラス膜を用いれ
ば、リンガラス膜の流動性を利用して、段部の形状をさ
らに滑らかにするとともに、リンガラス膜による配線金
楓の腐食を防止することができるO また本実施例において、気相成長によって形成する第1
のリンガラス膜のリン濃度と第3のリンガラス層のリン
濃度を同一にすれば、作業ミスを防止でき製造管理上有
利であシ、また同一装置を用いて、第1のリンガラス層
、第2のリンガラス層を成長することができるのでl室
上非常に好都合である。
However, as a result of examining the fluidity of the phosphorus glass film due to heat treatment, it was not possible to observe the fluidity of the phosphorus glass film due to heat treatment at 4 molar or less. Therefore, if a 4 mol Is to 8 mol phosphorus glass film is used as shown in the present invention, the fluidity of the phosphorus glass film can be utilized to further smooth the shape of the stepped portion, and the wiring metal maple formed by the phosphorus glass film can be made even smoother. In addition, in this example, the first
If the phosphorus concentration of the phosphorus glass film and the phosphorus concentration of the third phosphorus glass layer are made the same, it is possible to prevent operational errors and is advantageous in terms of manufacturing control. This is very advantageous in that it allows the growth of a second phosphorus glass layer.

さらに、気相成長によって形成した第1.第2のリンガ
ラス層と塗布法によって形成した酸化膜中のリン濃も同
一にすれば、同一の膨張係数1 re!+−の流動性を
有するので、高温の熱処理工程を行っても熱履歴による
ひずみ(クラ、り等→の発生を心配する必要がない。
Furthermore, the first layer formed by vapor phase growth. If the phosphorus concentration in the second phosphorus glass layer and the oxide film formed by the coating method are also the same, the expansion coefficient will be the same, 1 re! Since it has +/- fluidity, there is no need to worry about the occurrence of distortion (cracks, cracks, etc.) due to thermal history even if a high-temperature heat treatment process is performed.

本実施例では、多結晶シリコン層による段差について述
べたが、高融点金属による段差についても同様である。
In this embodiment, the step difference due to the polycrystalline silicon layer has been described, but the same applies to the step difference due to the high melting point metal.

また塗布法による酸化膜で段部を埋めたが、他の塗布法
によって形成できる高温熱処理に耐え得る絶縁物で本可
能である。
Furthermore, although the stepped portions were filled with an oxide film formed by a coating method, it is possible to use an insulator that can be formed by other coating methods and can withstand high-temperature heat treatment.

本実施例では、シリコンゲート2MO8ICについて述
べたが、他の半導体基板上に段差を有するすべての半導
体に&について有効である。
In this embodiment, a silicon gate 2MO8IC is described, but the present invention is also effective for all semiconductors having a step on a semiconductor substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来法によるシリコン基板)IJMO8IC
の製造方法の例について示す図である。第2図は、本発
明による実施例のシリコンゲート型MO8ICの製造方
法について示す図である。 図において、1・・・・・・シリコン基板、2・・・・
・・フィールド酸化膜、3・・・・・・ゲート酸化膜、
4・・・・・・多結晶シリコン、5・・・・・・ゲート
電極、6・・・・・・配線多結晶シリコン、7・・・・
・・高濃度リンガラス膜、8・・・・・・配線用会議、
9.10・・・・・・拡散層、11,13・・・・・・
リンガラス膜、12・・・・・・塗布法によって形成し
たリンガラス膜である。 第1図
Figure 1 shows a conventional silicon substrate (IJMO8IC).
FIG. 2 is a diagram showing an example of a manufacturing method. FIG. 2 is a diagram illustrating a method of manufacturing a silicon gate MO8IC according to an embodiment of the present invention. In the figure, 1... silicon substrate, 2...
...Field oxide film, 3...Gate oxide film,
4... Polycrystalline silicon, 5... Gate electrode, 6... Wiring polycrystalline silicon, 7...
・・High concentration phosphorus glass film, 8・・・・・・Wiring meeting,
9.10...Diffusion layer, 11,13...
Phosphorus glass film, 12... Phosphorus glass film formed by a coating method. Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)  段差を有する半導体基板の表面に、気相成長
による第1の絶縁物を形成する工程と、塗布法による第
2の絶縁物を形成する工程と、気相成長による第3の絶
縁物を形成する工程とを含み、熱処理を行うことによっ
て半導体基板の前記段部を清らかにすることを%黴とす
る半導体装置の製造方法。
(1) A step of forming a first insulator by vapor phase growth on the surface of a semiconductor substrate having a step, a step of forming a second insulator by coating, and a third insulator by vapor phase growth. 1. A method of manufacturing a semiconductor device, the method comprising: forming a mold, and cleaning the stepped portion of the semiconductor substrate by performing heat treatment to remove mold.
(2)前記気相成長による第1及び第3の絶縁物が、4
〜8モルチのリンガラス膜であることを特徴とする特許
諸本の範囲第(1)項記載の半導体装置の製造方法。
(2) The first and third insulators formed by vapor phase growth are 4
A method for manufacturing a semiconductor device according to item (1) of the patent books, characterized in that the phosphorus glass film has a thickness of 8 to 8 mol.
(3)前記塗布法による第2の絶縁物が8モル慢以下の
リンガラス膜であることを特徴とする特許論求の範囲第
(1)項記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to item (1) of the patent claims, characterized in that the second insulator formed by the coating method is a phosphorous glass film having a molar density of 8 or less.
(4)  III記気相成長による第1及び第3の絶縁
物が四−のリン濃度を有するリンガラス膜であることを
特徴とする特許論求の範囲第(1)項記載の半導体装置
の製造方法。
(4) The semiconductor device according to item (1) of the patent claims, characterized in that the first and third insulators formed by vapor phase growth are phosphorus glass films having a phosphorus concentration of 4-. Production method.
(5)前記気相成長による第1及び第3の絶縁物を形成
した後の工程でそれぞれ高温熱処理を行い絶縁物の高温
における流動性を利用して段差部上の絶縁物形状を滑ら
かにすることを特徴とする特許蛸求の範囲第(1)項の
半導体装置の製造方法。
(5) In the step after forming the first and third insulators by vapor phase growth, high-temperature heat treatment is performed on each insulator to smooth the shape of the insulator on the stepped portion by utilizing the fluidity of the insulator at high temperature. A method for manufacturing a semiconductor device according to item (1) of the patent claim, characterized in that:
JP2320382A 1982-02-16 1982-02-16 Manufacture of semiconductor device Granted JPS58140130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2320382A JPS58140130A (en) 1982-02-16 1982-02-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2320382A JPS58140130A (en) 1982-02-16 1982-02-16 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58140130A true JPS58140130A (en) 1983-08-19
JPS6343886B2 JPS6343886B2 (en) 1988-09-01

Family

ID=12104105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2320382A Granted JPS58140130A (en) 1982-02-16 1982-02-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58140130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237449A (en) * 1985-04-12 1986-10-22 Ricoh Co Ltd Manufacture of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133575A (en) * 1974-09-17 1976-03-22 Nippon Telegraph & Telephone TASOHAISENKOZO
JPS53105385A (en) * 1977-02-25 1978-09-13 Fujitsu Ltd Manufacture for semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133575A (en) * 1974-09-17 1976-03-22 Nippon Telegraph & Telephone TASOHAISENKOZO
JPS53105385A (en) * 1977-02-25 1978-09-13 Fujitsu Ltd Manufacture for semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237449A (en) * 1985-04-12 1986-10-22 Ricoh Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS6343886B2 (en) 1988-09-01

Similar Documents

Publication Publication Date Title
JP2615390B2 (en) Method of manufacturing silicon carbide field effect transistor
JPS63318779A (en) Manufacture of semiconductor device
JPS58140130A (en) Manufacture of semiconductor device
JPH0473296B2 (en)
KR20110048195A (en) Method of manufacturing a semiconductor device
JPS59148350A (en) Manufacture of semiconductor device
JPS63133550A (en) Manufacture of semiconductor device
JPS6297331A (en) Manufacture of semiconductor device
JPH079930B2 (en) Method for manufacturing semiconductor device
JPS58115834A (en) Manufacture of semiconductor device
JPS6120154B2 (en)
JPS6249643A (en) Semiconductor device and its manufacture
JPH03157925A (en) Manufacture of semiconductor device
JPS59132634A (en) Method of multilayer interconnection
JPH035656B2 (en)
JPH0320086A (en) Manufacture of semiconductor storage device
JPS588143B2 (en) How to use warm air
JPS61131482A (en) Manufacture of nonvolatile semiconductor memory
JPS6150370A (en) Manufacture of semiconductor device
JPS61100949A (en) Formation of multilayer interconnection
JPS5972770A (en) Manufacture of semiconductor device
JPH03159122A (en) Manufacture of semiconductor device
JPH02268426A (en) Manufacture of semiconductor device
JPS63157441A (en) Manufacture of semiconductor device
JPS62260319A (en) Manufacture of semiconductor device