JPS58139792A - Treatment of organic waste liquid - Google Patents

Treatment of organic waste liquid

Info

Publication number
JPS58139792A
JPS58139792A JP2129582A JP2129582A JPS58139792A JP S58139792 A JPS58139792 A JP S58139792A JP 2129582 A JP2129582 A JP 2129582A JP 2129582 A JP2129582 A JP 2129582A JP S58139792 A JPS58139792 A JP S58139792A
Authority
JP
Japan
Prior art keywords
liquid
sludge
tank
treated
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2129582A
Other languages
Japanese (ja)
Other versions
JPH0125635B2 (en
Inventor
Yoshitaka Matsuo
松尾 吉高
Masami Kitagawa
政美 北川
Toshihiro Tanaka
俊博 田中
Akiko Miya
晶子 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP2129582A priority Critical patent/JPS58139792A/en
Publication of JPS58139792A publication Critical patent/JPS58139792A/en
Publication of JPH0125635B2 publication Critical patent/JPH0125635B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To remove phosphorus simultaneously with BOD and nitrogen efficiently from org. waste liquid, by treating liquid to be treated anaerobically by the use of settled sludge which is subjected to denitrification and concn. and oxidizing the same biologically then separating the liquid to treated liquid and settled sludge. CONSTITUTION:In an activated sludge method by an anaerobic-aerobic method, liquid 11 to be treated which is org. waste liquid and concd. sludge 17 are introduced into an anaerobic tank 1, where both are agitated and mixed in the substantial absence of dissolved oxygen and NO<->x to remove at least part of BOD. The mixed liquid anaerobically treated in such a way is introduced into an aerobic tank 2, where gases 20 contg. oxygen, separated liquid 16 contg. NO<->x, settled sludge 15, etc. are added to the liquid to remove BOD, phosphorus, etc. and to convert NH<->4 to NO<->x. The mixed liquid 13 biologically oxidized by such treatment is introduced into a final settling basin 3, where the liquid is separated to treated liquid 14 and settled sludge 15. The settled sludge 15 is so controlled as to contain >=1mg/l NO<->x-N and the controlled sludge is introduced into a denitrifying-concentrating tank 4, where separated liquid 16 is separated, and concd. sludge 17 contg. NO<->x-N controlled to <=0.5mg/l is obtained. The concd. sludge is used for the anaerobic treatment.

Description

【発明の詳細な説明】 本発明は、生活廃水ないしそれに類する有機性廃水の処
理法に関するもので、とシわけ有機性廃水からBODと
同時に、もしくはBODと窒素と同時に、リンをも除去
する嫌気−好気法とよばれる生物処理法の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating domestic wastewater or similar organic wastewater, and particularly relates to an anaerobic method for removing phosphorus from organic wastewater at the same time as BOD, or at the same time as BOD and nitrogen. - This relates to the improvement of a biological treatment method called aerobic method.

一般に嫌気−好気法とは1975〜76年頃に南ア連邦
で開発された生物処理法で従前の活性汚泥法施設もしく
は循環式硝化脱窒性施設の被処理液流入端に、 DO(
溶存酸素)もNO;も存在しない嫌気槽を付設し、そこ
で被処理液と返送汚、泥を混合攪拌した後に後続のDO
もしくはNOxの存在する生物酸化槽に導く技術であっ
た。このように活性汚泥法もしくは循環式硝化脱窒法の
工程構成を着干改変することによってリン含有能力の高
い活性汚泥が選択的に生成され、有機性廃液からBOD
 、窒素ばか沙でなくリンをも高い効率で除去できると
、/′ この技術の提唱者は主張している。(たとえば、J、 
L、Barnard : A Revlew of B
iological PhosphorusRemov
al in the Activated Sludg
e Process Water S AVol、 2
  NJII 3   July  1976)発明者
らも、この技術に興味をもち合成下水や住宅団地から排
出される生活廃水を被処理液としてパイロットプラント
等を用い研究を続けた結果この技術にはなお多くの改良
すべき点があることが認められた。
In general, the anaerobic-aerobic method is a biological treatment method developed in the Federation of South Africa around 1975-1976, in which DO(
An anaerobic tank is installed in which neither dissolved oxygen nor NO exists, and the liquid to be treated is mixed and stirred with the returned dirt and mud before the subsequent DO.
Alternatively, it was a technology that led to a biological oxidation tank where NOx was present. In this way, by modifying the process structure of the activated sludge method or the circulating nitrification-denitrification method, activated sludge with a high phosphorus-containing capacity can be selectively produced, and BOD can be reduced from organic wastewater.
Proponents of this technology claim that it can remove not only nitrogen but also phosphorus with high efficiency. (For example, J,
L, Barnard: A Revue of B
iological PhosphorusRemov
Al in the Activated Sludge
e Process Water S AVol, 2
NJII 3 July 1976) The inventors also became interested in this technology and continued research using pilot plants, etc., using synthetic sewage and domestic wastewater discharged from housing complexes as liquids to be treated.As a result, many improvements were made to this technology. It was recognized that there were things that needed to be done.

この確認できた特性のうち、本発明に関係がおる事項は
次の2点である。
Among these confirmed characteristics, the following two points are related to the present invention.

1) 本技術で良好なリン除去を達成するためには、嫌
気槽には、単に動的平衡状態でDOやNO;が存在しな
いというばかりでなく、美やNOxの流入量も最小限に
とど′)る必要があること。
1) In order to achieve good phosphorus removal with this technology, the anaerobic tank must not only be free of DO and NO in a dynamic equilibrium state, but also have a minimum amount of NOx inflow. What you need to do.

if)  最終沈殿池に沈殿活性汚泥を長時間放置する
と、池底部がDoやNO;の存在しない嫌気状態になシ
、沈殿活性汚泥からPO4が放出され、それが処理液の
P04P@度を高める。従って、これを防ぐためには、
沈殿活性汚泥を比較的すみやかに最終沈殿池から除去す
る必要があること。
If) If the settled activated sludge is left in the final settling tank for a long time, the bottom of the pond will not be in an anaerobic state without the presence of Do or NO; PO4 will be released from the settled activated sludge, which will increase the P04P@ level of the treated liquid. . Therefore, to prevent this,
It is necessary to remove settled activated sludge from the final settling tank relatively quickly.

この2点は、とりわけ目新らしい知見ではなく、いわば
公知の運転管理事項である。しかしながら、この二つの
事項を従来の嫌気−好気法の技術形態において同時に実
現することは、不可能ではないにしても、かなり離しい
。とりわけ、1)事項における嫌気槽へのNO;流入量
を抑制することは、NOxが系内で生成され、往々にし
て返送汚泥に随伴して流入するために難しい。従来の嫌
気−好気法では、この防止対策として最終沈殿池で沈殿
活性汚泥を長時間貯留し、そこでのDO消費とそれに続
く脱窒(N6; )を促進させることを推奨している。
These two points are not particularly novel findings, but are well-known operational management matters. However, it is quite far, if not impossible, to simultaneously achieve these two matters in the technical form of conventional anaerobic-aerobic methods. In particular, it is difficult to suppress the amount of NO flowing into the anaerobic tank in item 1) because NOx is generated within the system and often flows together with the returned sludge. In the conventional anaerobic-aerobic method, as a preventive measure, it is recommended to store the settled activated sludge for a long time in the final settling tank to promote DO consumption and subsequent denitrification (N6) there.

しかし、この在来の嫌気−好気式活性汚泥法では最終沈
殿池 に固液分離、ならびに沈殿汚泥の濃縮と脱窒とい
う3機能を負わせていたために最終沈殿池の池底部に沈
殿汚泥を長時間にわたり貯留するという操作をとり、こ
のため往々にして過度の嫌気状岬になり、その結果とし
て沈殿汚泥から溶出するPO4が処理液に混入するとい
う悪現象を惹起した。即ち、この操作はII)事項記載
のように処理液のPOa濃度を高める危険性があるばか
りでなく、脱窒に伴なうスカム等で処理液を汚濁させる
欠点があったのである。
However, in this conventional anaerobic-aerobic activated sludge method, the final sedimentation tank has three functions: solid-liquid separation, concentration of settled sludge, and denitrification, so settling sludge is deposited at the bottom of the final settling tank. The operation of storing the sludge for a long time often resulted in excessive anaerobic conditions, resulting in an adverse phenomenon in which PO4 eluted from the settled sludge was mixed into the treated solution. That is, this operation not only has the risk of increasing the POa concentration in the treatment liquid as described in item II), but also has the drawback of contaminating the treatment liquid with scum and the like accompanying denitrification.

本発明は、これら問題点を適確に排除しようとするもの
で、従来の嫌気−好気法が有するこのような最終沈殿池
操作の二律背反性を解消し、BODとリンとを同時に除
去するため嫌気槽へ流入する返送汚泥のNOx量を抑制
し、しかも処理液のスカム性濁質やPO4の濃度を高め
ない運転管理の容易な嫌気−好気法を提供することを目
的としたものである。
The present invention aims to eliminate these problems appropriately, and eliminates the trade-offs of the final sedimentation tank operation that the conventional anaerobic-aerobic method has, and removes BOD and phosphorus at the same time. The purpose of this method is to provide an anaerobic-aerobic method that suppresses the amount of NOx in the returned sludge flowing into the anaerobic tank and does not increase the scum turbidity or PO4 concentration in the treated liquid and is easy to manage. .

また、本発明の他の目的は、最終沈殿池で脱窒を促進す
ることなく嫌気槽へ確実に濃厚な返送汚泥を供給し処理
効率を大巾に向上できる嫌気−好気法とすることにある
Another object of the present invention is to provide an anaerobic-aerobic method that can reliably supply thick returned sludge to the anaerobic tank without promoting denitrification in the final settling tank, thereby greatly improving treatment efficiency. be.

本発明の特徴は、最終沈殿池で沈殿分離された沈殿汚泥
を最終沈殿池より脱窒−濃縮槽に導きここで濃縮を行な
いながら脱岱を促進せしめ、得られ九濃縮汚泥の少なく
とも一部を返送汚泥として嫌気槽に供給し、濃縮槽の分
離液は嫌気槽に後続する処理槽のいずれかに導いて処理
することにある。
The feature of the present invention is that the settled sludge separated by precipitation in the final settling tank is guided from the final settling tank to the denitrification/concentration tank where it is concentrated while promoting denitrification, and at least a part of the resulting concentrated sludge is The sludge is supplied to the anaerobic tank as returned sludge, and the separated liquid from the thickening tank is led to one of the processing tanks following the anaerobic tank for treatment.

このような工程構成によって、最終沈殿池で脱窒を促進
する必要もないので処理液のPoニーや濁質分の濃度を
高めることもなく、また嫌気槽へ送られる返送汚泥は濃
厚であり、該檜へのNo;流入をたとえあったとしても
最小限にとどめることができ高効率で安定した処理が可
能となる。
With this process configuration, there is no need to promote denitrification in the final sedimentation tank, so there is no need to increase the concentration of Pony or turbidity in the treated solution, and the returned sludge sent to the anaerobic tank is thick. No. Inflow into the cypress can be kept to a minimum, if any, and highly efficient and stable processing is possible.

本発ψの実施態様における嫌気−好気法を図面に示すそ
の代表的例について説明すると、第1図は活性汚泥性形
式の嫌気−好気法に適用した実施態様例であるが、被処
理液11は第1工橿となる嫌気槽IKみちびかれ、Do
もNOxも存在しない状態下で脱窒−濃縮槽4よシ送ら
れる濃縮汚泥17と混合攪拌されて嫌気処理を受けるよ
うになっている。
To explain a typical example of the anaerobic-aerobic method shown in the drawing in the embodiment of the present invention ψ, Fig. 1 is an example of an embodiment applied to the activated sludge type anaerobic-aerobic method. The liquid 11 is led to the anaerobic tank IK, which becomes the first tunnel, and Do
The sludge is mixed with the concentrated sludge 17 sent from the denitrification/concentration tank 4 and subjected to anaerobic treatment in the absence of NOx or NOx.

この嫌気処理過程で活性汚泥はその細胞内に蓄積してい
たポリリン酸をPO4に加水分解し、それを溶液側に放
出する。それと並行して、活性汚泥は、溶液側に存在す
るBOD、すなわち被処理液111C含まれてい九BO
Dの少なくとも一部を非酸化的に摂取し、細胞内有機物
として細胞内に貯留する。このようにして生成された嫌
気処理済混合液12は空気ないし酸素富化空気などの酸
素含有気体20で気曝される好気槽2にみちびかれここ
で気曝処理を受けて第2工程を完遂する。この気曝処理
過程即ち第2工程で活性汚泥はその細胞内有機物および
嫌気処理過程で摂取しきれなかった溶液側のBODを酸
化し、その酸化反応と共役して溶液側に存在するPO4
を細胞内に摂取し、ポリリン酸として細胞内に蓄積する
。液温、汚泥日令、pHなどの条件が活性汚泥に硝化菌
の共生を許容するものであるならば、との気曝処理過程
で活性汚泥に共生する硝化菌は次の継起反応によって溶
液側に存在する聞;をNO2ないしNOsに酸化する。
During this anaerobic treatment process, the activated sludge hydrolyzes the polyphosphoric acid accumulated within its cells into PO4 and releases it into the solution. In parallel, the activated sludge contains BOD present on the solution side, that is, the treated liquid contains 9 BO
At least a portion of D is ingested in a non-oxidative manner and stored within cells as intracellular organic matter. The anaerobically treated mixed liquid 12 thus generated is led to an aerobic tank 2 where it is aerated with an oxygen-containing gas 20 such as air or oxygen-enriched air, where it undergoes aeration treatment and undergoes the second step. Complete. In this aeration process, that is, the second step, activated sludge oxidizes the intracellular organic matter and the BOD on the solution side that could not be taken in during the anaerobic treatment process, and the PO4 present on the solution side is coupled with the oxidation reaction.
is taken into cells and accumulated as polyphosphate. If conditions such as liquid temperature, sludge age, and pH allow nitrifying bacteria to coexist in activated sludge, the nitrifying bacteria that coexist in activated sludge during the aeration process will be transferred to the solution side through the following successive reactions. It oxidizes the nitrogen present in NO2 to NOs.

2N)i: +302→2NO2+ 2H20+ 4H
j2NO: +  02 →2NOg このように溶液側のBODとPO4が十分に減じ、処理
条件によってはNOxをも含有する気曝処理済混合液1
3は第3工程の最終沈殿池3に供給され、ここで固液分
離を受は処理液14と沈殿汚泥15に分離される。この
最終沈殿池3はもっばら固液分離を主機能として操作さ
れ、沈殿汚泥を過量に池底部に貯留しないことを原則と
し、好ましくは常にNOxが沈殿汚泥15に残留するよ
うに操作される。
2N) i: +302→2NO2+ 2H20+ 4H
j2NO: + 02 → 2NOg In this way, the BOD and PO4 on the solution side are sufficiently reduced, and depending on the processing conditions, the aerated mixed liquid 1 may also contain NOx.
3 is supplied to the final settling tank 3 of the third step, where it undergoes solid-liquid separation and is separated into a treated liquid 14 and settled sludge 15. This final settling tank 3 is operated with solid-liquid separation as its main function, and is operated in such a manner that NOx remains in the settled sludge 15 at all times, with the principle that an excessive amount of settled sludge is not stored at the bottom of the tank.

この操作方法として杜、沈殿汚泥15を脱窒−濃縮槽4
に移送する径路にNOsイオンメータもしくは酸化還元
電位計などのNOx濃度検知器22を設置し、この電気
信号をもって沈殿汚泥移送ポンプ21の流量を制御すれ
ばよい。この場合、沈殿汚泥15に残留するNo; N
濃度はlq/j以上が好ましい。
In this operation method, the precipitated sludge 15 is denitrified and concentrated in the concentration tank 4.
A NOx concentration detector 22 such as a NOs ion meter or an oxidation-reduction potentiometer may be installed in the path for transferring the sludge to the sludge, and the flow rate of the settled sludge transfer pump 21 may be controlled using this electrical signal. In this case, No. remaining in the settled sludge 15;
The concentration is preferably lq/j or more.

また前記最終沈殿池3で沈殿分離された沈殿汚泥15は
沈殿汚泥移送ポンプ21を経由して第4工程となる脱窒
−濃縮槽4に導かれ、ここで再濃縮されて分離液16と
濃縮汚泥17とに分けられる。この脱命−濃縮槽4の構
造としては従来の濃縮槽で用いられた技術がそのまま利
用できるが最終沈殿池3とは異なる意図で運転操作され
る。すなわち、− たとえ濃縮汚泥からPO4が溶出しそれが分離液に混入
しようとも、また、脱窒スカムが生成されて分離液が汚
濁されようとも濃縮汚泥17を槽底に長時間(生活廃水
処理の場合にFi2〜12時間)保留させて脱窒を促進
することを原則とし、好ましくは槽底から引抜かれる濃
縮汚泥17にNOxが実質的に不存(NOx N濃度と
して051を以下)になるべく操作されるーこれは多く
の場合、単なる汚泥時間滞留時間制御で達成できるが、
たとえば濃縮汚泥17を嫌気槽1に返送する径路にNO
xイオンメ一二 りもしくは酸化還元電位計などのNOx s *検知器
22を設け、この電気信号を利用した濃縮汚泥返送ポン
プ23の流量制御によっても達成できる。
Further, the settled sludge 15 that has been separated by precipitation in the final settling tank 3 is led to the denitrification/concentration tank 4 which is the fourth step via the settled sludge transfer pump 21, where it is reconcentrated to form the separated liquid 16 and the concentrated sludge. It is divided into sludge and 17. As for the structure of this lifesaving concentration tank 4, the technology used in conventional concentration tanks can be used as is, but it is operated with a different intention from that of the final sedimentation tank 3. In other words, - Even if PO4 is eluted from the thickened sludge and mixed into the separated liquid, or even if denitrification scum is generated and the separated liquid is polluted, the thickened sludge 17 is kept at the bottom of the tank for a long time (for domestic wastewater treatment). In principle, the sludge is retained for 2 to 12 hours to promote denitrification, and preferably the thickened sludge 17 drawn from the bottom of the tank is substantially free of NOx (the NOx N concentration is 051 or less). - This can often be achieved by simple sludge residence time control;
For example, NO is added to the route that returns the thickened sludge 17 to the anaerobic tank 1.
This can also be achieved by providing a NOx s* detector 22 such as an x-ion meter or an oxidation-reduction electrometer, and controlling the flow rate of the thickened sludge return pump 23 using this electric signal.

さらに前記濃縮−脱窒槽4の上部より排出される分離液
16には、多くの場合脱窒スカムが含まれ、PO4濃度
は処理液14よりも高い。また、沈殿汚泥15の移送量
が過剰の場合には、活性汚泥そのもののキャリオーバも
あシ得る。したがって、これを処理液14と同等のもの
とみなし放流した。す、高度処理工程に送入することは
好ましいことではないのでこの分離液16の排出先とし
ては、嫌気111に先立つ被処理液11の処理槽、たと
えば最初沈殿池(図示せず)なども考えられるが、これ
も濃縮汚泥17が完全に脱窒されたとしても分離液16
にNOxが残留する場合が多く、これを最初沈殿池に導
いて被処理液11と混合すれば、往々にしてNOxが嫌
気槽1に流入してしまう危険もあるので、本発明におい
ては第1図例に示されるように分離液16を好気槽2に
導くことである。なぜなら好気槽2の処理過程はNo;
の存否に何ら影響されず、また分離液16に含まれるP
O4を活性汚泥細胞に再摂取せしめ、また脱窒スカムも
破壊し、通常の活性汚泥フロックに転化することができ
るからである。
Further, the separated liquid 16 discharged from the upper part of the concentration-denitrification tank 4 often contains denitrification scum and has a higher PO4 concentration than the treated liquid 14. Furthermore, if the amount of settled sludge 15 to be transferred is excessive, carryover of the activated sludge itself may be avoided. Therefore, this was considered to be equivalent to treatment liquid 14 and was discharged. Since it is not preferable to send the separated liquid 16 to an advanced treatment process, a treatment tank for the liquid 11 to be treated prior to the anaerobic process 111, such as a primary settling tank (not shown), is also considered as a discharge destination for the separated liquid 16. However, even if the thickened sludge 17 is completely denitrified, the separated liquid 16
In many cases, NOx remains in the anaerobic tank, and if this is first led to the settling tank and mixed with the liquid to be treated 11, there is a risk that NOx will often flow into the anaerobic tank 1. Therefore, in the present invention, the first As shown in the example, the separated liquid 16 is introduced into the aerobic tank 2. Because the treatment process of aerobic tank 2 is No;
is not affected by the presence or absence of P contained in the separated liquid 16.
This is because O4 can be retaken into activated sludge cells, denitrification scum can also be destroyed, and it can be converted into normal activated sludge flocs.

そしてこの分離液16が好気槽2に導入される場合には
、好気槽2における活性汚泥濃度(MLSS濃度)は嫌
気槽1のそれよシ低くなるし好気槽2の容量に余裕があ
ればそのことは処理に何ら支障はない。しかし、好気槽
2の容量をより小なるものとするためには、好気槽2に
おける活性汚泥濃度は高いほどよい。好気槽2の活性汚
泥濃度を高める手段としては、濃縮汚泥17の一部を分
流させて好気槽2に導くことも一法であるが、好気槽2
にはNOxの流入が杵容できるので、NO;を十分に減
じた濃縮汚泥17を好気槽2に分流させることは、脱窒
−濃縮槽4の施設容量を有効に利用するという観点から
若干問題があるので第1図例に示されるように最終沈殿
池3で沈殿した活性汚泥の一部を短絡返送汚泥18とし
てポンプ21′で好気槽2に戻して脱窒−濃縮槽4の容
量をよシ節減するのがよい。
When this separated liquid 16 is introduced into the aerobic tank 2, the activated sludge concentration (MLSS concentration) in the aerobic tank 2 becomes lower than that in the anaerobic tank 1, and the capacity of the aerobic tank 2 is free. If so, there is no problem with the processing. However, in order to reduce the capacity of the aerobic tank 2, the higher the activated sludge concentration in the aerobic tank 2, the better. One way to increase the activated sludge concentration in the aerobic tank 2 is to divert a part of the thickened sludge 17 and guide it to the aerobic tank 2.
Since the inflow of NOx can be pumped into the tank, diverting the thickened sludge 17 with sufficiently reduced NO; to the aerobic tank 2 is somewhat difficult from the viewpoint of effectively utilizing the facility capacity of the denitrification/thickening tank 4. Since there is a problem, as shown in the example in FIG. 1, a part of the activated sludge settled in the final settling tank 3 is returned to the aerobic tank 2 by the pump 21' as a short-circuit return sludge 18 to reduce the capacity of the denitrification/concentration tank 4. It is better to save money.

なお、本性で生成される余剰汚泥19は、第1図例のよ
うに脱窒−濃縮槽4よシ引抜いてもよく、最終沈殿池3
より引抜いてもよい。また、汚泥日令制御を厳密に行な
おうとするならば気曝処理済混合液13の一部を余剰汚
泥とすることが考えられる。
Incidentally, the surplus sludge 19 generated by the natural process may be pulled out from the denitrification/concentration tank 4 as shown in the example in FIG.
You may pull it out further. Furthermore, if strict sludge age control is to be performed, it is conceivable to use a portion of the aerated mixed liquid 13 as surplus sludge.

第2図は循環式硝化脱窒性形式の嫌気−好気法に適用し
た場合の実施態様例で、被処理液11は嫌気槽1に導か
れ、再脱窒槽6から送られる再脱窒済汚泥誌と混合され
、第1工程の嫌気処理を受けるようになっている。(こ
の嫌気処理の操作は第1図例と変らない。)嫌気処理済
混合液12は脱窒槽7に送られ、ここで後続の硝化槽8
から送られる循環液26および最終沈殿池3から送られ
る短絡返送汚泥18、更には脱窒−濃縮槽4から送られ
る分離液16と混合され、これら各液に含まれているN
O;を脱窒処理する。この脱窒処理過程で活性汚泥はそ
の細胞内有機物および溶液側に存在するBODを酸化し
、その酸化反応と共役して溶液側に存在するPOa−を
細胞内に摂取し、ポリリン酸として細胞内に蓄積する。
FIG. 2 shows an example of an embodiment when applied to a circulating nitrification-denitrification type anaerobic-aerobic method, in which the liquid to be treated 11 is led to the anaerobic tank 1, and the re-denitrified liquid is sent from the re-denitrification tank 6. It is mixed with sludge and subjected to anaerobic treatment in the first step. (The operation of this anaerobic treatment is the same as the example in Figure 1.) The anaerobically treated mixed liquid 12 is sent to the denitrification tank 7, where it is sent to the subsequent nitrification tank 8.
The circulating liquid 26 sent from the final settling tank 3, the short-circuit return sludge 18 sent from the final settling tank 3, and the separated liquid 16 sent from the denitrification/concentration tank 4 are mixed, and the N contained in each of these liquids is mixed.
O; is denitrified. In this denitrification process, activated sludge oxidizes the intracellular organic matter and BOD present in the solution, and conjugates with the oxidation reaction to take POa- present in the solution into the cells, converting it into polyphosphoric acid. Accumulate in.

このようにして生成された脱窒混合合液即ち嫌気処理済
混合液12は第2工程となる酸素含有気体加で気曝され
る硝化槽8に導かれ硝化処理を受ける。この硝化処理過
程において、溶液側に存在する−は硝化され、NOxに
転化される。またこの過程でも活性汚泥は細胞内有機物
および溶液側BODの更なる酸化を進めそれとともに溶
液側PO4を更に摂取する。このようにして生成された
NOxを含む硝化処理済混合液の一部は循環液26とし
て脱窒槽7に送られる一方、残シの硝化混合液部は第3
工程を司どる最終沈殿池3にみちびかれ、ここで処理液
14と沈殿汚泥に分けられる。一部の沈殿汚泥15′は
沈殿汚泥移送ポンプ21を経由して脱窒濃縮槽4に移送
され第4工程を完遂させる。この沈殿汚泥移送ポンプ2
1の流量は第1図例と同様に制御できる。沈殿汚泥の残
りは短絡返送汚泥18として脱窒槽7もしくは硝化槽8
に選んで又は分流して送られる。
The denitrification mixed solution, that is, the anaerobically treated mixed solution 12 thus generated is led to the nitrification tank 8 where it is exposed to oxygen-containing gas in a second step, and undergoes nitrification treatment. In this nitrification process, - present on the solution side is nitrified and converted into NOx. Also, in this process, the activated sludge further oxidizes intracellular organic matter and solution side BOD, and at the same time further takes in PO4 from the solution side. A part of the nitrified mixed liquid containing NOx generated in this way is sent to the denitrification tank 7 as the circulating liquid 26, while the remaining nitrified mixed liquid part is
The sludge is led to the final settling tank 3 that controls the process, where it is separated into a treated liquid 14 and settled sludge. A part of the settled sludge 15' is transferred to the denitrification concentration tank 4 via the settled sludge transfer pump 21 to complete the fourth step. This settled sludge transfer pump 2
The flow rate of No. 1 can be controlled in the same manner as the example in FIG. The remainder of the settled sludge is sent to the denitrification tank 7 or the nitrification tank 8 as short-circuit return sludge 18.
It is sent selectively or separately.

前記脱窒濃縮槽4にポンプ21′で送られた沈殿汚泥1
5′は分離液16と濃縮汚泥17に分けられる。第2図
例における脱窒−濃縮槽4も第1図例と同様に操作され
る。しかし系全体のF2イM比〔被処理液が持込む日当
りBODil(F)と好気槽のMI、88量(M)の比
〕を過度に低い状態で運転すると、ここに導かれる沈殿
汚泥15′の活性汚泥が安定化しているため、たとえ濃
縮されていようとも脱窒速度は小さく、時として濃縮汚
泥17のNOx濃度を十分に低下し得ないことがある。
The settled sludge 1 is sent to the denitrification concentration tank 4 by the pump 21'.
5' is divided into a separated liquid 16 and a thickened sludge 17. The denitrification/concentration tank 4 in the example shown in FIG. 2 is also operated in the same manner as in the example shown in FIG. However, if the system as a whole is operated with an excessively low F2-M ratio [ratio between the daily BODil (F) brought in by the liquid to be treated and the MI of the aerobic tank (M)], the settled sludge will be introduced into the system. Since the activated sludge 15' is stabilized, the denitrification rate is low even if it is concentrated, and sometimes the NOx concentration in the concentrated sludge 17 cannot be reduced sufficiently.

このような場合に対する対応策として第2図例では濃縮
汚泥17を再脱窒槽6に導き、ここにメタノールなどの
脱窒用布4!!!薬品四などを添加して脱窒を終了させ
、そこより排出される再脱窒済汚泥28を嫌気1!!1
に送入している。なお、第2図例では余剰汚泥19は脱
窒−績縮槽4より引抜かれ処理運転を安定して行なえる
ようになっている。
As a countermeasure against such a case, in the example shown in FIG. 2, the concentrated sludge 17 is led to the re-denitrification tank 6, and there is a cloth 4 for denitrification such as methanol! ! ! Denitrification is completed by adding chemicals 4, etc., and the re-denitrified sludge 28 discharged from there is treated as anaerobic 1! ! 1
is being sent to. In the example shown in FIG. 2, the excess sludge 19 is drawn out from the denitrification/condensation tank 4 so that the treatment operation can be carried out stably.

本発明は最終沈殿池で沈殿分離された沈殿汚泥を最終沈
殿池よシ脱窒−濃縮槽に導きここで濃縮を行ないながら
脱窒を促進せしめ、得られた濃縮汚泥の少なくとも一部
を返送汚泥として嫌気槽に供給し、濃縮槽の分離液は嫌
気槽に後続する処理槽のいずれかに導いて処理すること
によシ有機性廃液からBODとリンを同時に適確効率よ
く除去できると共に1嫌気槽へ流入する返送汚泥のNO
−量を抑制できしかも処理液のスカム性濁質やPO4の
濃度を高めない運転管理が容易に可能となり処理液の清
澄性は大巾に向上し、最終沈殿池で脱窒を促進すること
なく嫌気槽へ確実に濃厚な返送汚泥を供給し処理効率を
大巾に向上することができる。
In the present invention, the settled sludge separated by precipitation in the final settling tank is guided from the final settling tank to the denitrification/concentration tank where denitrification is promoted while being concentrated, and at least a part of the obtained thickened sludge is returned to the sludge. BOD and phosphorus can be simultaneously removed accurately and efficiently from the organic waste liquid by supplying the separated liquid from the concentrating tank to one of the treatment tanks following the anaerobic tank. NO of return sludge flowing into tank
- Operation management that can control the amount and do not increase the concentration of scum turbidity or PO4 in the treated liquid is easily possible, and the clarity of the treated liquid is greatly improved, without accelerating denitrification in the final settling tank. It is possible to reliably supply thick return sludge to the anaerobic tank, greatly improving treatment efficiency.

次に本発明の実施例を従来法の比較例とともに示簿。本
発明法が良好な結果を得られることが実証された。
Next, examples of the present invention are listed together with comparative examples of conventional methods. It has been demonstrated that the method of the present invention provides good results.

〔第1比較例〕 家庭下水に生し尿が着千量混合している生活廃水を被処
理液として、発明者らは従来の活性汚泥性形式の嫌気−
好気活性汚泥法をパイロットプラントによって追試験し
た。このパイロットプラントの仕様を第1表に示す。
[First Comparative Example] The inventors used a conventional activated sludge type anaerobic method using domestic wastewater mixed with domestic sewage and human waste as the liquid to be treated.
The aerobic activated sludge method was further tested using a pilot plant. The specifications of this pilot plant are shown in Table 1.

第1表 従来パイロットプラント仕様 試験は春先から、被処理液流量5.45 rrl1日、
返送率30−(返送汚泥流量1.63 rp/7日)の
流量条件で開始し、6初は硝化が全く起らなかったため
比較的良好な処理成績を得た。しかし、気温と被処理液
温の上昇につれて好気槽で硝化が徐々に進行し、4月の
末には、硝化率は8096にもなった。ちょうど、この
頃から嫌気槽に取付けられた白金−塩化銀電極からなる
酸化還元電位針の酸化還元電位がそれまでの一420m
V以下から一270mV以上に上昇し、それに対応して
嫌気槽でのPO4放出量が減少し、処理液のPOJ f
Ik度も増加してきた。この時、返送汚泥の酸化還元電
位を測定したところ−220〜−200mVでその溶液
側には2〜4IIf/lのNow−Nf1M度が検出さ
れた。また、最終沈殿池の沈殿汚泥容積は0.110−
で、これから計算される沈殿汚泥の滞留時間(沈殿汚泥
容積/返送汚泥流量)は16時間で返送汚泥濃度FiM
LSBで表示して1200011II/lでおった。
Table 1 The conventional pilot plant specification test started in early spring, with a flow rate of the liquid to be treated of 5.45 rrl for 1 day.
The process was started under a flow rate condition of a return rate of 30- (return sludge flow rate: 1.63 rp/7 days), and at the beginning of 6, no nitrification occurred at all, so relatively good treatment results were obtained. However, as the air temperature and the temperature of the liquid to be treated rose, nitrification gradually progressed in the aerobic tank, and by the end of April, the nitrification rate had reached 8,096. Around this time, the oxidation-reduction potential of the oxidation-reduction potential needle consisting of a platinum-silver chloride electrode installed in the anaerobic tank was lowered to 420 m.
The amount of PO4 released in the anaerobic tank decreases, and the POJ f of the treated liquid increases from less than
Ik degree has also increased. At this time, when the oxidation-reduction potential of the returned sludge was measured, it was -220 to -200 mV, and 2 to 4 IIf/l of Now-Nf1M was detected on the solution side. In addition, the volume of settled sludge in the final settling tank is 0.110-
So, the residence time of settled sludge calculated from this (settled sludge volume/return sludge flow rate) is 16 hours, and return sludge concentration FiM
It was expressed in LSB and was 1200011II/l.

〔第2比較例〕 第2比較例のリン除去成績が悪化したので、5月10日
にこれを解決するために返送汚泥率を15チ(返送汚泥
流量0.82 d7日)に変更し、しかも最終沈殿池に
おける沈殿汚泥容積を0.18OFF/にし制御した。
[Second Comparative Example] Since the phosphorus removal performance of the second comparative example deteriorated, on May 10th, in order to solve this problem, the return sludge rate was changed to 15 cm (return sludge flow rate 0.82 d7 days). Moreover, the volume of settled sludge in the final settling tank was controlled at 0.18 OFF/.

この結果、沈殿汚泥の最終沈殿池における沈殿汚泥の滞
留時間は5.3時間に延長された。その結果、返送汚泥
のMLSS濃度は20500岬/lになり、返送汚泥の
溶液側におけるNO; N濃度は検出限界以下になった
。また酸化還元電位は返送汚泥、嫌気槽出口ともに低下
しはじめ、ともに−450mV以下になった。このよう
な酸化還元電位の低下と並行して、嫌気−好気活性汚泥
独特のPO4放出(於;嫌気槽)とPO4摂取(於;好
気槽)が顕著になってきた。しかし、処理液POA  
Pa度は試験開始時期に比較して高く、脱豐スカムのた
めに処理液の清澄性も悪化した。被処理液、嫌気処理済
混合液、好気処理済混合液および処理液の溶解性Po4
P濃度の平均値はそれぞれ3.3 、17.2 、00
4 、052(虻t)で、好気処理済混合液では十分に
低濃度になっているにもかかわらす、処理液のそれは高
かった。
As a result, the residence time of the settled sludge in the final settling tank was extended to 5.3 hours. As a result, the MLSS concentration in the returned sludge was 20,500 m/l, and the NO;N concentration on the solution side of the returned sludge was below the detection limit. In addition, the oxidation-reduction potential began to decrease at both the return sludge and the anaerobic tank outlet, and both became -450 mV or less. In parallel with such a decrease in redox potential, the PO4 release (in the anaerobic tank) and PO4 uptake (in the aerobic tank), which are unique to anaerobic-aerobic activated sludge, have become remarkable. However, the processing liquid POA
The Pa degree was higher than that at the start of the test, and the clarity of the treated solution was also deteriorated due to the removal of scum. Solubility Po4 of the liquid to be treated, the anaerobically treated mixed liquid, the aerobically treated mixed liquid and the treated liquid
The average values of P concentration were 3.3, 17.2, and 00, respectively.
4,052 (animal t), and although the concentration was sufficiently low in the aerobically treated mixed solution, it was high in the treated solution.

この原因はおそらく最終沈殿池で貯留している活性汚泥
から溶出したPO<が処理液に混入したためであろうと
考え、返送汚泥の溶解性PO4−PI3度を測定したと
ころ、実際30■/LhsP以上も溶出していた。この
ような経験から、最終沈殿池で脱窒を完了させることは
、処理液PO4濃度を高める危険性があることが解った
We thought that the cause of this was probably that PO< eluted from the activated sludge stored in the final settling tank was mixed into the treated solution, and when we measured the solubility of the returned sludge, PO4-PI3 degrees, we found that it was actually more than 30 ■/LhsP. was also eluted. From this experience, it has been found that completing denitrification in the final sedimentation tank risks increasing the PO4 concentration of the treated solution.

実施例−1 このような経験から、第2比較例の試験と並行して第1
図例に準する本発明法のパイロットプラント試験を行な
った。このプラントの仕様を第2表に示す。脱窒濃縮槽
は最終沈殿池と同型の円形クラリファイヤであるが、濃
縮を促進するためにレーキにピケットが付設しである。
Example-1 Based on this experience, the first comparative example was tested in parallel with the second comparative example test.
A pilot plant test of the method of the present invention was conducted in accordance with the illustrated example. The specifications of this plant are shown in Table 2. The denitrification tank is a circular clarifier of the same type as the final sedimentation tank, but the rake is equipped with pickets to facilitate concentration.

被処理液流量は、第1.第2比較例とほぼ同等の5.5
2m’/日でその他の流量条件は短絡返送汚泥(最終沈
殿池→好 気 槽):  0.62m’/日祢送沈殿汚
泥(最終沈殿池→脱窒濃縮槽) :  1.22m’/
日分 離 液(脱窒濃縮槽→好 気 檜) :  0.
90W?/日返送濃縮汚泥(脱窒濃縮槽→嫌 気 檜)
:  032m’/日−である。また、最終沈殿池の沈
殿汚泥容積は0.085〃?(沈殿汚泥滞留時間0.0
85 X 24 / (0,62+ 1.22) =1
.1時間)とし、脱窒−濃縮槽の濃縮汚泥容積は0.1
20m’(濃縮汚泥滞留時間0.120 X 2410
.32 = 9.0時間)に制御した。
The flow rate of the liquid to be treated is as follows. 5.5, which is almost the same as the second comparative example.
2 m'/day, and other flow conditions are: short-circuit return sludge (final settling tank → aerobic tank): 0.62 m'/day; return settled sludge (final settling tank → denitrification thickening tank): 1.22 m'/day
Separation liquid (denitrification concentration tank → aerobic cypress): 0.
90W? /day return thickened sludge (denitrification thickening tank → anaerobic cypress)
: 032 m'/day. Also, the volume of settled sludge in the final settling tank is 0.085? (Settled sludge retention time 0.0
85 x 24 / (0,62+ 1.22) = 1
.. 1 hour), and the volume of concentrated sludge in the denitrification-thickening tank is 0.1
20m' (thickened sludge retention time 0.120 x 2410
.. 32 = 9.0 hours).

このような運転操作の結果、最終比−池から引抜かれる
短絡返送汚泥および移送沈殿汚泥の濃度はMLSSとし
て95001Ni/lと低下したが、濃縮返送汚泥のそ
れは36000η/lに達した。また、最終沈殿池よシ
引抜かれる沈殿汚泥の白金−塩化銀電極による酸化還元
電位は−50〜−170mVで、6〜8W/A(平均7
.511f//−)のNOx Nが検出された。最終− 沈殿池における活性汚泥からのPO4放出は全くなく、
沈殿汚泥中の溶解性PO4−Pは好気処理済混合液のそ
れとほとんど差がなく、常に0.1 wsp/L以下で
あった。これに対し、濃縮返送汚泥の酸化還元電位は−
480〜−490mVで、NOz Nは全く検出されな
かった。このような高い嫌気度のために脱、窒−濃縮槽
では大量のリン放出が行なわれ、濃縮返送汚泥中の溶解
性PO4−Pは95 q/lにも達した。
As a result of such operating operations, the concentration of the short circuit return sludge and transferred precipitated sludge drawn from the final ratio pond decreased to 95,001 Ni/l as MLSS, but that of the concentrated return sludge reached 36,000 η/l. In addition, the redox potential of the settled sludge drawn out from the final settling tank by the platinum-silver chloride electrode is -50 to -170 mV, and 6 to 8 W/A (average 7
.. 511f//-) NOx N was detected. Final - There is no release of PO4 from activated sludge in the settling tank,
Soluble PO4-P in the settled sludge had almost no difference from that in the aerobically treated mixed liquor, and was always below 0.1 wsp/L. On the other hand, the oxidation-reduction potential of concentrated return sludge is -
From 480 to -490 mV, no NOz N was detected. Due to such high anaerobic degree, a large amount of phosphorus was released in the de-nitrogen concentration tank, and the soluble PO4-P in the concentrated return sludge reached 95 q/l.

それに対応して、脱窒−濃縮槽から好気槽に溢流する分
離液には、3.2 W/lの溶解性PO4−Pが含まれ
ていたが、これは系全体の処理に何らの悪影響を与えな
かった。
Correspondingly, the separated liquid overflowing from the denitrification-concentration tank to the aerobic tank contained 3.2 W/l of soluble PO4-P, which had no effect on the overall system treatment. had no adverse effects.

実施例−1の代表的な水質データを第2比較例のそれと
対比して第3表に示す。双方の処理液水質の相違は、溶
解性POa−P濃度に大きく現われている。比較例−2
では最終沈殿池で活性汚泥からのPO4放出が行なわれ
ているために、その処理液のPO4−P濃度は実施例−
1のそれに比べて高く第3表 実施例−1と第2比較例
の処理成績」 率 なっている。ま九処理液の清澄性においても実施例−1
では、最終沈殿池での脱窒量が少ないので脱窒性スカム
も少ない。このため処理液SS濃度は低く、これに対応
して固型性BOD (全BODと溶解性BOD O差)
や固型性P(全−PとPO4−P)差)の濃度も低くな
っている。これに対して、最終沈殿池において脱窒を促
進している第2比較例では脱窒性スカムの存在によって
処理液の清澄性が技なわれ、SS濃度、固型性BOD 
111度、固型性P濃度などが高くその優劣差は明らか
であった。
Typical water quality data of Example-1 is shown in Table 3 in comparison with that of the second comparative example. The difference in water quality between the two treated solutions is largely reflected in the concentration of soluble POa-P. Comparative example-2
In this case, since PO4 is released from activated sludge in the final settling tank, the PO4-P concentration of the treated liquid is
Table 3: Processing results of Example 1 and Comparative Example 2 is higher than that of Example 1. Also in terms of the clarity of the treatment liquid, Example-1
Since the amount of denitrification in the final settling tank is small, there is also less denitrifying scum. Therefore, the SS concentration in the processing solution is low, and correspondingly the solid BOD (the difference between total BOD and soluble BOD)
The concentration of solid P (difference between total-P and PO4-P) is also lower. On the other hand, in the second comparative example in which denitrification is promoted in the final settling tank, the presence of denitrifying scum improves the clarity of the treated liquid, and the SS concentration and solid BOD
The temperature was 111 degrees, and the concentration of solid P was high, and the difference between the two was clear.

実施例−2 食品加工工場から排出される有機性廃水を被処理液とし
て再脱窒槽を除いた第2図例法の処理試験を室内規模の
実験施設で行なった。この実験施設の仕様を第4表に示
す。
Example 2 A treatment test was conducted in an indoor-scale experimental facility using organic wastewater discharged from a food processing factory as the liquid to be treated according to the method shown in Figure 2, excluding the re-denitrification tank. Table 4 shows the specifications of this experimental facility.

第4表 実施例−2の実験施設 被処理液は、冷蔵庫に保存され、そこからポンプで嫌気
槽に注入された1、流量条件は次の通シである。
Table 4 Experimental Facility of Example-2 The liquid to be treated was stored in a refrigerator and pumped from there into an anaerobic tank under the following flow conditions.

被処理液        ;144t/日循 環 液(
硝化槽→脱窒槽);415t/日短絡返送汚泥(最終沈
殿池→脱 窒 櫂):   63t/日移送沈殿汚泥(
最終沈殿池→脱窒濃縮槽):   SOZ/日分 離 
液(脱窒濃縮槽→脱 窒 檜);   571/日返送
濃縮汚泥(脱窒濃縮槽→緻 気 檜);   23t/
日最終沈殿池の沈殿汚泥容積は約14tに、また脱窒濃
縮槽の濃縮汚泥容積は約Utに制御した。その結果、そ
れぞれの汚泥滞留時間は2.3時間、25時間になった
。各液の活性汚泥濃度(MLSS ) 、 NoxN濃
度、溶、注POa P濃度のデータ平均値を第5表に、
また系全体の処理成績の平均値を第6表に示す。
Liquid to be treated: 144t/daily circulating liquid (
Nitrification tank→Denitrification tank); 415t/day Short-circuit return sludge (Final settling tank→Denitrification paddle): 63t/day Transfer settled sludge (
Final sedimentation tank → denitrification concentration tank): SOZ/day separation
Liquid (denitrification concentration tank → denitrification cypress); 571/day return thickened sludge (denitrification concentration tank → denitrification cypress); 23t/day
The volume of settled sludge in the settling tank at the end of the day was controlled at approximately 14 tons, and the volume of concentrated sludge in the denitrification thickening tank was controlled at approximately Ut. As a result, the respective sludge retention times were 2.3 hours and 25 hours. The data average values of activated sludge concentration (MLSS), NoxN concentration, dissolved, and POaP concentration for each solution are shown in Table 5.
Table 6 shows the average treatment results for the entire system.

第6表 実施例−2の処理成績 に第2比較例より実施例−2では処理液水質のPO4−
P #度並びに清澄性も大巾に改善されていることが明
らかとなった。
Table 6 Based on the treatment results of Example-2 and the second comparative example, the PO4-
It became clear that the P# degree and clarity were greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法の実施態様例を示すもので第1図は系
統説明図、第2図は他の実施態様例の系統説明図である
。 1・・・嫌気槽、2・・・好気槽、3・・・最終沈殿池
、4・・・脱窒−濃縮槽、6・・・再脱輩槽、7・・・
脱窒槽、8・・・硝化槽、11・・・被処理液、12・
・・嫌気処理済混合液、13・・・気曝処理済混合液、
14・・・処理液、15゜15′・・沈殿汚泥、16・
・・分離液、17・・・濃縮汚泥、18・・・短絡返送
汚泥、19・・・余剰汚泥、20・・・酸素含有気体、
21・・・沈殿汚泥移送ポンプ、21′・・・ポンプ、
22・・・Now濃度検知器、お・・・濃縮汚泥返送ポ
ンプ、25・・・硝化混合液、26・・・循環液、関・
・・再脱窒済汚泥、29・・・脱窒用有機薬品。 特許出願人 荏原インフィルコ株式会社代理人弁理士 
端  山  五  − 同  弁理士 千  1)   稔
The drawings show an embodiment of the method of the present invention, and FIG. 1 is a system explanatory diagram, and FIG. 2 is a system explanatory diagram of another embodiment. 1...Anaerobic tank, 2...Aerobic tank, 3...Final sedimentation tank, 4...Denitrification-concentration tank, 6...Re-desorption tank, 7...
Denitrification tank, 8... Nitrification tank, 11... Liquid to be treated, 12.
...Anaerobically treated mixed liquid, 13...Aerated mixed liquid,
14...Treatment liquid, 15°15'...Settled sludge, 16.
...Separated liquid, 17...Thickened sludge, 18...Short circuit return sludge, 19...Excess sludge, 20...Oxygen-containing gas,
21...Settled sludge transfer pump, 21'...Pump,
22... Now concentration detector, O... Thickened sludge return pump, 25... Nitrification mixed liquid, 26... Circulating fluid, Seki-
... Re-denitrified sludge, 29... Organic chemicals for denitrification. Patent applicant: Patent attorney representing Ebara Infilco Co., Ltd.
Go Hayama - Patent attorney Sen 1) Minoru

Claims (1)

【特許請求の範囲】 1、被処理液と濃縮活性汚泥とを溶存酸素、硝酸根、亜
硝酸根のいずれもが実質的に存在しない状態のもとて接
触混合し、嫌気処理済混合液を生成する第1工程と、前
記嫌気処理済混合液を導入せしめて酸素、硝酸根、亜硝
酸根のいずれか少なくとも一部と接触混合し、生物酸化
処理済混合液を生成する第2工程と、前記生物酸化処理
済混合液を導入せしめて、これを固液分離し、処理液と
沈殿活性汚泥を生成する第3工稲と、蚊第3工程で生成
された沈殿活性汚泥の少なくとも一部を導入せしめて、
これを濃縮し、分離液と第1工種に供し得る濃縮活性汚
泥とを生成する第4工程とからなる有機性廃液の処理方
法。 2、%#’F請求の範囲第1項記載の方法において、前
記第3工程で生成された沈殿活性汚泥の一部を前記第2
工程に導入せしめて処理される方法。 3.4!許請求の範囲第1項又は第2項記載の方法にお
いて、前記第3工程で生成された沈殿活性汚泥が、第3
工程より排出される時点でNOx Nを1■/を以上含
むように流1制御して処理される方法。 4、特許請求の範囲第1項乃至第3項の少なくともいず
れか一つの項記載の方法において、前記第4工程で生成
された濃縮活性汚泥が、前記第1工程に導入される時点
でNOx Nを0.51111/Lよシタなく含むよう
に流蓋制御して処理される方法。 5、特許請求の範囲第1項乃至第4項の少なくともいず
れか一つの項記載の方法において、前記第4工程で生成
される分離液を前記第2工程に導入して処理される方法
。 i特許請求の範囲第5項記載の方法において、前記第2
工程が脱窒工程と硝化工程よシなり脱窒・硝化処理を受
けた硝化混合液を最終沈殿池に導入して処理される方法
[Claims] 1. The liquid to be treated and the concentrated activated sludge are brought into contact and mixed in a state in which dissolved oxygen, nitrate radicals, and nitrite radicals are substantially absent, and the anaerobically treated mixed liquid is obtained. a first step of producing a biologically oxidized mixed solution; a second step of introducing the anaerobically treated mixed solution and contacting and mixing it with at least a portion of oxygen, nitrate, or nitrite to produce a biologically oxidized mixed solution; A third factory which introduces the biologically oxidized mixed liquid and separates it into solid and liquid to produce a treated liquid and precipitated activated sludge, and at least a part of the precipitated activated sludge produced in the mosquito third step. Let me introduce it,
A method for treating organic waste liquid, which comprises a fourth step of concentrating this to produce a separated liquid and concentrated activated sludge that can be used in the first process. 2.%#'F In the method according to claim 1, a part of the settled activated sludge produced in the third step is transferred to the second step.
A method that is introduced into a process and processed. 3.4! In the method according to claim 1 or 2, the precipitated activated sludge produced in the third step is
A method in which flow 1 is controlled so that it contains NOx/N or more at the time of discharge from the process. 4. In the method according to at least one of claims 1 to 3, the concentrated activated sludge produced in the fourth step contains NOx N at the time it is introduced into the first step. A method in which the flow is controlled so that it contains 0.51111/L without exception. 5. A method according to at least one of claims 1 to 4, in which the separated liquid produced in the fourth step is introduced into the second step. i The method according to claim 5, wherein the second
A method in which the process consists of a denitrification process and a nitrification process, and the nitrification mixture that has undergone denitrification and nitrification is introduced into the final settling tank.
JP2129582A 1982-02-15 1982-02-15 Treatment of organic waste liquid Granted JPS58139792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129582A JPS58139792A (en) 1982-02-15 1982-02-15 Treatment of organic waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129582A JPS58139792A (en) 1982-02-15 1982-02-15 Treatment of organic waste liquid

Publications (2)

Publication Number Publication Date
JPS58139792A true JPS58139792A (en) 1983-08-19
JPH0125635B2 JPH0125635B2 (en) 1989-05-18

Family

ID=12051148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129582A Granted JPS58139792A (en) 1982-02-15 1982-02-15 Treatment of organic waste liquid

Country Status (1)

Country Link
JP (1) JPS58139792A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302537A (en) * 1989-05-17 1990-12-14 Mitsubishi Electric Corp Outdoor equipment of air-conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638190A (en) * 1979-09-06 1981-04-13 Kubota Ltd Treatment of night soil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638190A (en) * 1979-09-06 1981-04-13 Kubota Ltd Treatment of night soil

Also Published As

Publication number Publication date
JPH0125635B2 (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US7147778B1 (en) Method and system for nitrifying and denitrifying wastewater
EP1012121B1 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
CN101381185B (en) Denitrification processing method of coking wastewater and processing arrangement
JPS5839599B2 (en) Phosphorus removal method from organic waste liquid
KR19980051067A (en) Simultaneous Biological and Nitrogen Eliminators
JPH029879B2 (en)
CN114853172B (en) Continuous flow low-carbon denitrification process for domestic sewage with low carbon nitrogen ratio
JP4867099B2 (en) Biological denitrification method
JP2001079593A (en) Removing method of nitrogen in waste water
JPS6254075B2 (en)
CN114620830A (en) Municipal sewage treatment system and method
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
KR20020087799A (en) Method for advanced wastewater treatment using multi-sbr system
JPS61200893A (en) Method of purifying waste water
JPS58139792A (en) Treatment of organic waste liquid
JPS58146495A (en) Treatment of organic waste liquid
CN113149215A (en) Middle-placed aeration denitrification treatment method for papermaking wastewater
KR0183334B1 (en) Biological treatment of nitrogen from waste water
GB1563420A (en) Method and apparatus for purifying waste water or sewage
JPS596996A (en) Treatment of organic filthy water of high concentration
Karlsson et al. Use of internal carbon from sludge hydrolysis in biological wastewater treatment
JPH0459959B2 (en)
JPH038399Y2 (en)
JPS6216159B2 (en)
JP2000107787A (en) Method for treating wastewater