JPS58139445A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS58139445A
JPS58139445A JP57022530A JP2253082A JPS58139445A JP S58139445 A JPS58139445 A JP S58139445A JP 57022530 A JP57022530 A JP 57022530A JP 2253082 A JP2253082 A JP 2253082A JP S58139445 A JPS58139445 A JP S58139445A
Authority
JP
Japan
Prior art keywords
lattices
layer
type
integration
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57022530A
Other languages
Japanese (ja)
Other versions
JPH0250626B2 (en
Inventor
Kunimitsu Fujiki
藤木 國光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57022530A priority Critical patent/JPS58139445A/en
Publication of JPS58139445A publication Critical patent/JPS58139445A/en
Publication of JPH0250626B2 publication Critical patent/JPH0250626B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the integration of a semiconductor integrated circuit device of master slice type by providing connecting holes on X and Y lattices which are specified by the integer times of the prescribed coordinate interval and forming connecting layers except power source wirings only on the lattices in an element region. CONSTITUTION:Connecting holes 6 for mutually connecting P<+> type and N<+> type source and drain layers 3, 4 and polysilicon gates 5a, 5b as well as an Al film (power source wirings 7a, 7b and the like) are formed in X lattices 100a- 100c and Y lattices 200a-200s on an N type Si substrate to form fundamental cells of the conventional type to be used to form various function circuits. Since lattices 200b, d, e, g, i, k, m, o, p, r are however unnecessary, they are deleted, and when the fundamental cells are formed only with the 200a-i, the integration of the element can be increased to approx. twice, or similar effect can be obtained by the Y lattices 200a-j, the function circuits can be performed in sufficiently small area with the Y lattices and X lattices 100a-d, thereby obtaining a master slice type LSI of high integration.

Description

【発明の詳細な説明】 本発明は集積度の高い特にマスタースライス方式の集積
回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly integrated circuit device, particularly a master slice type integrated circuit device.

近年、通信機及びコンビ、−夕勢にマスタースライス方
式のL8Iが利用され、開発費低減及び開部期間の短縮
に寄与してきた。これらのマスタースライス方式のL8
Iは例えば、基本セルと呼ばれるシリコン基板上に形成
されたPチャンネル間08トランジスタとNチャンネル
M08トランジスタが規則的に配列され、且つコンタク
ト穴及びアルi=クム導電膜が定められた座標間隔(X
ピッチ、yピッチと呼ぶ)上に配列された格子(通常ピ
ッチと格子は同一にする。)によってその結線位置が記
述され、IC化時にこれが利用されてマスクが作成され
る。
In recent years, the master slice type L8I has been used in communication devices and combinations, and has contributed to reducing development costs and opening times. These master slice L8
I is, for example, the coordinate interval (X
The connection positions are described by a grid arranged on a pitch (referred to as a pitch and a y-pitch) (usually the pitch and grid are the same), and this is used to create a mask when integrated into an IC.

この例としては、第1図に!スタースライス方式L8I
の全体図を示すが、この図においてチップlOは人出力
バッファ一部11.基本セル13基本セル相互及び入出
力部と基本セル間の配線領域12a、12b、12cか
らなる。
An example of this is shown in Figure 1! Star slice method L8I
In this figure, the chip lO has a human output buffer part 11. Basic cell 13 consists of wiring areas 12a, 12b, and 12c between the basic cells and between the input/output section and the basic cells.

第2図には第1図で使われる基本セル13の例を示す、
この図に示すとおりN型シリコン基板1+ 上に形成されたPフェル2各々にP ソースドレイ十 ン層3、N ソースドレイン層4、ゲートポリシリコン
l15烏、5b、これらの結線上のコンタクト層6、ア
ル(=りム導電展のうちVDD@7m。
FIG. 2 shows an example of the basic cell 13 used in FIG.
As shown in this figure, each P layer 2 formed on an N type silicon substrate 1+ has a P source drain layer 3, an N source drain layer 4, a gate polysilicon layer 5b, and a contact layer 6 on these connections. , Al (= VDD @ 7m of the rim conductive exhibition.

■88纏7b等からなり1通常配線領域8m、8b8C
Kはアル<=りム導電展格子が存在する。
■Consists of 88 7b etc. 1 normal wiring area 8m, 8b8C
In K, there is an Al<=Rim conductive lattice.

第BE(ロ)は第2図の基本セルを格子に重点を置ぎ直
した郷価平面図の例であり、図(blは2人力NAND
回路の結−例な示す。
Figure BE (b) is an example of a floor plan in which the basic cells in Figure 2 are refocused on grids;
An example of the circuit result is shown.

+          + Pソースドレイン層3.Nソースドレイン層4ゲートポ
リシリコン層5暑、5b等の相互接続のためのコンタク
ト穴6、及びこの接続のためのアル建エクム導電躾はX
格子100F〜100C。
+ + P source drain layer 3. N source drain layer 4 gate polysilicon layer 5, contact hole 6 for interconnection such as 5b, and aluminum conductor for this connection are
Lattice 100F-100C.

y格子200F〜200$上にあり、種々の機能素子、
例えば2人力NAND回路や、exclusiveOR
回路等を作るために使われる。
Located on the y grid 200F~200$, various functional elements,
For example, a two-man NAND circuit, exclusive OR
Used to create circuits, etc.

+          + ここでPソースドレイン層3.Nソースドレイン聯4、
ゲートポリシリコン層5は能動素子であるPチャンネル
MO&)ランジスタ及びNチャン成層であると同時に能
動素子の相互結線のための導電層としても利用される。
+ + Here, the P source/drain layer 3. N source drain connection 4,
The gate polysilicon layer 5 serves as a layer for active devices such as P-channel MO&) transistors and N-channel transistors, and is also used as a conductive layer for interconnecting the active devices.

しかしながらこれらの導電層は抵抗値が高く電気的特性
を悪くするため能動素子の相互結線のはとんどはアルミ
ニクム導電膜のような低抵抗性導電層が利用される。
However, these conductive layers have a high resistance value and deteriorate electrical characteristics, so a low-resistance conductive layer such as an aluminum conductive film is mostly used for interconnecting active elements.

初期の!スタースライス方式L8Iはアルミニウム導電
層が1層だけであったが最近はアルミニクム導電展が2
層のものが使われるようになった。
Early! The star slice method L8I used to have only one aluminum conductive layer, but recently two aluminum conductive layers have been used.
Layers began to be used.

第4図には第1図の配線領域12における配線の様子を
示す。X格子、y格子上に第11ii1のアルミニタム
配線40aze、第2層のアルミニウム量、i!!41
a−eが形成され、2者の電気的接続をとるためにコン
タクト穴42(通常はアルiニクム導電膜関のそれをス
ルーホールと呼ぶ)が設けられる。
FIG. 4 shows the state of the wiring in the wiring area 12 of FIG. 1. 11ii1 aluminum wiring 40aze on the X lattice and y lattice, the amount of aluminum in the second layer, i! ! 41
a-e are formed, and a contact hole 42 (usually made of an aluminum conductive film is called a through hole) is provided to establish an electrical connection between the two.

ところで、#I3図(1)においてy格子200b。By the way, in #I3 diagram (1), the y lattice 200b.

200d、200e、200L 2004.200に、
200m。
200d, 200e, 200L 2004.200,
200m.

200o、200p、200r及び第1図の配線領域、
12a〜12cは対象とする回路によってはなくても何
ら支障ない。しかしながら最も配線する上で必要とする
配線格子数によっ℃このコンタクト穴配置形状、基本セ
ル形状、全体の配置形状を定めていた。従って従来の配
置方法は非常に回路結線上の配線領域における配線の占
有率が悪く、このことが等価的に素子の集積度を下げて
いた。
200o, 200p, 200r and the wiring area in FIG.
12a to 12c may be omitted without any problem depending on the target circuit. However, the contact hole arrangement shape, basic cell shape, and overall arrangement shape were determined depending on the number of wiring grids required for wiring. Therefore, in the conventional arrangement method, the occupation rate of the wiring in the wiring area on the circuit connection is extremely poor, which equivalently lowers the degree of integration of the elements.

本発明ではこのような利用されることの少ない配線領域
をなくして全体に素子の集積度を上げるような構造を提
供するにある。
The object of the present invention is to provide a structure that eliminates such a wiring area that is rarely used and increases the overall degree of integration of elements.

本発明はシリコン基板上に定められた素子領域内に規則
的に配された能動素子及び能動素子形成層、該能動素子
を相互接続するための結線用導電層、及び誼能動素子形
成層上で絶縁1−を介して該結線用導電層と電気的に接
続するためのコンタクト穴を有するiスタースライス方
式において、該コンタクト穴が定められた座標間隔の整
数倍で規定されたX格子及びy格子上にあり、目つ少な
くとも該素子領域においては該コンタクト穴で規定され
た格子上にのみ電#線用導電層を除く該結線用導電層を
形成することにより提供される2第5図には本発明の基
本セルの格子を重点に書き直した吟価平面図を示す。
The present invention provides active elements and an active element formation layer regularly arranged within a defined element region on a silicon substrate, a conductive layer for interconnection for interconnecting the active elements, and an active element formation layer on the active element formation layer. In the i-star slice method, which has contact holes for electrically connecting with the conductive layer for connection via an insulator 1-, the contact holes are defined by an integer multiple of a determined coordinate interval, and an X lattice and a y lattice. FIG. FIG. 3 shows a detailed plan view in which the basic cell lattice of the present invention has been rewritten with emphasis on the lattice.

第2図、第3図の従来の基本セルに対しては、不用な格
子200 be da ee  gy  1 e  k
e mto+ pt’を削除し、第5図(mlに示すよ
うにy格子200a−iのみで基本セルを作る。この結
果従来に比して同一の素子領域では2倍の素子集積度を
達成できる。
For the conventional basic cells shown in FIGS. 2 and 3, the unnecessary grid 200 be da ee gy 1 e k
e mto + pt' is deleted, and a basic cell is created using only the y-lattice 200a-i as shown in FIG. .

第6図には本発明の他の基本セルの例を示すがこの例で
は第5(b)に示すようにy格子200a〜jにより、
第5図((転)の場合と同様の効果4r:得ることがで
きる。
FIG. 6 shows an example of another basic cell of the present invention. In this example, as shown in FIG. 5(b), y grids 200a to 200j
The same effect 4r as in the case of (turn) in FIG. 5 can be obtained.

すなわち、第5図で見るとおり、第1図の基本セル13
の集合PF・・・・・・Fなる素子領域内では、y格子
200 m−1((Jl)の場合)又は200a〜j(
(b)の場合)と基本セル13毎に定まるX格子100
a−dによって機能回路が完全に実現されこの機能回路
を十分小さい面積内で実現できる。
That is, as seen in FIG. 5, the basic cell 13 of FIG.
In the element region of the set PF...F, the y lattice 200 m-1 (in the case of (Jl)) or 200 a to j (
(b) case) and the X grid 100 determined for each basic cell 13
A functional circuit is completely realized by a to d, and this functional circuit can be realized within a sufficiently small area.

第7図には第5図で示す基本セルな第・1図の方法では
なく別の方法で配置した全体図を示す。
FIG. 7 shows an overall view of the basic cells shown in FIG. 5 arranged in a different manner from the method shown in FIG. 1.

この場合は内部領域全体が素子領域ともみなされ、例え
ばメモリ回路等の配線が、X格子は2001〜轟又は2
00a−jのくり返し、X格子が、100a−dのくり
返しで作られた格子の上に完全になされる。すなわち、
基本セルの中央のひとつなとれば第51N(a)の第1
の基本セル100dの右には第2の基本セルの100a
、100aの左には第3の基本セルの100d、200
aの上には第4の基本セルの2004.200iの下に
は第5の基本セルの200aが存在しており、電源用導
電m7m、7b以外には必らず全ての結線用導電層がコ
ンタクト穴の格子上に存在する。
In this case, the entire internal area is also considered as an element area, and for example, the wiring of a memory circuit, etc. is
00a-j repeats, the X lattice is made completely on top of the lattice made with 100a-d repeats. That is,
If it is one in the center of the basic cell, it is the first of the 51st N(a).
To the right of the basic cell 100d is a second basic cell 100a.
, 100a, the third basic cell 100d, 200
Above a, there is a fourth basic cell 2004. Below 200i, there is a fifth basic cell 200a, and all the conductive layers for connection except for power supply conductive m7m and 7b are present. Exists on a grid of contact holes.

本発明では電源用導電膜78.7bをX方向のアル建エ
クム導電層(第4図の配@ 40 a″−C)と同一層
としたが、y方向のアルン二つム導電1Il(第4図の
配置141aza)と同一層としてもよく更には配線層
を2層構造でなく3層構造とし、電源線’Is、’Ib
等を第3層にして、第5図(aJではX格子200c、
200g第5図(b)ではX格子200c、200hを
省き、電源線も含めて コンタクト穴で定まる格子上に
全ての結線用導電層を形成することもできる。
In the present invention, the power supply conductive film 78.7b is the same layer as the aluminum conductive layer in the X direction (distribution @ 40 a''-C in FIG. 4), but It may be possible to use the same layer as the arrangement 141aza) in Figure 4.Furthermore, the wiring layer may have a three-layer structure instead of a two-layer structure, and the power lines 'Is, 'Ib
etc. as the third layer, and as shown in Figure 5 (in aJ, the
In the case of 200g (FIG. 5(b)), the X-grids 200c and 200h can be omitted, and all conductive layers for connection, including power lines, can be formed on the lattice defined by the contact holes.

本発明は、第5図かられかるようにP及びNの入替のみ
ならず、単一導電型MO8系マスタースライス方式や他
の基本セルな有するマスタースライス方式及びMOS系
ではなくバイポーラ系のマスタースライス方式に対して
も適用で鎗ることは勿論である。
The present invention not only replaces P and N as shown in FIG. Of course, it can be applied to methods as well.

以上述べたように本発明によれば、同一チップ面積なら
ば有効ゲート数が高く又は同一ゲート数ならばチップ面
積が小さく、集積度の高いマスタースライス方式LSI
を得ることができその長所は大きい。
As described above, according to the present invention, the effective number of gates is large for the same chip area, or the chip area is small for the same number of gates, and the master slice type LSI has a high degree of integration.
The advantages are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマスタースライス方式L8Iの全体図、
第2図は第1の基本セルの平面図の例、第3図は従来の
基本セルの格子の様子を示す等制子面図、第4図は配線
領域の配線の様子を示す図第5図は本発明のマスタース
ライス方式LSIの基本セルの格子の様子を示す等制子
面図、第6図は第2の基本セルな示す平面図、第7図は
本発明の基本セルの別の配置方法を示す全体図である。 なお図において、l・旧・・N型シリコン基板、2+ Pフェル、3・・・・・・Pンースドレイン層、4・・
・・・・rソースビレ4フ層、5・・・用ゲートポリシ
リコン層6・・・・・・コンタクト穴、7・・・・・・
アルミニクム導電膜、8・・・・・・配線領域、10・
・・・・・チップ、11・・・・・・人出カバッファ一
部、12・・・・・・配線領域、13・・・・・・基十 本セル、3′・・・・・・Pサブコンタクト層、4′・
・・・・・Nサブコンタクト層、100・・・・・・X
格子、200・・・y格子 第5図 躬4m
Figure 1 is an overall diagram of the conventional master slice method L8I.
Fig. 2 is an example of a plan view of the first basic cell, Fig. 3 is an isometric view showing the state of the lattice of a conventional basic cell, and Fig. 4 is a diagram showing the state of wiring in the wiring area. The figure is an isometric view showing the state of the basic cell lattice of the master slice type LSI of the present invention, FIG. 6 is a plan view showing the second basic cell, and FIG. 7 is a plan view showing another basic cell of the present invention. FIG. 3 is an overall diagram showing an arrangement method. In the figure, 1... old... N type silicon substrate, 2+ P fer, 3... P drain layer, 4...
...r source fin 4th layer, 5...gate polysilicon layer 6...contact hole, 7...
Aluminum conductive film, 8... Wiring area, 10.
...Chip, 11...Part of the traffic buffer, 12...Wiring area, 13...Basic ten cells, 3'... P sub-contact layer, 4'・
...N sub-contact layer, 100...X
Grid, 200...y grid Figure 5 4m

Claims (1)

【特許請求の範囲】[Claims] 第1導電蓋シリコン基板上に、定められた素子領域内に
規則的に配された能動素子及び能動素子形成層、該能動
素子を相互接続するための結線用導電層、及び咳能動素
子形成層上で絶縁層を介して該結線用導電層と電気的に
接続するためのコンタクト穴を有するマスタースライス
方式において誼コンタクト大が定められた座標間隔の整
数倍で規定されたX格子及びy格子上にあり、且つ少な
くとも鋏素子領域においては該コンタクト穴で規定され
た格子上にのみ電源線用導電層を除く誼結繍用導電層が
形成されていることを特徴とする半導体集積−路装置。
On the first conductive lid silicon substrate, active elements and an active element formation layer are regularly arranged in a defined element region, a conductive layer for connection for interconnecting the active elements, and an active element formation layer. In the master slicing method, contact holes are provided for electrically connecting with the conductive layer for connection via an insulating layer on the 1. A semiconductor integrated circuit device characterized in that, at least in the scissor element region, a conductive layer for embroidery excluding a conductive layer for a power supply line is formed only on the grid defined by the contact hole.
JP57022530A 1982-02-15 1982-02-15 Semiconductor integrated circuit device Granted JPS58139445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022530A JPS58139445A (en) 1982-02-15 1982-02-15 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022530A JPS58139445A (en) 1982-02-15 1982-02-15 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS58139445A true JPS58139445A (en) 1983-08-18
JPH0250626B2 JPH0250626B2 (en) 1990-11-02

Family

ID=12085346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022530A Granted JPS58139445A (en) 1982-02-15 1982-02-15 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS58139445A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047440A (en) * 1983-08-26 1985-03-14 Fujitsu Ltd Semiconductor integrated circuit
JPS6119146A (en) * 1984-07-06 1986-01-28 Nec Corp Cmos integrated circuit
JPS61114551A (en) * 1984-11-09 1986-06-02 Toshiba Corp Semiconductor integrated circuit device and pattern layout therefor
US5168342A (en) * 1989-01-30 1992-12-01 Hitachi, Ltd. Semiconductor integrated circuit device and manufacturing method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028796A (en) * 1973-04-30 1975-03-24
JPS5483787A (en) * 1977-12-16 1979-07-04 Fujitsu Ltd Master slice semiconductor device
JPS56108242A (en) * 1980-01-31 1981-08-27 Nec Corp Master slice semiconductor device
JPS57112062A (en) * 1980-12-05 1982-07-12 Cii High density integrated circuit device
JPS6422734A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Paper feed cassette for facsimile
JPS6440499A (en) * 1987-08-06 1989-02-10 Teijin Ltd Folic acid-analog derivative and production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028796A (en) * 1973-04-30 1975-03-24
JPS5483787A (en) * 1977-12-16 1979-07-04 Fujitsu Ltd Master slice semiconductor device
JPS56108242A (en) * 1980-01-31 1981-08-27 Nec Corp Master slice semiconductor device
JPS57112062A (en) * 1980-12-05 1982-07-12 Cii High density integrated circuit device
JPS6422734A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Paper feed cassette for facsimile
JPS6440499A (en) * 1987-08-06 1989-02-10 Teijin Ltd Folic acid-analog derivative and production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047440A (en) * 1983-08-26 1985-03-14 Fujitsu Ltd Semiconductor integrated circuit
JPS6119146A (en) * 1984-07-06 1986-01-28 Nec Corp Cmos integrated circuit
JPS61114551A (en) * 1984-11-09 1986-06-02 Toshiba Corp Semiconductor integrated circuit device and pattern layout therefor
US5168342A (en) * 1989-01-30 1992-12-01 Hitachi, Ltd. Semiconductor integrated circuit device and manufacturing method of the same

Also Published As

Publication number Publication date
JPH0250626B2 (en) 1990-11-02

Similar Documents

Publication Publication Date Title
USRE39469E1 (en) Semiconductor integrated circuit with mixed gate array and standard cell
JPS647508B2 (en)
KR900007085A (en) Semiconductor integrated circuit device and manufacturing method
US5229629A (en) Semiconductor integrated circuit having improved cell layout
US4951111A (en) Integrated circuit device
JPH0113222B2 (en)
JPS58139445A (en) Semiconductor integrated circuit device
JPS58139446A (en) Semiconductor integrated circuit device
JPH04216668A (en) Semiconductor integrated circuit
JPH0415618B2 (en)
JPH03101152A (en) Semiconductor memory
JPS59171140A (en) Semiconductor device
JPS583379B2 (en) semiconductor equipment
US4034243A (en) Logic array structure for depletion mode-FET load circuit technologies
US6476425B1 (en) Master-slice system semiconductor integrated circuit and design method thereof
JPS5835969A (en) Semiconductor device
JPH0254670B2 (en)
JPH0122733B2 (en)
US6914300B2 (en) Semiconductor device
JPH0563944B2 (en)
JPS5851557A (en) Large scale integrated circuit device
JPS5874052A (en) Master slice semiconductor integrated circuit device
JPS601863A (en) Read-only memory
JPH02280353A (en) Semiconductor integrated circuit
JPH0691224B2 (en) Master slice type semiconductor integrated circuit device