JPS58139406A - Manufacture of rare earth cobalt base permanent magnet - Google Patents

Manufacture of rare earth cobalt base permanent magnet

Info

Publication number
JPS58139406A
JPS58139406A JP57021819A JP2181982A JPS58139406A JP S58139406 A JPS58139406 A JP S58139406A JP 57021819 A JP57021819 A JP 57021819A JP 2181982 A JP2181982 A JP 2181982A JP S58139406 A JPS58139406 A JP S58139406A
Authority
JP
Japan
Prior art keywords
rare earth
temperature
sintered
combination
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57021819A
Other languages
Japanese (ja)
Other versions
JPS6334606B2 (en
Inventor
Naoyuki Ishigaki
石垣 尚幸
Yutaka Matsuura
裕 松浦
Hitoshi Yamamoto
日登志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP57021819A priority Critical patent/JPS58139406A/en
Publication of JPS58139406A publication Critical patent/JPS58139406A/en
Publication of JPS6334606B2 publication Critical patent/JPS6334606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the density and to make the magnetic property excellent corresponding thereto by a method wherein a permanent magnetic alloy comprising rare earth element and transition metallic element is heated, sintered, quenched for solution heat treatment and aged, to meet specified requirements. CONSTITUTION:A rare earch Co base alloy powder of R2 M17 type permanent magnet alloy comprising rare earth element R and transition metallic element M is formed. However R further comprises one or two or more combination of Y, La, Ce, Pr, Nd, Sm and mish metal while M comprises one or two or more combination of Cu, Co, Fe or Ni in addition to the combination of a part of said transition metal substituted for one or more elements such as Mn, Ti and the like. Firstly the formed body is heated from air temperature up to 800 deg.C or less per 4-20 deg.C/min in the vacuum of 1X10<-2> Torr or less. Secondly it is sintered at 1,100-1,250 deg.C in the Ar gas atmosphere of 1X10<-2> Torr. Thirdly after solution heat treatment at 1,100-1,250 deg.C, the permanent magnetic alloy is quenched at 200 deg.C/min or more and aged.

Description

【発明の詳細な説明】 この発明は、希土類コバルF系永久磁石の製造方法の改
AK係り、真空宴囲気中における昇温と減圧アルゴンガ
ス雰囲気中における焼結および溶体化・急冷地理を行な
う製造方法゛に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing rare earth Cobal F-based permanent magnets, in which production involves heating in a vacuum atmosphere, sintering in a reduced pressure argon gas atmosphere, and solution treatment/quenching. Regarding the method.

希土鎮コバルト系磁石は、今日多用されているアルニコ
系磁石、フェライト系磁石に比較して、高い保田力と大
龜な二車ルギー積を有する永久磁石として認年II#に
そのlll#が高まり、電子工業を始′めとし多岐方■
で利用されている。
Kidochin cobalt-based magnets have been recognized as permanent magnets with higher Yasuda force and larger two-wheel-force product compared to alnico-based magnets and ferrite-based magnets that are widely used today. Increasingly, in a wide variety of fields, including the electronics industry.
It is used in

布土頌コバルト系−石金金のもつ磁石特性tIIk大曙
に発揮させ4九めKは、製造方法が最も重要であり、各
1楢において厳格Kw珊して磁石を製造しなければなら
ない。
The manufacturing method is the most important factor, and each magnet must be manufactured with strict Kw control.

中でも布上@スパルト系磁石の主成分の1つである希土
鎮金属は、M9. A1.81などよ妙I!l素との親
和力が着しくah丸め、希土類コバルト系磁石の製造時
には、精製し九アルゴンのような不活性雰囲気中での地
層が重要となり、とくに、本系磁石の製造途中、高温状
態になる焼結時における非酸化性tlII気の重要性が
強制される。
Among them, rare earthen metal, which is one of the main components of cloth-on-spartite magnets, is M9. A1.81 and so on! When manufacturing rare earth cobalt-based magnets, it is important to have geological formations in an inert atmosphere such as refined argon, especially during the production of this magnet, which is exposed to high temperatures. The importance of non-oxidizing tlII gas during sintering is enforced.

以上のような点から、特ll!l昭52−4421号公
報では、希土傾コバルト系磁石の製造方法に関して、暁
結の際に、水系含有雰囲気の利用が有効であることが提
案されている。
From the above points, especially! Japanese Patent No. 52-4421 proposes that it is effective to use an aqueous-containing atmosphere at the time of formation of a rare-earth cobalt-based magnet.

しかしながら、水素ガスはあらゆるガスの中で蛾も密度
が小さく、拡歓遮皮が非常に大きいので、たとえば−緒
炉の韻小の空隙からでも外部へ漏洩しi<、t*−1常
温・常圧くおいて水系が空気と4〜76体積鳴O広範囲
で混合した場合、わずかな点火源により大爆発を起す、
し友がって、工業的嵐積で多量(水系ガスを使用するこ
とは極めて危険なことであり、枢機土着しい注意を必要
とすム上述の関越点に鑑み、発W!A看は先に特ll1
l昭56−1−6040において、焼結の際特定条件の
二段II&瑞が有効なことを見出し、希土類金鵬を含有
するコバルF1コバルシー銅舎金、コバルト−鉄−銅合
金、コバルF−練−ニッケルー銅合金等から成る希土類
コバルシ系合金粉末を成型し、この成型体を暁結すAI
IK%壜ずlXl0  T@rr以下の真空雰囲気中に
おいて憲温から800℃まで4〜bで昇温し、ひき続い
て50〜350丁orrの減圧アルゴンガニ)−雰囲気
にして960〜1250℃の練炭範囲で焼結する希土類
−フパルを系永久磁石の製造方法を提案し九。
However, hydrogen gas has the lowest density among all gases and has a very large diffusion barrier, so it can leak to the outside even from a small gap in the oven, i<, t*-1 at room temperature. If a water system mixes with air over a wide range of 4 to 76 volumes under normal pressure, a small ignition source will cause a large explosion.
In view of the above-mentioned point, the use of water-based gas in large quantities in industrial storm accumulation is extremely dangerous and requires extreme caution. Special 1 first
In 1982-1-6040, it was discovered that two-stage II & Rui under specific conditions were effective during sintering, and Kobal F1 Cobal Sea copper metal, Cobalt-iron-copper alloy, and Kobal F-sintered metal containing rare earth metals were discovered. - AI that molds rare earth cobalt alloy powder made of nickel-copper alloy etc. and freezes this molded body
IK% bottle lXl0 T@rr The temperature is raised from normal temperature to 800°C in a vacuum atmosphere of 4 to 50 degrees Celsius, and then the briquettes are heated to 960 to 1250°C under reduced pressure of 50 to 350 orr (argon gas)-atmosphere. A method for manufacturing rare earth-Fupal based permanent magnets sintered in a range 9 is proposed.

しかし、上記出願の製造方法では、磁気特性の焼結温度
依存性が著しく大きく、特定組成の希土類−フパルF系
合金を−結すhvso鍛適な焼結温度範囲が非常に狭い
という問題があつ九、すなわち、一結温度が最遥暁糖温
度よ勤若干低い場合には粉末圧−成型体の焼結反応が十
分進行せず、空孔の多い焼結体となって優れた磁気特性
の得られる理論VB度に近い焼結体とならない、また、
液適焼結温度より若干^い場合には粉末圧縮成型体中に
融液相が多量に発生し、密度は十分高くなる力ζこの磁
気時性的に有害となる融液相の丸めに優れた磁気特性0
III結体とならない。
However, the manufacturing method of the above-mentioned application has the problem that the dependence of the magnetic properties on the sintering temperature is extremely large, and the sintering temperature range suitable for HVSO forging of rare earth-Fupal F alloys of a specific composition is very narrow. 9. In other words, if the sintering temperature is slightly lower than the maximum temperature, the sintering reaction of the powder compacted body will not proceed sufficiently, resulting in a sintered body with many pores, resulting in poor magnetic properties. The resulting sintered body does not have a degree close to the theoretical VB degree, and
If the temperature is slightly higher than the optimum sintering temperature, a large amount of melt phase will occur in the powder compression molded body, and the density will be sufficiently high. magnetic properties 0
III does not form.

この発明は壜ず上逃鋼題点を改良したものであって、希
土類元素!と遥移金属元lAMからなるR−1゜系永久
磁石合金(友だし、lはY# t、、 C・@”1N(
1,s#Ihよび−Ctツvユipw)、181又は2
種以上の11合ぜ、MはC蓼とC@、 F・もしくはN
1のうち1種又は2種以上の組合ぜ、および上述遷移金
属MO一部を1らvcM、、 ’rt、 Nb、 Zr
、 Ta、Hf  の各元素のうち1種以上の元素と置
換し丸紐合せ)から1に為希土類コパルを系合金を平均
粒径2〜10都の徹翰末にし、−興中デレメ機などによ
や成型圧縮体を作製する。ひ1続いて、成を体の密度を
上げて最終生成物の磁気特性向上を計る丸めに焼結を行
なう、七〇@、希土類コバルト系合金成型体中に吸着あ
為いは吸蔵している酸S−水蒸気魯水Sガス亀とをすみ
中かに徐去し、ひき続いて行なう減圧アルゴンガス中−
結の効果を最大限に発揮さくる丸めに以下の如自焼結の
際の前段地理を行なう。
This invention is an improvement on the problem of tsunzu-kami-no-gold steel, and rare earth elements! An R-1° permanent magnet alloy consisting of the far-transferring metal element lAM (for friends, l is Y# t, C・@"1N (
1, s#Ih and -Cttsuvuipw), 181 or 2
11 combinations of seeds and above, M is C and C@, F or N
1 or a combination of two or more of them, and a part of the above transition metal MO, 1, vcM, 'rt, Nb, Zr
, Ta, Hf (round string combination) to make the rare earth copal based alloy into a fine powder with an average grain size of 2 to 10 mm, - Kochu Dereme machine, etc. A compressed body is produced. Next, sintering is performed to increase the density of the formed body and improve the magnetic properties of the final product. Gradually remove the acid S-steam and water S-gas into a vacuum, followed by a vacuum in argon gas-
In order to maximize the effect of sintering, perform the following steps before sintering.

II温からll(IO’C以下壕での昇温過程は、脱ガ
ヌ地層と岡崎に鹸化防止〇九めにlXl0  Torr
以下の真空tm気中、4〜雪0”Q/xi@の速度でゆ
つくbと昇1を行なう、昇楓遭度の限定理由は、4”C
y’ml Ill未調OJ!温遮度では、800℃まで
の昇温に3時間以上を要し、真空tts+気中といえど
もその間に成型体は酸化し、しかも工業的には余勢にも
時間を要する喪めであ勢、1九、@O”Cyl博1詭を
越える昇温速度の場合には、昇温が適す「て前述し大成
型体中の吸着・獣@itスを十分徐去し得なくて、ひき
続いて行なう減圧アルゴンtS気中−紬による特性向上
の効果を生じない、とくに、上記昇温4程において、成
金体中の吸着・吸蔵ガスの約90囁の多量ガスは200
〜@OO”Cf)温度範■放出されるので、この温度I
Il!lでO昇温適度は4”lO’C/551m+ ト
L、lXl0−’〜1x10−m丁err高真空1B−
気にして酸化を防止しながら脱ガス電場を有効に行なう
むとが好ましい。
The temperature increase process in the trench from II temperature to 10 Torr (IO'C or lower) prevents saponification in the Ganu formation and Okazaki.
In the following vacuum tm air, perform slow b and ascent 1 at a speed of 4 to snow 0"Q/xi@, the reason for limiting the ascending Kaede encounter is 4"C
y'ml Ill unconditioned OJ! In terms of temperature shielding, it takes more than 3 hours to raise the temperature to 800°C, and even in a vacuum TTS + air, the molded product oxidizes during that time. 19. If the temperature rise rate exceeds 1, it is appropriate to raise the temperature. In particular, at the temperature increase of about 4, the large amount of adsorbed and occluded gas in the formed metal body is about 90 hiss.
~@OO”Cf) Temperature range■ Since it is emitted, this temperature I
Il! The appropriate temperature increase for O is 4"lO'C/551m+, lXl0-'~1x10-mt err High vacuum 1B-
It is preferable to effectively perform the degassing electric field while taking care to prevent oxidation.

SOO℃以上O昇楓過楓と111B)℃−1286℃温
度範囲の温度での一電楓度保持011−過根は、焼結後
の密度を珊−密度近く壜で高め磁気特性を向上させる丸
めに、5O−8!IOT・trの減圧し九アyゴンガス
雰囲気中で行なう。
111B) One electric maple degree retention at temperatures in the temperature range of 1286°C and 011B increases the density after sintering to near the coral density and improves magnetic properties. Round it off, 5O-8! The pressure is reduced to IOT/tr and the test is carried out in a 9-ygon gas atmosphere.

融結終了後の筒体イし処・鵬は、−輪一度よ勧若干低い
1100〜110・℃oli1度範−で減圧あるいは常
圧0アルゴン11−気中で行ない焼結時に発生した融液
相と煉結し九結晶相とを十分反応させ、組成的に均質化
する。この溶体化処理は、焼結機室温まで冷却して、再
び昇温し溶体化処理する場合と、焼結後富温壇で冷却す
ることなく、ひき続いて溶体化処理湿度まで降温して溶
体化処理しても、得られる一気特性は同等である。
After the fusion is completed, the cylinder is heated at a temperature of 1100 to 110 degrees Celsius, which is slightly lower than 1 degree, under reduced pressure or normal pressure, 0 to 11 degrees of argon, and the melt generated during sintering is carried out. The nine-crystalline phase is sufficiently reacted with the nine-crystalline phase to homogenize the composition. This solution treatment is carried out either by cooling the sintering machine to room temperature and then raising the temperature again to perform solution treatment, or by cooling the sintering machine to the humidity level without cooling in a rich oven and then cooling it to the solution treatment humidity. Even after chemical treatment, the obtained properties are the same.

溶体化Jl&層終了後は、160’C/剛n以上の急遮
冷却旭層を行ない、溶体化で得られ九均質組威の単−相
をW1温で得るようKL、最後に時効処理を施こし永久
−石を得る。
After the solution treatment Jl & layer is completed, a rapid insulation cooling layer of 160'C/rigidity or higher is performed, KL is applied to obtain a single phase with a homogeneous structure obtained by solution treatment at W1 temperature, and finally an aging treatment is performed. Alms Permanence - Obtain stones.

ここで、アルゴンtス響■気圧力の限定理由は、50T
@rtよ−も圧力が低くなると、希土類コバルト系−石
合金の成分、とくに′Ik土頌土丹成蒸気圧は800’
C以上で20〜sOT・rrと金属元素中でもかな抄高
い丸め、希土類金属が優先的Kl囲気中へ曹発し、最終
−緒体は所*iii成から異なつ丸紐成となり、−負特
性の着しい劣化を1する。また、350T・「「よ艶も
圧力が高い場合には十分な密度の向上が認められず、鍛
終的には優れ九磁気特性が得られないため、50〜35
0T・rrとする。
Here, the reason for limiting the argon pressure is 50T.
When the pressure becomes lower than @rt, the composition of the rare earth cobalt-stone alloy, especially 'Ik earth vapor pressure, is 800'.
At C or above, 20~sOT・rr and the highest roundness among metal elements, rare earth metals emit preferentially into the Kl atmosphere, and the final organ becomes a different round formation from the place*iii formation, resulting in -negative characteristics. Increase the amount of deterioration by 1. In addition, when the pressure is high, sufficient improvement in density is not observed with 350T and 350T.
It is assumed to be 0T・rr.

また、焼結温度範囲を限定した理由は、希土類コバルト
系磁石合金に於て、その構成成分やその構成成分の各成
分割合などに依ってその最適な焼結温度範囲は興な石が
、1ioo℃未満の焼結温度では十分な焼結密度が得ら
れず、を九1250℃を越える焼結温度では合金が溶融
してしまい良好な特性を有する焼i*s石体とならない
The reason for limiting the sintering temperature range is that the optimum sintering temperature range for rare earth cobalt magnet alloys varies depending on the constituent components and the proportions of each component. If the sintering temperature is less than 1250°C, sufficient sintered density cannot be obtained, and if the sintering temperature exceeds 1250°C, the alloy will melt and a sintered I*S stone body with good properties will not be obtained.

また、溶体化l&堰を1!00鵞−11以上の冷却適度
で急速冷却処理を施むしひき続いて時mm珊を麿す理由
は、200T、/mis未満の這い冷却適度で冷却した
場合には、溶体化慇珊時に得られる単−均質相から析出
物を生成し、時効蟲堰後優れた磁気特性を得ることがで
亀ないからである。
In addition, the reason why the solution treatment l & weir is subjected to rapid cooling treatment at a cooling rate of 1100 mm - 11 or more, and then the cooling process is performed at a cooling rate of 1.0 mm or more is that when cooled at a creep cooling rate of less than 200 T, / This is because precipitates are generated from a single homogeneous phase obtained during solution treatment, and excellent magnetic properties cannot be obtained after aging.

以下に実施例を掲げてこの発明方法の効果を記述する。The effects of this invention method will be described below with reference to Examples.

実施例1 純度9駿9−以上Oam 27.1 wtlg 、純度
H1allのC。
Example 1 C with a purity of 9-9 or more Oam 27.1 wtlg and a purity of H1all.

49.3 wtl 、 F@ 7.7wt1 、Nl 
&Owt−およびC60,9wt−からなる合金を、ア
ルゴン雰囲気中で高周波溶解μ鉄乳鉢中で粗粉砕した。
49.3 wtl, F@7.7wt1, Nl
The alloys consisting of &Owt- and C60,9wt- were coarsely ground in a high-frequency melting μ-iron mortar in an argon atmosphere.

粗粉砕後の粉末を有機溶剤中でボールミル粉砕により平
均粒度2〜10μmの微粉末くし九、得られ九微粉末を
12KO・の磁界中でプレスし、圧纏成盟体を作った。
The coarsely pulverized powder was ball milled in an organic solvent to form a fine powder with an average particle size of 2 to 10 μm, and the resulting fine powder was pressed in a magnetic field of 12 KO· to form a compact compact.

このよう圧して得た圧縮体を1xlOT@rrの真空寥
囲気中において、800℃まで10ルー11の速度で昇
温しえ。ひき縞いて、200Torrの減圧アルゴンガ
ス雰囲気中に於て、1181塾ら1220℃の温度軸−
で2時間−縮機、1180℃xi時間の溶体此処−を施
し九後500″”C7’wsiHの冷却適度曾で急速冷
却し九、さらに、 800℃4時間の時効処理を施し、
特性を測定した。
The compressed body thus obtained was heated to 800° C. at a rate of 10 Roux 11 in a vacuum atmosphere of 1×1OT@rr. In a reduced pressure argon gas atmosphere of 200 Torr, the temperature axis of 1181 Juku and 1220 ° C.
After applying the solution in a compressor for 2 hours at 1180°C for xi hours, it was rapidly cooled to 500°C at a moderate cooling temperature of 7'wsiH, and then aged at 800°C for 4 hours.
Characteristics were measured.

また、比較例として、上記の成型体を2007orrノ
減圧アルゴンIス雰囲気中において、1180℃から1
220℃の温度範囲で焼結後、溶体化処理を施すことな
く急速冷却し、ひき続いて800℃×4時間の時効処理
を廁し、特性の測定をした。
In addition, as a comparative example, the above molded body was heated from 1180°C to 1°C in a reduced pressure argon I gas atmosphere of 2007 orr.
After sintering in a temperature range of 220°C, it was rapidly cooled without solution treatment, followed by aging treatment at 800°C for 4 hours, and its properties were measured.

−負特性の測定結果をまとめて第1図に示す。- The measurement results of negative characteristics are summarized in Figure 1.

第1図は融結後溶体化感珊し九場合と焼結だけの場合の
焼結温度と一気時性の関係を示す。また第1表には最高
の磁気特性の見られた焼結温度1200℃の場合につい
て本発明の方法上比較例とをまとめて示す。
FIG. 1 shows the relationship between sintering temperature and instantaneous properties when solution sensitization is performed after fusion and when only sintering is performed. Table 1 also shows a comparison example of the method of the present invention for the case where the best magnetic properties were obtained at a sintering temperature of 1200°C.

第   1    表 上記の結果から明らかな如く、本発明によれば、優れた
磁気特性が見られるのみならず、焼結温度範囲も広くな
り、工業的に安定な製造条件となることが判る。
As is clear from the above results in Table 1, according to the present invention, not only excellent magnetic properties are observed, but also a wide sintering temperature range, resulting in industrially stable manufacturing conditions.

実施例2 純度99.911以上のS#1: 24L1wt優純度
99.916以上のCo  :  7.7wt%’@ 
: 1&2wt1、C11: 4Q、7vtllMn 
:  0.5vtll、Zr :  0.8wt1Gか
らなる合金をアルゴンガス暮囲気中でアークボタン溶解
し、アルゴン雰囲気中において鉄乳鉢で粗粉砕した。粗
粉砕後の粉末を窒素ガスを使用してジェットミル粉砕し
、平均粒径2〜10網の微粉末にした。得られた微粉末
をl0KO・の磁界中でプレス成型し、圧縮成型体を作
つ九。
Example 2 S#1 with a purity of 99.911 or more: 24L1wt Co with a purity of 99.916 or more: 7.7wt%'@
: 1&2wt1, C11: 4Q, 7vtllMn
An alloy consisting of: 0.5vtll, Zr: 0.8wt1G was melted in an arc button in an argon gas atmosphere, and coarsely ground in an iron mortar in an argon atmosphere. The coarsely pulverized powder was pulverized by a jet mill using nitrogen gas to obtain a fine powder with an average particle size of 2 to 10 mesh. Step 9: The obtained fine powder is press-molded in a magnetic field of 10 KO· to produce a compression-molded body.

このようにして得九圧縮体を30  Torrの真空雰
囲気中において800’C1で10℃/wxffi@の
速度で昇温し九、ひ自続いて250Terrの減圧アル
ゴンガス雰囲気中に於て、1200℃、2時間焼結し、
ひき続いて1180″C,2時間の溶体化処理を施した
後700’C/1111mの冷却適度で液体窒素中へ急
冷処理し九。その後アルゴンIス雰■気中で850℃よ
り450℃まで!段時効処理を行なつ九。
The compressed body thus obtained was heated to 800'C1 at a rate of 10°C/wxffi@ in a vacuum atmosphere of 30 Torr, and then heated to 1200°C in a reduced pressure argon gas atmosphere of 250 Torr. , sintered for 2 hours,
Subsequently, it was subjected to solution treatment at 1180"C for 2 hours, and then rapidly cooled in liquid nitrogen at a moderate cooling rate of 700"C/1111m.Then, the temperature was lowered from 850°C to 450°C in an argon atmosphere. !Ninth stage of aging treatment.

比較の丸め、溶体化I&堰を施すことなく前記と同様の
島慇珊を施した。
Comparative rounding, the same island coral as above was applied without solution treatment I & weir.

上記の本発明法及び比較の熱処理を施し九試料について
一気特性の測定結果を第2表に示す。
Table 2 shows the measurement results of the properties of nine samples subjected to the above-mentioned method of the present invention and the comparative heat treatment.

第   2   表 以上に示すように、本発明方法によれば、水素ガスの如
く置慮上危険を併うガスを使わすに、焼結工程において
まず真空雰囲気中に於て800℃まで昇温し、ひ自続い
て減圧アルゴンガス雰囲気中焼結をした後、溶体化魚冷
鵡珊しD*IIAいて時効処理することにより、密度の
向上に有効でそれに併って磁気特性の優れ九希土類コへ
ル)磁石を得る丸めに非常に有効な蝿遣方法である。
As shown in Table 2 and above, according to the method of the present invention, when using a gas that is considered dangerous, such as hydrogen gas, the temperature is first raised to 800°C in a vacuum atmosphere in the sintering process. After continuous sintering in a reduced pressure argon gas atmosphere, aging treatment is carried out using solution-cooled D*IIA, which is effective in increasing the density and also has excellent magnetic properties. This is a very effective method for rounding up magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は融結温度と、Br、 (Bil)lllax 
@ ’m度の各々との関係を示すグフフで、O印を結ぶ
曲線は瞬結後1180℃において溶体化地層を施した場
合であり、Δ印を結ぶ曲線は焼結のままの場合を示す。
Figure 1 shows the melting temperature and Br, (Bil)llax
The curve that connects the O marks shows the case where the solution layer is applied at 1180℃ after instant solidification, and the curve that connects the Δ marks shows the case where the material remains sintered. .

Claims (1)

【特許請求の範囲】[Claims] 14土顕元lAlと遷移金属元素MからなるR−11系
永久−基合金(九だし、翼はY* LIs C@s P
reN4.tjss*よび圃(ミツVユメIル)の1櫨
又は8櫨以上の義金せ、MはCMとCo、 ir−もし
くは組のうち1櫨又は2櫨以上の組会せおよび上記遷移
金属MO一部をさらK &h+、 ’rl、 Nb、 
Zr、 Ta、 HEの各元本のうち1−以上の元素と
置秦した組合せ)から成り希土類コパルシ系舎金粉末を
成型し、この成徽体をm−する際に、壜ずI X 10
  Torr以下の真空中KHいて基磁から800’C
以下まで4〜20T7*i@で昇磁し、ひIIi纏いて
sO〜35OTorrの減圧アルゴンfX寥−気におい
て110G−1250℃の温度範囲で焼結し、ひき続い
て1100〜1200℃の温度範囲で溶体住処j1ml
 2 tJ O’C/mi m以上の急冷を施し、時効
処理を行なうことを特徴とする希土類コバルト系永久磁
石OIl造方法。
R-11 series permanent-base alloy consisting of 14 earth oxide lAl and transition metal element M (Kudashi, wing is Y* LIs C@s P
reN4. tjss * and donation of 1 or 8 or more of the field (Mitsu V Yumeru), M is CM and Co, ir- or a combination of 1 or 2 or more of the combinations and the above transition metal MO Partially K &h+, 'rl, Nb,
When molding a rare earth coparsium powder consisting of a combination of Zr, Ta, and at least one of the principal elements of HE, and molding this molded body, a bottle of I x 10
800'C from base magnet at KH in vacuum below Torr
Magnetized at 4 to 20T7*i@ to below, sintered in a reduced pressure argon fX atmosphere of sO to 35 O Torr in a temperature range of 110G to 1250℃, and then sintered in a temperature range of 1100 to 1200℃ 1ml of solution solution
2. A method for producing rare earth cobalt permanent magnet OIl, characterized by performing rapid cooling at a temperature of 2 tJ O'C/mi or more and performing an aging treatment.
JP57021819A 1982-02-12 1982-02-12 Manufacture of rare earth cobalt base permanent magnet Granted JPS58139406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57021819A JPS58139406A (en) 1982-02-12 1982-02-12 Manufacture of rare earth cobalt base permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57021819A JPS58139406A (en) 1982-02-12 1982-02-12 Manufacture of rare earth cobalt base permanent magnet

Publications (2)

Publication Number Publication Date
JPS58139406A true JPS58139406A (en) 1983-08-18
JPS6334606B2 JPS6334606B2 (en) 1988-07-11

Family

ID=12065662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57021819A Granted JPS58139406A (en) 1982-02-12 1982-02-12 Manufacture of rare earth cobalt base permanent magnet

Country Status (1)

Country Link
JP (1) JPS58139406A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746378A (en) * 1984-02-13 1988-05-24 Sherritt Gordon Mines Limited Process for producing Sm2 Co17 alloy suitable for use as permanent magnets
JPS63233505A (en) * 1987-03-23 1988-09-29 Seiko Epson Corp Rare earth magnet
WO2015140829A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Permanent magnet, motor, and generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746378A (en) * 1984-02-13 1988-05-24 Sherritt Gordon Mines Limited Process for producing Sm2 Co17 alloy suitable for use as permanent magnets
JPS63233505A (en) * 1987-03-23 1988-09-29 Seiko Epson Corp Rare earth magnet
WO2015140829A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Permanent magnet, motor, and generator
JP6039058B2 (en) * 2014-03-18 2016-12-07 株式会社東芝 Permanent magnets, motors, and generators
US10770208B2 (en) 2014-03-18 2020-09-08 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator

Also Published As

Publication number Publication date
JPS6334606B2 (en) 1988-07-11

Similar Documents

Publication Publication Date Title
JPS58139406A (en) Manufacture of rare earth cobalt base permanent magnet
EP4006931A1 (en) Manufacturing method of sintered magnet
KR102589893B1 (en) Method for preparing sintered magnet and sintered magnet
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPS6181607A (en) Preparation of rare earth magnet
JPS5848608A (en) Production of permanent magnet of rare earths
JPS62282417A (en) Manufacture of rare earth magnet
JPH0146574B2 (en)
CN115637394B (en) Cobalt-reinforced iron-nickel-based hard magnetic alloy and preparation method thereof
EP3855460B1 (en) Manufacturing method for sintered magnet
JPS5848606A (en) Production of permanent magnet of rare earths
JP2715378B2 (en) Method for producing Nd-Fe-B based sintered magnet
JPS59126733A (en) Manufacture of rare earth element-cobalt magnet
JP3300420B2 (en) Alloy for sintered sealing material
JP3138927B2 (en) Rare earth magnet manufacturing method
JPH03198306A (en) Manufacture of rare earth cobalt magnet
JP2760131B2 (en) Method for producing Fe-Co-V soft magnetic sintered alloy
JPS6236366B2 (en)
JPS5874005A (en) Permanent magnet
JPS59119703A (en) Manufacture of permanent magnet
JPS6119084B2 (en)
JPH056831A (en) Manufacture of rare-earth cobalt magnet with excellent heat-resistant property
JPS62274002A (en) Rare earth element-iron-boron type magnetic powder and its production
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JPS5848604A (en) Production of permanent magnet of rare earths