JPS5813906A - Combustion method for generating low nitrogen oxide exhaust - Google Patents

Combustion method for generating low nitrogen oxide exhaust

Info

Publication number
JPS5813906A
JPS5813906A JP56112353A JP11235381A JPS5813906A JP S5813906 A JPS5813906 A JP S5813906A JP 56112353 A JP56112353 A JP 56112353A JP 11235381 A JP11235381 A JP 11235381A JP S5813906 A JPS5813906 A JP S5813906A
Authority
JP
Japan
Prior art keywords
combustion
fuel
compound
nox
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56112353A
Other languages
Japanese (ja)
Inventor
Hiroshige Ikebe
池辺 弘茂
Kiyoshi Aoki
清 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP56112353A priority Critical patent/JPS5813906A/en
Publication of JPS5813906A publication Critical patent/JPS5813906A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To reduce the quantity of exhaust NOX by injecting and adding Ca compound having catalytic effect together with secondary fuel to the following stream of flame produced by primary combustion in a combustion chamber such as a boiler or the like, thereby enhancing the velocity of the reducing reaction of the NOX. CONSTITUTION:A plurality of burners 6 are disposed at the lower part of a combustion chamber 5 in a boiler 4 for injecting primary fuel and air which is suppressed at the ratio of the primary fuel to the air to less than 1 into the chamber 5 for primary combustion. An intermediate air hole 7 is disposed above the uppermost stage burner 6a of the burners 6 for suitably supplying air to preferably react for reducing NOX to N2, and a secondary burner 8 is provided at the part corresponding to the following stream of the primary combustion flame above the hole 7 to inject only secondary fuel. A catalyst injection hole 9 is formed in parallel with the burner 8 to inject Ca compound, thereby accelerating the reaction of the NOX with the intermediate product in the secondary combustion by the catalytic operation of the Ca compound.

Description

【発明の詳細な説明】 本発明はボイラ等における新規な低窒素酸化物燃焼方法
に係り、特に窒素酸化物(以下NOxと略記する)の低
減化を図るため、−次燃料の燃焼により発生した火炎の
後流中に二次燃料を添加し、この二次燃料の熱分解中間
生成物(CO、CHX。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel low nitrogen oxide combustion method in boilers and the like, and in particular, in order to reduce nitrogen oxides (hereinafter abbreviated as NOx), A secondary fuel is added in the wake of the flame, and the pyrolysis intermediate products (CO, CHX) of this secondary fuel are added.

C9NHx等)でNOを還元して、その後、この二次燃
料を含む未燃分を完全燃焼させるようにした低窒素酸化
物燃焼方法において、上記NOxの還元分解反応を促進
させることによシ′NOxの発生を可及的に減少させる
ことができる低窒素酸化物燃焼方法に関する。
In a low nitrogen oxide combustion method in which NO is reduced with C9NH The present invention relates to a low nitrogen oxide combustion method that can reduce NOx generation as much as possible.

一般に、ボイラ等において、燃焼蒔”に発生するNOを
低減させるための燃焼方法として排ガス循環燃焼方法、
蒸気噴射方法或いは段階燃焼方法等が知られている。
Generally, in boilers etc., exhaust gas circulation combustion method,
Steam injection methods, staged combustion methods, etc. are known.

ところで、上記のうち段階燃焼法はNo 低減効果も高
く運転費も必要としないという特長があり大形ボイラに
広く採用されている方法である。この方法を第1図に基
づいて説明すると、ボイラ等の燃焼室1の下部に設けら
れた複数のバーナ2から燃料と、この燃料との空気比が
1以下(0,8〜09)に抑制された燃焼用空気との混
合体を噴射し、これを−次燃焼させる。このとき生成さ
れた未燃分たるCo 、 C、CHX等はNOxと共存
し、これをNOxからN2へと還元しつつ火炎の後流へ
と燃焼室1内を上昇してゆく。その後、燃焼室1の上方
に設けられた二次燃焼用空気孔(オーバーエアーポート
)3から供給される燃焼用空気によシ上記未燃分を二次
燃焼において完全燃焼させる。
By the way, among the above methods, the staged combustion method has the advantage of having a high NO 2 reduction effect and requiring no operating costs, and is a method that is widely adopted in large boilers. To explain this method based on Fig. 1, the air ratio between the fuel from the plurality of burners 2 provided at the bottom of the combustion chamber 1 of a boiler, etc. is suppressed to 1 or less (0.8 to 0.9). The mixture with combustion air is injected and is subjected to secondary combustion. Co, C, CHX, etc., which are unburned components generated at this time, coexist with NOx, and move up in the combustion chamber 1 to the wake of the flame while reducing NOx to N2. Thereafter, the unburned matter is completely combusted in secondary combustion by combustion air supplied from a secondary combustion air port (over air port) 3 provided above the combustion chamber 1.

しかしながら、このような′燃焼方法にあってはNo、
 4 N2の還元反応を充分に行なわせるためにバーナ
2と二次燃焼用空気孔3との間隔形1 を充分に長くと
ることが必要となり、そのため燃焼室1或いはボイラの
高さを高くしなければならず、また発生するNO量も充
分に低減できないという間題があった。
However, in such a 'combustion method, No.
4 In order to perform the N2 reduction reaction sufficiently, it is necessary to make the distance between the burner 2 and the secondary combustion air hole 3 sufficiently long, and therefore the height of the combustion chamber 1 or the boiler must be increased. In addition, there was a problem that the amount of NO generated could not be sufficiently reduced.

そのため、第2図に示すごとく余剰空気として。Therefore, as shown in Figure 2, it is used as surplus air.

の二次燃焼用空気を供給する前に、−次燃焼の火炎の後
流へ二次バーナ2aから二次燃料を噴射供給し、この燃
料の熱分解中間生成物(CO、C。
Before supplying air for secondary combustion, secondary fuel is injected and supplied from the secondary burner 2a to the wake of the secondary combustion flame, and thermal decomposition intermediate products (CO, C, etc.) of this fuel are injected and supplied from the secondary burner 2a.

CHx等)(酸欠状態にあるため直ちには燃焼しない)
の還元作用により、NOを還元分解する燃焼方法も採用
されている〇 しかしながら、この場合にあってもNOの還元反応に限
界が存在し低No 化の要求に完全に応えることができ
ない場合も多くあシ、また二次バーナ2aと二次燃焼用
空気孔3との間隔−e2  をある程度にはとらねばな
らない。
CHx, etc.) (Does not burn immediately due to lack of oxygen)
Combustion methods have also been adopted that reduce and decompose NO through the reducing action of NO. However, even in this case, there are limits to the NO reduction reaction and it is often not possible to completely meet the demands for lower NO. Also, a certain distance -e2 must be maintained between the secondary burner 2a and the secondary combustion air hole 3.

本発明は以上のような問題点に着目して、これを有効に
解決すべく創案されたものであり、その目的とするとこ
ろは一次燃焼により発生する火炎の後流に、二次燃料と
共に触媒作用を有するCa化合物を噴射添加し、このC
a化合物の触媒作用によりNOxの還元分解反応を促進
して、もってNOxの排出量を可及的に減少させると共
にボイラ等の燃焼機器の小型化を推進することができる
低窒素酸化物燃焼方法を提供するにある。
The present invention has been devised to effectively solve the above-mentioned problems, and its purpose is to provide a catalyst along with secondary fuel in the wake of the flame generated by primary combustion. A Ca compound that has an effect is added by injection, and this C
A low nitrogen oxide combustion method that promotes the reductive decomposition reaction of NOx through the catalytic action of a compound, thereby reducing NOx emissions as much as possible and promoting the downsizing of combustion equipment such as boilers. It is on offer.

以下に、本発明に係る方法を具体的に詳述する。The method according to the present invention will be specifically explained in detail below.

まず、第3図乃至第4図に示すごとく本発明に係る方法
を実施するために使用されるボイラ4内の燃焼室5の下
部には一次燃料と、この−次燃料との空気比が1以下(
0,8〜0.9)に抑制された空気とを燃焼室5内へ噴
出し、これらを−次燃焼させるための複数の主バーナ6
が配置されている。
First, as shown in FIGS. 3 to 4, in the lower part of the combustion chamber 5 in the boiler 4 used to carry out the method according to the present invention, the air ratio between the primary fuel and the secondary fuel is 1. below(
0.8 to 0.9) into the combustion chamber 5 and a plurality of main burners 6 for secondary combustion.
is located.

この主バーナ6の最上段バーナ6aの上部にはこれの上
方で行なわれるNOx−+N2還元反応の反応条件を最
適に維持するために適宜空気を供給する中間空気孔7が
配置されている。
An intermediate air hole 7 is arranged above the uppermost burner 6a of the main burner 6 to supply air as appropriate to maintain optimal reaction conditions for the NOx-+N2 reduction reaction carried out above.

この中間空気孔7の上部であって、上記−次燃焼の火炎
の後流にあたる部分には二次燃料のみをこの燃焼室5内
へ噴射するための二次バーナ8が設けられておシ、この
二次燃料の熱分解によシ発・生ずる中間生成物(CO、
C、CHxt NHX等)でもってNOを還元し得るよ
うに構成されている。
A secondary burner 8 for injecting only secondary fuel into the combustion chamber 5 is provided in the upper part of the intermediate air hole 7 and in the wake of the flame of the secondary combustion. Intermediate products (CO,
C, CHxt, NHX, etc.).

この二次バーナ8にはこれに並設して、例えばCaO、
CaCO3等の本発明の特長とするCa化合物(触媒物
質)を噴射するための触媒噴射孔9が形成されており、
このCa化合物の触媒作用でもってNOと二次燃料の中
間生成物(C、Co 、 CHx等)との反応(NOx
の還元分解反応)を促進し得るようになっている。
In this secondary burner 8, for example, CaO,
A catalyst injection hole 9 is formed for injecting a Ca compound (catalyst material) which is a feature of the present invention such as CaCO3,
The catalytic action of this Ca compound causes a reaction between NO and secondary fuel intermediate products (C, Co, CHx, etc.) (NOx
(reductive decomposition reaction).

なお、二次燃料を噴射する際、これにCa化合物を混入
し、これと二次燃料とを同時に噴射させるようにしても
よい。
Note that when injecting the secondary fuel, a Ca compound may be mixed into the secondary fuel, and this and the secondary fuel may be injected at the same time.

更に、この二次バーナ8から所定間隔を隔てた上部には
上記二次バーナ8から噴射された二次燃料及びこれの熱
分解中間生成物を完全燃焼させるべくこれに余剰空気と
しての二次燃焼用空気を供給する二次燃焼用空気孔(オ
ーバーエアーポート)10が設けられておシ、これらを
完全燃焼させ、その後に系外へ排出し得るように構成さ
れている。
Further, in an upper part spaced apart from the secondary burner 8 by a predetermined distance, a secondary combustion chamber is provided as surplus air to completely burn the secondary fuel injected from the secondary burner 8 and its thermal decomposition intermediate products. A secondary combustion air port (over air port) 10 is provided to supply air for secondary combustion, and is configured so that the air can be completely combusted and then discharged to the outside of the system.

なお、本発明に係る方法を実施するためのボイラとして
第5図に示すように構成してもよい。
Note that a boiler for carrying out the method according to the present invention may be configured as shown in FIG.

すなわち、上記ボイラにおいて設けられていた二次バー
ナ8及び中間空気孔7を設けることなく、上下に配列さ
れた主バーナ11の最上段バーナ11aから燃料とCa
化合物とを同時に噴射させるようにしくこの際、空気比
は当然に1以下に抑制される)、不完全燃焼によ多発生
する未燃分を主バーナ11の上方に設けられた二次燃焼
用空気孔10からの二次燃焼用空気(余剰空気)でもっ
て完全燃焼させるように構成してもよい。
That is, without providing the secondary burner 8 and intermediate air hole 7 that were provided in the boiler, fuel and Ca
(In this case, the air ratio is naturally suppressed to 1 or less), and the unburned matter that is often generated due to incomplete combustion is transferred to a secondary combustion engine installed above the main burner 11. It may be configured so that the secondary combustion air (excess air) from the air hole 10 is used to cause complete combustion.

以上のように構成されたボイラにおいて、本発明に係る
方法を実施する。
The method according to the present invention is carried out in the boiler configured as described above.

まず、主バーナ6から一次燃料と、この−次燃料との空
気比が1以下に抑制された空気との混合体を燃焼室5内
へ噴射し、これを−次燃焼させる。
First, a mixture of primary fuel and air whose air ratio to the secondary fuel is suppressed to 1 or less is injected from the main burner 6 into the combustion chamber 5, and is subjected to secondary combustion.

この際、空気比が1以下に抑制され1いることから不完
全燃焼により Co 、 C等の還元作用を有する未燃
分及びNOxが発生する。この未燃分及びNOxは一次
燃焼によ多発生した火炎と共に燃焼室5内を上昇してゆ
くことになり、そしてこの火炎中へ中間空気孔7から適
度な空気を供給し、この中間空気孔7の上方で行なわれ
るNOx還元反応の反応条件を最適状態にする。
At this time, since the air ratio is suppressed to 1 or less, incomplete combustion generates unburned matter having a reducing effect such as Co and C, and NOx. This unburned content and NOx will rise in the combustion chamber 5 together with the flame generated in the primary combustion, and an appropriate amount of air is supplied into this flame from the intermediate air hole 7, and the intermediate air hole The reaction conditions for the NOx reduction reaction performed above No. 7 are optimized.

なお、火炎がこの中間空気孔7に到達するまでにも上記
未燃分によ、i9 NOxはある程度還元されている。
By the time the flame reaches the intermediate air hole 7, the i9 NOx has been reduced to some extent by the unburned matter.

この中間空気孔7を通過した一次燃焼の火炎は更に上昇
してゆき、そして、この空気孔7の上部に設けられた二
次バーナ8及び触媒噴射孔9からこの一次燃焼の火炎・
の後流に二次燃料及びCa化合物よりなる触媒物質を噴
射添加する。この噴射された二次燃料は還元性を有する
中間生成物(CCo 、 CHx、 NHx等)に熱分
解されて、この生成物は触媒物質及び下方よシ上昇して
きたNOxと共に燃焼室5内を上昇してゆく。
The flame of the primary combustion that has passed through this intermediate air hole 7 rises further, and then the flame of this primary combustion
A secondary fuel and a catalytic material consisting of a Ca compound are added by injection into the wake of the catalytic converter. This injected secondary fuel is thermally decomposed into reducing intermediate products (CCo, CHx, NHx, etc.), and these products rise in the combustion chamber 5 together with the catalyst material and NOx rising downward. I will do it.

この上昇過程において、中間生成物或いはこれと同一成
分の未燃分はNo  と反応し、NOを還元分解する。
In this ascending process, intermediate products or unburned components of the same components react with No, reducing and decomposing NO.

この際、Ca化合物が触媒として上記還元分解反応に選
択的に作用し、この反応速度を加速度的に高めるのでN
Ox量は急激に減少することになる。
At this time, the Ca compound acts selectively on the reductive decomposition reaction as a catalyst and accelerates the reaction rate, so N
The amount of Ox will decrease rapidly.

上記還元反応が略完了し、燃焼室5内を上昇しつつある
排ガス中に、更に、二次燃焼用空気孔10から余剰空気
としての二次燃焼用空気を供給し、この中に含まれてい
る中間生成物及び未燃分を二次燃焼させる。この二次燃
焼により可燃物は完全燃焼され、その後この排ガスは排
ガス系12を介して系外へ排出される。
After the above reduction reaction is almost completed, secondary combustion air is further supplied as excess air from the secondary combustion air hole 10 into the exhaust gas that is rising in the combustion chamber 5. secondary combustion of intermediate products and unburned matter. The combustible material is completely burned by this secondary combustion, and the exhaust gas is then discharged to the outside of the system via the exhaust gas system 12.

なお、第5図におけるボイラ装置においては、主バーナ
11の最上段バーナ11aが第4図に示すボイラ装置の
二次バーナ8の役割を果たすことになる。
In the boiler system shown in FIG. 5, the uppermost burner 11a of the main burner 11 plays the role of the secondary burner 8 of the boiler system shown in FIG.

従って、この最上段バーナ11aから噴射される燃料の
一部(二次燃料)が熱分解されて、中間生成:勿を生成
し、そして、この中間生成物と不完全燃焼によ多発生す
る未燃分とが相俟ってNo  を還元分解することにな
る。この際、上記したごとく、Ca化合物が触媒として
作用し、これにょ如上記還元反応速度を加速度的に高め
、NOxの還元反応を促進させる。
Therefore, a part of the fuel (secondary fuel) injected from the uppermost stage burner 11a is thermally decomposed to produce an intermediate product, and this intermediate product and the unused material often generated due to incomplete combustion are thermally decomposed. Together with the fuel, NO is reduced and decomposed. At this time, as described above, the Ca compound acts as a catalyst, thereby accelerating the rate of the reduction reaction and promoting the reduction reaction of NOx.

以上述べた様にNOxの還元反応を促進させる触媒を添
加するようにしたので、−次燃焼により発生したNOx
を短時間に高い効率で還元分解することができる。
As mentioned above, since we added a catalyst that promotes the reduction reaction of NOx, the NOx generated by secondary combustion
can be reductively decomposed with high efficiency in a short time.

従って、従来以上のNOx低減効果を得られる上にNO
xを還元分解するために要する距離、すなわち二次バー
ナ8と二次燃焼用空気孔1oとの間隔!3 (第5図に
おいては主バーナ11の最上段バーナ1.1aと二次燃
焼用空気孔1oとの間隔表 )を短縮することができ、
燃焼室5或いはボイラ4の高さを減じることができる。
Therefore, it is possible to obtain a NOx reduction effect greater than that of conventional methods, and also to reduce NOx.
The distance required to reductively decompose x, that is, the distance between the secondary burner 8 and the secondary combustion air hole 1o! 3 (in FIG. 5, the interval table between the uppermost burner 1.1a of the main burner 11 and the secondary combustion air hole 1o) can be shortened,
The height of the combustion chamber 5 or boiler 4 can be reduced.

以上、要するに本発明に係る方法によれば次のような優
れた効果を発揮することができる。
In short, the method according to the present invention can exhibit the following excellent effects.

(1)触媒作用を有するCa化合物を噴射添加し、NO
xの還元反応の反応速度を高めるようにしたので、短時
間でNOxを還元分解することができ、NOxの排出量
を可及的に減少させることができる。
(1) Injecting and adding a Ca compound with catalytic action, NO
Since the reaction rate of the reduction reaction of x is increased, NOx can be reduced and decomposed in a short time, and the amount of NOx discharged can be reduced as much as possible.

(2)従って、NOを還元分解2を尤]ヒ釣に要する時
間乃至距離を短縮化できることから燃焼室の高さ或いは
ボイラの高さを減じることができる。
(2) Therefore, since the time and distance required for reducing and decomposing NO (2) can be shortened, the height of the combustion chamber or the height of the boiler can be reduced.

(3)排ガス系に設けられるアンモニアによる脱硝装置
を不要とするか或いはアンモニア使用量を可及的に減少
させることができ、脱硝に要する費用を著しく削減でき
る。
(3) It is possible to eliminate the need for a denitrification device using ammonia provided in the exhaust gas system, or to reduce the amount of ammonia used as much as possible, thereby significantly reducing the cost required for denitrification.

(4)既存の設備に大巾な変更を加えることなく、本発
明に係る方法を実施することができる。
(4) The method according to the present invention can be implemented without making major changes to existing equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の低窒素酸化物燃焼方法番実施したボイラ
を示す概略側面図、第2図は従来の他の窒素酸化物低減
法を実施したボイラを示す概略側面図、第3図は本発明
に係る方法を実施したボイラを示す概略側面図、第4図
は同概略正面図、第5図は本発明に係る他の方法を実施
したボイラを示す概略側面図である。 なお、図中5は燃焼室、6.11は主バーナ、8、士士
ズは二次バーナ、9は触媒噴射孔、10は二次燃焼用空
気孔、11声は最上段バーナである。 特許 出願人 石川島播磨重工業株式会社代理人弁理士
 絹 谷 信 雄 l/ニ 躬ユ
Figure 1 is a schematic side view of a boiler that uses a conventional low nitrogen oxide combustion method, Figure 2 is a schematic side view of a boiler that uses another conventional nitrogen oxide reduction method, and Figure 3 is a schematic side view of a boiler that uses a conventional low nitrogen oxide combustion method. FIG. 4 is a schematic side view showing a boiler in which the method according to the invention has been implemented, FIG. 4 is a schematic front view thereof, and FIG. 5 is a schematic side view showing a boiler in which another method according to the invention has been implemented. In the figure, 5 is a combustion chamber, 6, 11 is a main burner, 8 is a secondary burner, 9 is a catalyst injection hole, 10 is an air hole for secondary combustion, and 11 is a top burner. Patent Applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Representative Patent Attorney Nobuo Kinutani/Niyu

Claims (2)

【特許請求の範囲】[Claims] (1)ボイラ等の燃焼室内で、燃料の大半を一次燃焼し
、該−次燃焼により形成される火炎の後流に残余の燃料
を二次燃料として噴射添加し、該二次燃料の熱分解中間
生成物で上記−次燃焼火炎中の窒素酸化物を還元して、
その後流で余剰空気を供給して完全燃焼を行わせるよう
にした低窒素酸化物燃焼方法において、上記二次燃料に
混合して、または二次燃料とほぼ同一位置で単独にCa
化合物を噴射させCa化合物の触媒作用によシ上記窒素
酸化物の還元分解反応を促進させることを特徴とする低
窒素酸化物燃焼方法。
(1) Most of the fuel is primarily combusted in a combustion chamber such as a boiler, the remaining fuel is injected into the wake of the flame formed by the secondary combustion, and the secondary fuel is thermally decomposed. reducing the nitrogen oxides in the secondary combustion flame with the intermediate product;
In a low nitrogen oxide combustion method in which excess air is supplied downstream to achieve complete combustion, Ca
A low nitrogen oxide combustion method comprising injecting a compound to promote the reductive decomposition reaction of the nitrogen oxides by the catalytic action of the Ca compound.
(2)  ボイラ等の燃焼室内で、燃料の大半を一次燃
焼し、該−次燃焼の未燃分で上記−次燃焼火炎中の窒素
酸化物を還元して、その後流に余剰空気を供給して一完
全燃焼させるようにした低窒素酸化物燃焼方法において
、上記最上段バーナの燃料に混合して、または燃料とほ
ぼ同一位置で単独にCa化合物を噴射して、該Ca化合
物の触媒作用によシ上記窒素酸化物の還元分解反応を促
進させることを特徴とする低窒素酸化物燃焼方法。
(2) Most of the fuel is primary-combusted in the combustion chamber of a boiler, etc., and nitrogen oxides in the secondary combustion flame are reduced with the unburned content of the secondary combustion, and surplus air is supplied to its wake. In a low nitrogen oxide combustion method in which complete combustion is achieved, a Ca compound is mixed with the fuel in the uppermost burner or injected alone at approximately the same position as the fuel to enhance the catalytic action of the Ca compound. A low nitrogen oxide combustion method characterized by promoting the reductive decomposition reaction of the nitrogen oxides.
JP56112353A 1981-07-20 1981-07-20 Combustion method for generating low nitrogen oxide exhaust Pending JPS5813906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112353A JPS5813906A (en) 1981-07-20 1981-07-20 Combustion method for generating low nitrogen oxide exhaust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112353A JPS5813906A (en) 1981-07-20 1981-07-20 Combustion method for generating low nitrogen oxide exhaust

Publications (1)

Publication Number Publication Date
JPS5813906A true JPS5813906A (en) 1983-01-26

Family

ID=14584565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112353A Pending JPS5813906A (en) 1981-07-20 1981-07-20 Combustion method for generating low nitrogen oxide exhaust

Country Status (1)

Country Link
JP (1) JPS5813906A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105915U (en) * 1983-12-23 1985-07-19 三菱重工業株式会社 combustion device
JPH0434093A (en) * 1990-05-25 1992-02-05 Mitsubishi Heavy Ind Ltd Apparatus for reducing nox in discharge gas of soda-recovering boiler
EP1134017A1 (en) * 2000-03-14 2001-09-19 ALSTOM Power N.V. Process and installation for reducing nitrous oxide emissions in a circulating fluidized bed combustion system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105915U (en) * 1983-12-23 1985-07-19 三菱重工業株式会社 combustion device
JPH0125844Y2 (en) * 1983-12-23 1989-08-02
JPH0434093A (en) * 1990-05-25 1992-02-05 Mitsubishi Heavy Ind Ltd Apparatus for reducing nox in discharge gas of soda-recovering boiler
EP1134017A1 (en) * 2000-03-14 2001-09-19 ALSTOM Power N.V. Process and installation for reducing nitrous oxide emissions in a circulating fluidized bed combustion system
FR2806322A1 (en) * 2000-03-14 2001-09-21 Abb Alstom Power Nv USE OF ZEOLITHS TO REDUCE NITROUS OXIDE EMISSIONS

Similar Documents

Publication Publication Date Title
CA1238570A (en) Method of reducing the no.sub.x emissions during combustion of nitrogen-containing fuels
JPS5623615A (en) Burning method for low nox
JPH0754162B2 (en) Burner for low NOx combustion
KR0164586B1 (en) Method and apparatus for reducing emission of n2o when burning nitrogen containing fuels in fluidized bed reactors
US6913457B2 (en) Method and apparatus for optimized CO post-combustion in low NOx combustion processes
JPS5813906A (en) Combustion method for generating low nitrogen oxide exhaust
JPH026961B2 (en)
JPS6138961B2 (en)
JPH09126412A (en) Low nox boiler
JPS58182003A (en) Combustion method for pulverized coal and burner for pulverized coal combustion
JPS604704A (en) Combustion device
JP2634279B2 (en) Method for burning NOx-containing gas
JPS61223411A (en) Catalyst burning method for pulverized coal
JPH05240410A (en) Method of burning pulverized coal and burner for combustion
JPH0229369Y2 (en)
JPH0368286B2 (en)
JPS6234090Y2 (en)
KR100253991B1 (en) Method for low nox in combustion chamber of boiler
JP2789041B2 (en) Ultra-low NOx combustion method
JPH0794881B2 (en) Low NO ▲ Lower x ▼ Combustion burner
JPS58138906A (en) Low nox combustion device
JPS58102006A (en) Low nox pulverized coal burner
JPS6210321B2 (en)
JPH0220567Y2 (en)
JPS6260606B2 (en)