JPS58137233A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58137233A
JPS58137233A JP2020982A JP2020982A JPS58137233A JP S58137233 A JPS58137233 A JP S58137233A JP 2020982 A JP2020982 A JP 2020982A JP 2020982 A JP2020982 A JP 2020982A JP S58137233 A JPS58137233 A JP S58137233A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
phosphorus
phosphorus concentration
passivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020982A
Other languages
Japanese (ja)
Inventor
Shinichi Sato
真一 佐藤
Kazuo Mizuguchi
一男 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020982A priority Critical patent/JPS58137233A/en
Publication of JPS58137233A publication Critical patent/JPS58137233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve flatness of surface and humidity proof characteristic of semiconductor element by stacking a low concentration phosphorus film on a high phosphorus concentration PSG film. CONSTITUTION:A silicon oxide film 2 and gate electrode 3 are formed on a silicon substrate 1. A high phosphorus concentration PSG film 8 is formed thereon at the entire part by the CVD method in the thickness of 5,000-10,000Angstrom . Next, the element surface is flatened by annealing under the nitrogen N2 ambient for about 10-50min at a temperature of 900-1,050 deg.C and a PSG film 9 in the phosphorus concentration of 1-2mol% is formed thereon by the CVD method at the entire part in the thickness of 1,000-2,000Angstrom . This film 9 may be a silicon oxide film or silicon nitride film not including phosphorus. After contact holes 5a are formed at the desired areas in the same way as the conventional example, the Al wiring 6 is formed, it is connected to a gate electrode 3 and a protection film 7 is formed at the entire part.

Description

【発明の詳細な説明】 この発明は半導体装置に係り、Il!fKそのパッシベ
ーション膜の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and includes Il! fK relates to the structure of the passivation film.

従来、半導体素子のパッシベーション膜としてはリンケ
イ酸ガラス(Phosphor 8111cate G
1ass+P8G)l[が多く用いられている。第1図
FiA〜0従来の構成例を説明する丸めにその製造工程
の主要段階における状1!1を示す断面図で、まず、第
1図ムに示すように、シリコン基板(1)上にシリコン
酸化膜(2)、ゲ6−ト電極(3)が形成された後、そ
の上面全面にPEG膜(4)が形成される。このPEG
膜(4)は1000℃程度の熱処理によってリフロニし
、素子表面を平たん化できるとともに、リンによってナ
トリウム・イオンなどのシリコン酸化膜(2)への侵入
を防止する働きをする。熱処理でリフローさせ、第1図
BK示すように所望個所にコンタクトホール(6)を形
成した彼に、アルミニウム等の金属配線(6)を形成し
てゲート電極(3)に接続させる。その後に、第1図C
に示すように1上面全面に保護膜(7)(例えばCVD
法によるシリコン酸化膜またはシリコン窒化膜)を低温
で形成する。
Conventionally, phosphosilicate glass (phosphor 8111cate G) has been used as a passivation film for semiconductor devices.
1ass+P8G)l[ is often used. FIG. 1 is a cross-sectional view showing the state 1!1 at the main stage of the manufacturing process for explaining a conventional configuration example of FiA~0.First, as shown in FIG. After the silicon oxide film (2) and the gate electrode (3) are formed, a PEG film (4) is formed on the entire upper surface thereof. This PEG
The film (4) is refrozen by heat treatment at about 1000° C. to flatten the surface of the element, and the phosphorus serves to prevent sodium ions and the like from entering the silicon oxide film (2). After reflowing by heat treatment and forming contact holes (6) at desired locations as shown in FIG. 1B, a metal wiring (6) made of aluminum or the like is formed and connected to the gate electrode (3). After that, Figure 1C
As shown in Figure 1, a protective film (7) (e.g. CVD
(silicon oxide film or silicon nitride film) is formed at low temperature.

ところが、このようにして得られた半導体装置として樹
脂の材料、成型方法の他に素子のパッシベーション膜に
含まれるリンの濃度が大きく関与していることが知られ
ている。すなわち、樹脂を通して外部から進入した水が
保護膜(7)のない部分(図示しないポンディングパッ
ドなど)や、保護膜(7)のピンホールから更に進入し
、PEG膜(4)K接触した場合、P2O膜(4)中に
含まれるリンと反応してリン酸となって、アルミニウム
(ムlり配線(6)を腐食し、断線などを引色起こす。
However, it is known that in addition to the resin material and molding method of the semiconductor device thus obtained, the concentration of phosphorus contained in the passivation film of the element has a large influence. In other words, if water enters from the outside through the resin and further enters through a pinhole in the protective film (7) or a portion where the protective film (7) is not present (such as a not-shown bonding pad) and comes into contact with the PEG film (4). It reacts with phosphorus contained in the P2O film (4) to form phosphoric acid, which corrodes the aluminum wiring (6), causing disconnection and discoloration.

そして、仁の現象ij:PsG膜(4)中のリン濃度が
高いほど促進される。
The phosphorus phenomenon ij: is promoted as the phosphorus concentration in the PsG film (4) increases.

しかし、前述のように1素子表面の平たん化およびナト
リウム□Ja)などの汚染防止の上からは一定以上のリ
ン濃度を必要とする。現在知られている條件としては、
表面平たん化を得るためvc Fi最低5モル−のリン
濃度が必要であり、耐湿性を一定基準以上に保つために
は、5モルチ以下でなくてはならない。
However, as mentioned above, a phosphorus concentration above a certain level is required in order to flatten the surface of one element and prevent contamination such as sodium □Ja). The currently known conditions are:
In order to obtain surface flattening, a phosphorus concentration of at least 5 moles of vc Fi is required, and in order to maintain moisture resistance above a certain standard, it must be less than 5 moles.

この発明は以上のような点に鑑みてなされたもので、高
リン濃度のP8GllO上に低リン濃度膜を重ねて形成
することによって、素子表面の平たん化と、ともに耐湿
性の向上の可能な半導体装置の構造を提供することを目
的としている。
This invention was made in view of the above points, and by overlapping a low phosphorus concentration film on high phosphorus concentration P8GllO, it is possible to flatten the element surface and improve moisture resistance. The purpose of this research is to provide a structure for a semiconductor device.

第2図A −Dはこの発明の一実施例の構成を説明する
ためにその製造工程の主要段階における状態を示す断面
図で、まず、第2図AK示すように、従来と同様に、シ
リコン基体11)の上にシリコン酸化膜(2)およびゲ
ート電極(3)が形成し、その上に全面に筒いリン濃度
(8〜9モルチ程度)のPsG膜(8)をCVD法で5
000〜10000 AのNさに形成する。
FIGS. 2A to 2D are cross-sectional views showing the main stages of the manufacturing process for explaining the configuration of an embodiment of the present invention. First, as shown in FIG. A silicon oxide film (2) and a gate electrode (3) are formed on the substrate 11), and a PsG film (8) with a cylindrical phosphorus concentration (approximately 8 to 9 molt) is deposited on the entire surface using the CVD method.
000 to 10,000 amps.

次イテ、900〜1050℃ノ温〜100℃ノ温Sm窒
素(N2)雰囲気中で7ニーリングして素子表面を平た
ん化した後、第2図Bに示すように、その上にり71〜
2−t−k %程度のPBG膜(9)をCVD法で10
00〜2000Aの厚さに全面に形成する。この膜(9
)はリンを含まないシリコン酸化膜またはシリコン窒化
膜であってもよい。以下第2図CおよびDに示すように
従来と同様に、所要個所にコンタクトホール(5a)を
形成した後にムl配線(釦を形成してゲート電極(3)
に接続させ、その上全面に保1k l!(71を形成す
る。
Next, after flattening the surface of the element by performing seven annealing operations in a Sm nitrogen (N2) atmosphere at a temperature of 900 to 1050°C to 100°C, as shown in FIG.
A PBG film (9) of about 2-t-k% was deposited by CVD to 10
It is formed on the entire surface to a thickness of 00 to 2000A. This film (9
) may be a silicon oxide film or a silicon nitride film that does not contain phosphorus. As shown in FIG. 2C and D, contact holes (5a) are formed at required locations in the same way as before, and then a gate electrode (3) is formed by forming a multilayer wiring (button).
1k l! (Form 71.

このようKして得られた半導体装置では高いリン濃度の
P8GmlB+によって素子表面の平たん化が計られ、
その上の低いリン濃度!! +91によって耐湿性の向
上を計ることができる。
In the semiconductor device obtained by K in this way, the element surface is flattened by the high phosphorus concentration of P8GmlB+.
Low phosphorus concentration on top of that! ! The improvement in moisture resistance can be measured by +91.

また、コンタクトホールの形成は四フッ化炭素(O1’
4)のプラズマ雰囲気中で連続して行なうことができる
In addition, the contact hole is formed using carbon tetrafluoride (O1').
4) can be carried out continuously in a plasma atmosphere.

なお、この発明はシリコン以外の半導体に適用で色、ま
た、あらゆる半導体素子において、表面の平たん化と金
属配線の耐湿性向上とを必要とする場合に適用して有効
である。
The present invention is applicable to semiconductors other than silicon, and is effective when applied to any semiconductor element where flattening of the surface and improvement of moisture resistance of metal wiring is required.

以上説明したようKこの発明になる半導体装置ではパッ
シベーション膜を高いリン濃度のPEIG膜からなる下
層と低いりン濃度またはリンを含まない絶縁膜からなる
上層との2層構造としたので素子表面の平たん化を確保
しつつ、耐湿性の向上が可能となる。
As explained above, in the semiconductor device according to the present invention, the passivation film has a two-layer structure consisting of a lower layer made of a PEIG film with a high phosphorus concentration and an upper layer made of an insulating film with a low phosphorus concentration or no phosphorus. It is possible to improve moisture resistance while ensuring flatness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜0は従来の構成例を説明するためKその製造
工程の主要段階における状態を示す断面図、第2図A 
−Dはこの発明の一実施例の構成を説明するためにその
製造工程の主要段階における状態を示す断面図である。 図において、(1)はシリコン(半導体)基体、(3)
は電極、(8)は高いリン濃度のP2O膜、(9)は低
いリン濃度のPSGik、  (5a)はコンタクトホ
ール、(釦は金属配線である。 なお、図中同一符号は同一または相当部分を示す0 第1図 第2図
Figures 1 A to 0 are cross-sectional views showing the main stages of the manufacturing process for explaining a conventional configuration example, and Figure 2 A
-D is a cross-sectional view showing the main stages of the manufacturing process for explaining the configuration of an embodiment of the present invention. In the figure, (1) is a silicon (semiconductor) base, (3)
(8) is an electrode, (8) is a P2O film with a high phosphorus concentration, (9) is a PSGik with a low phosphorus concentration, (5a) is a contact hole, and (the button is a metal wiring. Note that the same symbols in the figures indicate the same or corresponding parts. 0 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 +11  半導体基体の表面上に電極が設けられ、上記
電極の上を含めて上記半導体基体上を覆うパッシベーシ
ョン膜を有し、上記パッシベーション膜上に形成された
金属配線が上記パッシベーション膜に設けられたコンタ
クトホールを介して上記電極に接続されるように構成さ
れたものにおいて、上記パッシベーション族が高いリン
濃度のリンケイ酸ガラス族からなる下層と低いリン濃度
また扛リンを含まない絶縁膜からなる上層との2層構造
1有することを特徴とする半導体装置0(2)  パッ
シベーション膜の下層がリン濃度カ5モルー以上のり、
ンケイ酸ガラス展であることを特徴とする特許請求の範
囲第1項記載の半導体装置。 (3)  パッシベーション膜の上層がηン濃度カδモ
ルー以下のリンケイ酸ガラス膜であることを特徴とする
特許請求の範8第1項またFi第2項記載の半導体装置
。 (4) パッシベーション膜の上層がリンを含まないシ
リコン酸化膜であることを特徴とする特許請求の範囲第
1項または第2項記載の半導体装置。 (6)パッシベーション膜の上層がリンを含まないシリ
コン窒化膜であることを特徴とする特許請求の範囲第1
項または第2項記載の半導体装置。
[Claims] +11 An electrode is provided on the surface of a semiconductor substrate, and a passivation film is provided covering the semiconductor substrate including the top of the electrode, and the metal wiring formed on the passivation film is connected to the passivation film. The passivation group is configured to be connected to the electrode through a contact hole provided in the film, and the passivation group includes a lower layer made of a phosphosilicate glass group with a high phosphorus concentration and an insulating layer with a low phosphorus concentration or without containing phosphorus. Semiconductor device 0 (2) characterized in that it has a two-layer structure 1 with an upper layer consisting of a film.The lower layer of the passivation film has a phosphorus concentration of 5 molar or more,
2. The semiconductor device according to claim 1, wherein the semiconductor device is made of silicic acid glass. (3) The semiconductor device according to claim 8 (1) or Fi (2), wherein the upper layer of the passivation film is a phosphosilicate glass film having an η concentration of δ mole or less. (4) The semiconductor device according to claim 1 or 2, wherein the upper layer of the passivation film is a silicon oxide film that does not contain phosphorus. (6) Claim 1, characterized in that the upper layer of the passivation film is a silicon nitride film that does not contain phosphorus.
3. The semiconductor device according to item 1 or 2.
JP2020982A 1982-02-09 1982-02-09 Semiconductor device Pending JPS58137233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020982A JPS58137233A (en) 1982-02-09 1982-02-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020982A JPS58137233A (en) 1982-02-09 1982-02-09 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58137233A true JPS58137233A (en) 1983-08-15

Family

ID=12020769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020982A Pending JPS58137233A (en) 1982-02-09 1982-02-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58137233A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250356A (en) * 1989-03-24 1990-10-08 Hitachi Ltd Semiconductor device
JPH0669192A (en) * 1991-06-20 1994-03-11 Handotai Process Kenkyusho:Kk Manufacture of semiconductor device
US5770469A (en) * 1995-12-29 1998-06-23 Lam Research Corporation Method for forming semiconductor structure using modulation doped silicate glasses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494994A (en) * 1972-04-27 1974-01-17
JPS52104087A (en) * 1976-02-27 1977-09-01 Hitachi Ltd Preparation of inter-layer insulation film utilized in multi-layer wir ing of electronic parts
JPS5348474A (en) * 1976-10-15 1978-05-01 Hitachi Ltd Electronic parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494994A (en) * 1972-04-27 1974-01-17
JPS52104087A (en) * 1976-02-27 1977-09-01 Hitachi Ltd Preparation of inter-layer insulation film utilized in multi-layer wir ing of electronic parts
JPS5348474A (en) * 1976-10-15 1978-05-01 Hitachi Ltd Electronic parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250356A (en) * 1989-03-24 1990-10-08 Hitachi Ltd Semiconductor device
JPH0669192A (en) * 1991-06-20 1994-03-11 Handotai Process Kenkyusho:Kk Manufacture of semiconductor device
US5770469A (en) * 1995-12-29 1998-06-23 Lam Research Corporation Method for forming semiconductor structure using modulation doped silicate glasses

Similar Documents

Publication Publication Date Title
KR890008984A (en) Semiconductor integrated circuit device and manufacturing method thereof
EP0214702B1 (en) Method of manufacturing a semiconductor device with mutually insulated strip-shaped silicon electrodes overlapping each other
KR880011925A (en) Semiconductor device and manufacturing method
US3784424A (en) Process for boron containing glasses useful with semiconductor devices
JPS58137233A (en) Semiconductor device
JPS59110122A (en) Semiconductor integrated circuit device having nitride film
JPS584948A (en) Semiconductor device
KR930011537B1 (en) Manufacturing method of semiconductor device
JPS6181657A (en) Semiconductor device
JPS60176240A (en) Manufacture of semiconductor device
JPS5939050A (en) Manufacture of semiconductor device
JPS5949687B2 (en) semiconductor equipment
JPS6356704B2 (en)
JPS60224229A (en) Semiconductor device
JPS6220374A (en) Semiconductor integrated circuit device
JPH01110749A (en) Manufacture of semiconductor device
JPS6118350B2 (en)
JPS5882534A (en) Semiconductor device
JPS61154125A (en) Manufacture of semiconductor device
JPS61253832A (en) Semiconductor device
JPS60153147A (en) Semiconductor device
JPS5889869A (en) Manufacture of semiconductor device
JPS5867032A (en) Semiconductor device
JPH03153038A (en) Manufacture of semiconductor device
JPS6344293B2 (en)