JPS58136739A - Rapidly cooled magnet alloy and its manufacture - Google Patents

Rapidly cooled magnet alloy and its manufacture

Info

Publication number
JPS58136739A
JPS58136739A JP57016393A JP1639382A JPS58136739A JP S58136739 A JPS58136739 A JP S58136739A JP 57016393 A JP57016393 A JP 57016393A JP 1639382 A JP1639382 A JP 1639382A JP S58136739 A JPS58136739 A JP S58136739A
Authority
JP
Japan
Prior art keywords
alloy
rapidly
vacuum
magnetic
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57016393A
Other languages
Japanese (ja)
Other versions
JPH0649912B2 (en
Inventor
Kimiyuki Jinno
神野 公行
Sakae Higano
栄 日向野
Mitsuru Nagakura
永倉 充
Hiroshi Yamamoto
洋 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Steel KK
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Steel KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd, Mitsubishi Steel KK filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP57016393A priority Critical patent/JPH0649912B2/en
Publication of JPS58136739A publication Critical patent/JPS58136739A/en
Publication of JPH0649912B2 publication Critical patent/JPH0649912B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a magnet alloy with superior magnetic characteristics by spraying a molten alloy having a restricted composition consisting of Sm and Fe or further contg. Co on a rotating body in vacuum or an inert gaseous atmosphere to rapidly cool the alloy. CONSTITUTION:An alloy consisting of, by weight, 45-92% Sm and 8-55% Fe or further contg. 0.1-47% Co is melted in a crucible made of quartz or the like by high frequency heating or other method, and by applying pressure with Ar or the like, the molten metal is sprayed on a rotating body such as a roll or a disk having 2.5-30m/sec surface speed in vacuum or an atmosphere of an inert gas such as Ar from the bottom molten metal outlet of the crucible to obtain a ribbonlike magnet alloy by rapid cooling. In order to further improve the magnetic characteristics of the resulting magnet alloy, the alloy is heat treated at a relatively low temp. such as 200-600 deg.C for 0.5-7hr in vacuum or an inert gaseous atmosphere preferably in a magnetic field having <=15,000Oe.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、急冷硬¥]1141?Ei合金に関し、さら
に詳細にはSw+ −Fe 、Sm −Fe−Co系合
金組成から得られる急冷磁石合金とその製造方法に関す
るものである。 従来、希土類元素を含む希土類磁石合金として5111
C05,5IIICO7,5II12COI7などで代
表される金属開化合物磁石が知られている。 これらの希土類磁石C,L磁気特性が優れているため、
現在広く利用されている。一般に希土類磁石の製造方法
は、優れた磁気特性を得る目的で、溶解−粉砕−プレス
成形−焼結一時効熱処理が必要であり、かつ温度管理が
極めて複屑1であること、金属間化合物であるため脆く
機械加T Mが極めて悪いなどの欠点を有している。 本発明は、この貞を改善1べくなされたしので、Sm4
5〜92wt%、Fe  8〜55 wt%あるいはS
m 45”−92wt%、l’me  8=−55Wj
%、CO0,1〜47 wt%から構成され、溶湯から
急速に冷却されてなることを特徴とする急冷磁石合金お
よびこれらの製造方法である。 本発明の急冷磁C7合金は従来の希土類罎イ1合金とt
it成分および金相的に全く異なり、−での得られる合
金は、Sm −1−8m [c 2 、Sm FO2、
Sm Fc 21−8m Fe 3 、Sm −1−5
m  (re 。 Co)2  、8111   (Fe、Go)  2 
+3m   (1−e。 C0)3で示されるいずれかの金属間化合物あるいは金
属−1金属間化合物の2相混合物からなる。その急冷磁
石合金の磁気特性を改善するための熱処理も、従来の希
土類コバル1−系焼結磁石のJ、うな高温での熱処理を
必要とせず、600℃以上の熱処理で・擾れだ磁気特性
の磁石合金を得ることを特徴どJるものである。 このことは次の試験ににって明らかである。 ずなわら、Sm −Fe 、Sm −Fe−Co系の各
種の合金を高周波溶解あるいはアーク溶解で得た。この
合金は多結晶合金であり、粉末X線回折法により化合物
の同定を実施すると、これらの合金4.tSm 、81
11 Fe 2 、Sm  (Fe、C0)2、SmF
(!3、Sm  (FQ、Co)3で示される単独元素
と金属間化合物、2種類の金属間化合物、単独の金属間
化合物から4Tる合金として同定される。これらの合金
の磁気特性を室温で試$31振動型磁力泪により測定す
ると、保磁力(dk )は3!+0(08)程度、印加
磁場15K(Oe)時の磁化((J IOK )は約4
0〜50(emu/a )程度である。また、この塊状
多結晶合金は、磁気特性の改善の目的により階段性・降
温あるいは一定温度で、ある時間保持する方法の組み合
わせなどの熱処理方法を実施した場合でも+tkおよび
σ値の改善は極めて小さく、希土類磁石どして利用Iす
ることは磁気特性あるいは1スト而からもほどんど希望
がもてない。てれを本発明ひは急冷処理によって、磁気
14竹の1ぐれたものとなし1qるのである。 つぎに本発明の特許請求の範囲についてぞの限定理由を
述べる。 先ず3m−[e合金にC3いて希土類元素Srnの闇が
45 wt%未満の場合に値力’:1000(0(i)
以下になる。また、Sn+の開が92wt%を越えた場
合に5]七値が極端に低下することおにび希土類元素の
開が著しく多いため、■渠内に製造する際、雰囲気の問
題あるいは良質なリボン状の急冷磁石合金が19にくい
などの欠点がある1゜F eの場合は、8 wt%未満
あるいLL 55 w1%を越えたものの此および飽和
磁化σ(めが低11)。 優れた磁気特性を有する急冷磁石合金が得られない欠点
を有力る。Sm  −FO−GO合金の場合は、Feの
下限量が 8 wt%となり、イれ未満では1表および
飽和磁化σ値が低重し、優れた磁気特性を右づる急冷磁
石合金が得られない。 5− COは、47W1%を越えると急冷磁石合金のIW値が
極めて低くなる。 本発明の急冷磁石合金の製造方法は、一般に非晶質磁性
材料の製造に使用されている金属製の回転体の表面、l
に溶湯を射出し、リボン状試利を得る液体急冷法を採用
している。液体急冷法では、構成元素の原料あるいは合
金を石英、酸化物あるいは高融点金属性のルツボに装入
し、これを高周波あるいは抵抗加熱溶解後、ルツボ下端
部に設けられた溶場出口部からΔrガス射出圧0.1=
1 kg/cm2で金属性の回転体表面に11出急冷し
、リボン状の磁石合金を得るbのである。 これら溶解・射出作業は希土類元素の酸化を防止する目
的で、全てArあるいは窒素ガスなどの不活性ガス雰囲
気中で実施しなければならない。溶湯急冷用の回転体の
材質はCu、l′:eおよびそのCrメッキ、ステンレ
スなどの耐熱、耐触性の合金あるいはセラミックス製が
利用でき、さらに伝熱t’l−JンJ、びぬれ性などを
考慮し、6一 回転体表面に異種金属あるいは
The present invention has a rapid cooling hardness of 1141 yen? The present invention relates to Ei alloys, and more particularly to rapidly solidified magnet alloys obtained from Sw+ -Fe and Sm -Fe-Co alloy compositions and methods for producing the same. Conventionally, 5111 was used as a rare earth magnet alloy containing rare earth elements.
Metal open compound magnets represented by C05, 5IIICO7, 5II12COI7, etc. are known. Because these rare earth magnets C and L have excellent magnetic properties,
Currently widely used. In general, the manufacturing method for rare earth magnets requires melting, crushing, press forming, and sintering temporary heat treatment in order to obtain excellent magnetic properties, and temperature control is extremely complicated. Therefore, it has drawbacks such as being brittle and having extremely poor mechanical processing TM. The present invention has been made to improve this problem, so Sm4
5-92 wt%, Fe 8-55 wt% or S
m 45"-92wt%, l'me 8=-55Wj
%, CO0.1 to 47 wt%, and is characterized by being rapidly cooled from a molten metal, and a method for producing the same. The rapidly cooled magnetic C7 alloy of the present invention is different from the conventional rare earth C7 alloy.
It composition and metal phase are completely different, and the alloy obtained with - is Sm -1-8m [c 2 , Sm FO2,
Sm Fc 21-8m Fe 3 , Sm -1-5
m (re. Co) 2 , 8111 (Fe, Go) 2
It consists of any intermetallic compound represented by +3m (1-e. C0)3 or a two-phase mixture of metal-1 intermetallic compounds. The heat treatment to improve the magnetic properties of the quenched magnet alloy does not require heat treatment at a high temperature like that of conventional rare earth cobal 1-based sintered magnets. It is characterized by obtaining a magnetic alloy of. This is clear from the following test. Various Sm-Fe and Sm-Fe-Co alloys were obtained by high-frequency melting or arc melting. This alloy is a polycrystalline alloy, and when the compounds were identified by powder X-ray diffraction method, these alloys 4. tSm, 81
11 Fe 2 , Sm (Fe, C0) 2, SmF
(!3, Sm (FQ, Co) It is identified as an alloy of 4T from a single element represented by (FQ, Co)3, an intermetallic compound, two types of intermetallic compounds, and a single intermetallic compound.The magnetic properties of these alloys were determined at room temperature. When measured using a $31 oscillating magnetic force probe, the coercive force (dk) was about 3!
It is about 0 to 50 (emu/a). In addition, even when this bulk polycrystalline alloy is subjected to heat treatment methods such as a combination of steps, cooling, or holding at a constant temperature for a certain period of time for the purpose of improving magnetic properties, the improvement in +tk and σ values is extremely small. However, there is little hope for using rare earth magnets based on their magnetic properties or single-stroke properties. By quenching the material according to the present invention, it can be made into a material superior to that of magnetic 14 bamboo. Next, the reasons for limiting the scope of the claims of the present invention will be described. First, if the darkness of the rare earth element Srn in C3 in the 3m-[e alloy is less than 45 wt%, the value power': 1000 (0(i)
It becomes below. In addition, if the Sn+ opening exceeds 92 wt%, the 5] seventh value will be extremely reduced, and the rare earth element opening will be extremely large. In the case of 1°F e, which has disadvantages such as difficulty in rapidly solidifying magnet alloys having a shape of 19%, the saturation magnetization σ (medium low 11%) is less than 8 wt% or exceeds LL55w1%. This is a major drawback in that a quenched magnet alloy with excellent magnetic properties cannot be obtained. In the case of Sm-FO-GO alloy, the lower limit of Fe is 8 wt%, and if it is less than 8 wt%, Table 1 and the saturation magnetization σ value will be low, making it impossible to obtain a rapidly solidified magnet alloy with excellent magnetic properties. . 5- When CO exceeds 47W1%, the IW value of the rapidly solidified magnet alloy becomes extremely low. The method for producing a rapidly solidified magnetic alloy of the present invention is performed by
The liquid quenching method is used to inject the molten metal into a ribbon-like sample. In the liquid quenching method, raw materials or alloys of constituent elements are charged into a crucible made of quartz, oxide, or high melting point metal, melted by high frequency or resistance heating, and then Δr Gas injection pressure 0.1=
It is quenched on the surface of a metallic rotating body at 1 kg/cm2 to obtain a ribbon-shaped magnetic alloy. All of these melting and injection operations must be performed in an atmosphere of an inert gas such as Ar or nitrogen gas in order to prevent oxidation of the rare earth elements. The material of the rotating body for rapidly cooling the molten metal can be Cu, l':e and its Cr plating, heat-resistant and contact-resistant alloys such as stainless steel, or ceramics. In consideration of the

【!ラミックの表面処理
を有りるものが良い。回転体の形状は[]−ル、円板な
どであり、又円筒の内面に溶湯を射出するようにしても
よい。 本発明の急冷磁石合金は、高速回転体例えば回転ロール
族1m」−での冷11速度により得られる磁石合金の磁
気特性が大幅に変化りる1、優れた磁気特性を有する磁
石合金を得るためには、回転体の表面速度が2.5〜3
0 n+ /secを有する必要がある。この回転体の
表面速度とは例えば回転ロールの場合、ロールの円周×
回転数(r。 0、m)で規定されるものである。回転D−ル表面速度
が2.5・〜 30 m /secで得られるリボン状
磁石合金のリボン厚さは10〜数百it III程度で
あるが、回転体の表面速度が30 m /secを越え
ると極端にリボンの厚さが薄くなり良質な連続した長尺
のリボンが1qにくくなる。これらの製造方法から、得
られる急冷磁石合金IJ M帯であるから、薄板状の硬
質磁性月利の用途には、焼結磁石を切断して作・る方法
と比較して製造部での■稈数の大幅(r簡略化の他に機
械加二[および切断のみで製品化が」れるので]ス]−
面でも右利である。又、高温での熱処即を必要とせずに
磁気特性を改善することができるのでこの点でも有利で
ある。 双五に本願発明の詳細を実施例によりv2 #I ”l
−’る。 実施例1 8m68.78%、1丁e 31.22%の成分のイン
ゴットをL述した回転[]−ル方法高周波加熱した溶湯
をΔrガス0.4  kg/a1でCuロール」二に射
出)で得た急冷磁石合金の磁気特性を第1図に示す。急
冷しlこままの合金の磁性は、回転ロール表面速度に依
存し、表面速度が約8m/sec (7)場合It: 
+)k: カjiil大となり約2100  (Oe 
)を示】。図からこの急冷し1=ままの状態での磁石合
金の磁気特性は、回転ロール表面速度が約8 m /s
eaよりも小ざい場合、【七は急激に低下号−ることが
判て)た。しかし8 m /sec以上の表面速度での
IHcの変化はゆるやかであり約8〜1!l m /s
ecに調整すれば良いから製造が容易となる。この急冷
磁石合金を粉末X線回折した結果、非晶質材料で一般に
認められるような完全なハローパターンを示さず、回転
ロール表面速度に依存した回折ピーク強度が現われる。 加速電圧50K V、フィラメント電流160 mAの
C0Kct+の条件で測定したところ、表面速度が約2
2 m /secのものはハローパターン上に挿めて小
さいピーク強度を示す回折線が重畳している。 また、極端に表面速度の小さい約411/seeのもの
については、22 tn /secのものと比較して大
きなピーク強度を示し、かつ回折線の現われる頻度も多
(なる。このX線回折線のピーク強度およびイのVA!
lfは、本発明急冷磁Ei合金の磁性が回転ロール表面
速度に依存することを示しており、表面IR度の大きな
場合に非晶賀的な性質を示す合金が、また表面速度の小
ざい場合には結晶性の合金が支配的になることを知った
。回折線から物質の同定を試みたところ、約9− 22 m /Sec、の−bのは不明確であった。しか
し蔽が最大となる約Bm/secのものは、 5Ill
Fezおよび極めて小さいピーク強度を示η5Illと
思われる物質が同定された。表面速度が約4m/sea
のものはSmと5ill Fe 2の回折線が同程度の
頻度で現われており、5Ill+5lFe2の2相混合
物であると推測された。このことより本発明の急冷磁石
合5金は、金属間化合物5IIIFc2が優れた磁気特
性を生じさせる主たる要因であると思われる。ところで
、5IIl−Fe系二元合金において金属間化合物とし
ては、Sm Fe 2 、Sm Fe 3 、、 Sm
 Fe 5 、Sm 2[C17の存在が知られている
。これらの金属間化合物は磁気的に優れた材料ではある
が、通常の製造手段ではkが約350(Qe)以下であ
り、実用磁石とはなり得てぃなかった。また5lllは
室温で非磁性であることも公知である。 しかし、本発明の’IIJ造方法で得られる5IR68
、78%、Fe31.22%の成分の急冷磁石合金は図
から認められるJ:うに2000(Oe)以十の−10
− &を有するのに対して同成分の塊状結晶の+lkは1/
10の200(Oe)程度しか示さなイ、。 実施例2 S +n 63,90%、Fe 28.56%、CO7
,り2 ’%の成分の合金を実施例1と同じ方法で作成
しlこ急冷磁石合金の磁気特性を第2図に承り。このt
′r金のIWは、回転1」−ル表面速度が約16II1
./seCで最高どなり、その1「Iは約2200(O
e)である。この急冷磁石合金によって粉末X線回折を
試みたところ、前記した3m68.78%、トe 31
.22%のbのと回折パターンは類似している。 これはFe−C0系合金が全率固液体であることから類
推できる31表面速度が約8m/secの急冷!&右金
合金、Sm  (F(! 、Co )2ど極めてピーク
強度の弱いSmと思われ、COは検出されなかった。ま
た同成分の塊状合金の室温での1配は210(Oe)で
ある。本発明の製造7j法によれば、INcは2200
 (Oe、)どなり、この合金に対してb約10倍の優
れたIWを示ず急冷磁石合金を1qることが判った。 実施例3 本発明のS m−F’ e−Co系合金について5ll
l  (F e −Go ) 2から3m  (Fe 
、 Co )3の間の成分についCの実験例を示づ。S
m53.30%、Fe36.OFi%、CO9,75%
のインボッ1〜は、8111  (FO、Co ) 2
 +8m  (Fc、C0)3の2相混合物からなり、
この合金の室温での&は約250(Oc)である。この
合金に対して本発明の製造り法で急冷磁石合金を作成し
kどころ、回転ロール表面速度が約24.16.8.4
 m /secの場合、1臣はそれぞれ2000.15
00.1600.1850 (Oe )であった。表面
速度が約4 III /Secの粉末X線回折の結果、
多結晶の5のと比較でるといずれの回折線もその強度は
極めて小さいが、それらの内容はSm(Fe。 C0)2と8111(Fe、Go)3と思われる物質と
推測された。これにより5lll  (Fe 、 Go
 >2からSm  (Fe 、、、、、Go )3の間
の成分についても本発明では優れたIWを有する急冷磁
石合金を製造することが可能である。 実施例4 次に金属間化合物5IIIFe3付近の成分についての
実験例を示す。3m39.96%、l:647.50%
、Co 12.53%の成分の急冷磁石合金は、回転ロ
ール表面速度が約24 m/seaのばあい、+lkは
約1900(Oe)である。同成分の多結晶合金の+l
kは約200(Oe)であり、本発明では優れた1臣を
有する急冷磁石合金を製造づることが可能である。 実施例5 Sm−Fe系合金の場合に′つぃて同様の実験を行ない
、その結果を表1、第3図に示づ。表1では合金の組成
式5lll+−xFe、、0.4≦x′io、6を用い
イの成分を示している。 =13− 表1 第3図は回転ロール表面速度が約24 m/secの場
合である。図から急冷磁石合金の磁気特性のうち1臣は
約1000−2000 (Oe ) 、U IOKは約
10〜40 (emu /IJ )である。なお同成分
の多結晶合金のII&:は約200〜300(Oe)で
ある。 実施例6 Sm−Fe−Goo系合金ついてその組成式および成分
を表2、表3に示10表2は5IIl、、1(F e 
I−Y COv >。、r(−10,2≦Y≦ 1.0
で示されるものであり、表3はSm +−x (Fe、
、yco、、、 )。、0.2≦8≦0.8で示した。 製造条件は実施例1の場合と同様であるが、回転ロール
は鉄製=14− のものを使用した。 第4図はS 11111.+ILJ−(F O+−v 
COY )aFzの組成式で示される急冷磁石合金の磁
気特性について回転ロール表面速度が16 m/sec
の場合について示している。図からYの値が大きくなる
につれ、つまりCOの含有量が増すに伴い+lkおよび
aIOK値は徐々に低下する。なお同成分の多結晶のも
のの葭は約250□−350(OQ ) 、σIOKは
約1()へ−40(emulo )である。 第5図はS III I−X (F ea、g G o
a、z ) Xの組成式で示されるものについての急冷
磁石合金の磁気特性を示している。回転[1−ル表面速
度は約16Ill/SeCである。図から&が最大とな
る×植は約o、srあり、こ場合Ilk、は約2600
 (00)、σ暉は約52 (emu 10 )である
。口の系て帰ねた磁気性セ1を有する急冷磁石合金を製
造するために、Xは0.2≦X≦ 0.8の範囲が必要
である。 なお同成分の多結晶のものの&は約200−、300(
Oe)、(7oxは約10〜60(emLI/11 )
である。 以上のように本発明によれば多結晶のものの11&:が
約200−350 (Oe ) テある合金もコ対し/
T17− +Ikが、約2600 (Oe ) (7)値を右t 
ル?A 冷1i Ui金合金製造することが可能である
[! It is best to use a lamic surface treatment. The shape of the rotating body may be a square, a disk, or the like, and the molten metal may be injected into the inner surface of a cylinder. The quenched magnet alloy of the present invention is characterized in that the magnetic properties of the magnet alloy obtained by cooling at a high speed rotating body, e.g. The surface speed of the rotating body is 2.5 to 3.
0 n+ /sec. For example, in the case of a rotating roll, the surface speed of this rotating body is the circumference of the roll ×
It is defined by the number of rotations (r. 0, m). The ribbon thickness of the ribbon-shaped magnet alloy obtained when the surface speed of the rotating body is 2.5 to 30 m/sec is about 10 to several hundred IT III, but when the surface speed of the rotating body is 30 m/sec, If it exceeds this, the thickness of the ribbon becomes extremely thin and it becomes difficult to produce 1q of high quality continuous long ribbons. Since the rapidly solidified magnet alloy IJM band obtained from these manufacturing methods is suitable for thin plate-shaped hard magnetic magnets, it requires less time in the manufacturing department compared to the method of cutting sintered magnets. Significant increase in the number of culms (in addition to simplification, mechanical processing and cutting can be used to commercialize the product) -
He is also right-handed. It is also advantageous in that it can improve magnetic properties without requiring heat treatment at high temperatures. Details of the present invention are explained in detail in Sogogo by Examples v2 #I ”l
−'ru. Example 1 An ingot with a composition of 8 m 68.78% and 1 e 31.22% was injected into a Cu roll using a Δr gas of 0.4 kg/a1. Figure 1 shows the magnetic properties of the rapidly solidified magnetic alloy obtained in the above. The magnetism of the alloy as it is quenched depends on the surface speed of the rotating roll, and when the surface speed is about 8 m/sec (7) It:
+) k: approximately 2100 (Oe
). From the figure, the magnetic properties of the magnet alloy in the rapidly cooled 1=as-is state are as follows: The surface speed of the rotating roll is approximately 8 m/s.
When it is smaller than ea, [7] was found to decrease rapidly. However, the change in IHc at a surface velocity of 8 m/sec or higher is gradual, about 8 to 1! lm/s
Since it is only necessary to adjust to ec, manufacturing becomes easy. Powder X-ray diffraction of this rapidly solidified magnetic alloy does not show a complete halo pattern as is generally observed in amorphous materials, but instead shows a diffraction peak intensity that depends on the rotating roll surface speed. When measured under the conditions of C0Kct+ with an accelerating voltage of 50 KV and a filament current of 160 mA, the surface velocity was approximately 2.
In the case of 2 m/sec, diffraction lines showing a small peak intensity are superimposed on the halo pattern. Furthermore, for the surface velocity of about 411/see, which has an extremely low surface velocity, it shows a larger peak intensity than that of 22 tn/sec, and the diffraction lines appear more frequently. Peak intensity and VA of i!
lf shows that the magnetism of the quenched magnetic Ei alloy of the present invention depends on the rotating roll surface speed, and the alloy exhibits amorphous properties when the surface IR degree is large, but when the surface speed is small, I learned that crystalline alloys become dominant. When an attempt was made to identify the substance from the diffraction line, -b of about 9-22 m/Sec was unclear. However, when the shielding is maximum at about Bm/sec, 5Ill
A substance that appears to be Fez and η5Ill, which exhibits an extremely small peak intensity, was identified. Surface speed is approximately 4m/sea
In this case, diffraction lines of Sm and 5ill Fe2 appeared at similar frequencies, and it was presumed to be a two-phase mixture of 5ill+5illFe2. From this, it seems that the intermetallic compound 5IIIFc2 is the main factor in producing excellent magnetic properties in the rapidly solidified magnet alloy 5 alloy of the present invention. By the way, the intermetallic compounds in the 5III-Fe binary alloy include Sm Fe 2 , Sm Fe 3 , Sm
The existence of Fe 5 and Sm 2 [C17 is known. Although these intermetallic compounds are magnetically excellent materials, they have a k of about 350 (Qe) or less using normal manufacturing methods, and cannot be used as practical magnets. It is also known that 5lll is non-magnetic at room temperature. However, 5IR68 obtained by the 'IIJ manufacturing method of the present invention
, 78%, Fe31.22% is recognized from the figure.
− +lk of bulk crystals with the same composition is 1/
It shows only about 200 (Oe) of 10. Example 2 S +n 63.90%, Fe 28.56%, CO7
An alloy having a composition of 2'% was prepared in the same manner as in Example 1, and the magnetic properties of the quenched magnet alloy are shown in Figure 2. This t
The IW of gold has a rotational surface speed of about 16II1.
.. /seC, the highest roar, part 1 "I is about 2200 (O
e). When powder X-ray diffraction was attempted using this rapidly solidified magnetic alloy, it was found that the above-mentioned 3m68.78% and e31
.. The diffraction pattern is similar to that of 22% b. This can be inferred from the fact that the Fe-C0 alloy is completely solid and liquid.31 Rapid cooling with a surface velocity of about 8 m/sec! &Right gold alloy, Sm (F(!, Co)2 seems to be Sm with extremely weak peak intensity, and CO was not detected.Also, the primary concentration of a block alloy with the same composition at room temperature is 210 (Oe). According to the production method 7j of the present invention, INc is 2200
(Oe,) It was found that this alloy did not exhibit an IW that was about 10 times better than that of the rapidly solidified magnet alloy. Example 3 About the S m-F' e-Co alloy of the present invention
l (F e −Go ) 2 to 3 m (Fe
An experimental example of C is shown for the components between , Co )3. S
m53.30%, Fe36. OFi%, CO9,75%
Invoice 1~ is 8111 (FO, Co) 2
Consisting of a two-phase mixture of +8m (Fc, C0)3,
The & of this alloy at room temperature is about 250 (Oc). A quenched magnet alloy was made from this alloy by the manufacturing method of the present invention, and the surface speed of the rotating roll was approximately 24.16.8.4.
m/sec, each minister is 2000.15
00.1600.1850 (Oe). As a result of powder X-ray diffraction with a surface velocity of about 4 III /Sec,
Although the intensity of each diffraction line is extremely small when compared with that of polycrystalline No. 5, the content of these lines is presumed to be Sm(Fe.C0)2 and 8111(Fe,Go)3. As a result, 5lll (Fe, Go
It is also possible to produce rapidly solidified magnet alloys with excellent IW in the present invention for components between >2 and Sm (Fe 2 , . . . , Go 2 ) 3 . Example 4 Next, an experimental example regarding components near the intermetallic compound 5IIIFe3 will be shown. 3m39.96%, l:647.50%
, Co 12.53% has a +lk of about 1900 (Oe) when the rotating roll surface speed is about 24 m/sea. +l of polycrystalline alloy with the same composition
k is about 200 (Oe), and the present invention makes it possible to produce a rapidly solidified magnetic alloy with excellent properties. Example 5 A similar experiment was conducted in the case of an Sm--Fe alloy, and the results are shown in Table 1 and FIG. 3. In Table 1, the alloy composition formula 5lll+-xFe, 0.4≦x'io, 6 is used to indicate the component A. =13-Table 1 Figure 3 shows the case where the rotating roll surface speed is about 24 m/sec. From the figure, the magnetic properties of the rapidly solidified magnet alloy are about 1000-2000 (Oe), and the U IOK is about 10-40 (emu/IJ). Note that II&: of a polycrystalline alloy having the same composition is approximately 200 to 300 (Oe). Example 6 The compositional formula and components of the Sm-Fe-Goo alloy are shown in Tables 2 and 3.
I-Y COv>. , r(-10, 2≦Y≦ 1.0
Table 3 shows Sm +-x (Fe,
,yco,,, ). , 0.2≦8≦0.8. The manufacturing conditions were the same as in Example 1, except that the rotating rolls were made of iron (14 mm). Figure 4 shows S 11111. +ILJ-(FO+-v
Regarding the magnetic properties of the rapidly solidified magnetic alloy shown by the composition formula of COY) aFz, the rotating roll surface speed is 16 m/sec.
The case is shown below. From the figure, as the value of Y increases, that is, as the content of CO increases, the +lk and aIOK values gradually decrease. Note that a polycrystalline material with the same composition has a reed of about 250□-350 (OQ) and a IOK of about 1 () to -40 (emulo). Figure 5 shows S III I-X (F ea, g Go
a, z) The magnetic properties of the rapidly solidified magnet alloy shown by the composition formula of X are shown. The rotational surface velocity is approximately 16 Ill/SeC. From the figure, the x plant where & is the maximum has approximately o, sr, and in this case Ilk is approximately 2600
(00), σ is approximately 52 (emu 10 ). In order to produce a quenched magnetic alloy having a strong magnetic property, X must be in the range of 0.2≦X≦0.8. In addition, & of polycrystalline ones with the same components is approximately 200-, 300 (
Oe), (7ox is approximately 10-60 (emLI/11)
It is. As described above, according to the present invention, polycrystalline alloys with 11&: of about 200-350 (Oe) can also be treated.
T17- +Ik is about 2600 (Oe) (7) value to the right
Le? It is possible to produce a cold 1i Ui gold alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は回転[1−ル表面速度ど■■の関係を
示すグラフである。第3図〜第5図は組成と& 73よ
びσIOK値との関係を示すグラフぐある。 特ダ1出願人 三菱製鋼株式会社 代理人  弁理士  小松秀岳 18− (′/I旬〕′〕 (ン0)’7/J (らu+す1alD (>o)  ン(4z (ヘクノ7H′
FIGS. 1 and 2 are graphs showing the relationship between rotation [1 and surface velocity]. 3 to 5 are graphs showing the relationship between the composition and the &73 and σIOK values. Special Da 1 Applicant Mitsubishi Steel Corporation Agent Patent Attorney Hidetake Komatsu 18- ('/Ijun〕') (n0)'7/J (rau+su1alD (>o) n(4z (hekuno7H')

Claims (1)

【特許請求の範囲】 1、サマリウム(Sm ) 45〜92 wt%、鉄(
Fe)8〜55 wt%から構成され、溶湯から急速に
冷却されてなることを特徴とする急冷磁石合金、。 2、サマリウム(SIR) 45〜92 wt%、鉄(
Fc)8〜55W[%、コバルト(GO)0.1〜47
 wt%以下から構成され、溶湯から急速に冷却されて
なることを特徴とする急冷磁石合金。 3、サマリウム(Sm)45〜92%、鉄(Fe )8
〜55 wt%よりなる合金溶湯を、表面速度が2.5
〜30m/SeCの回転体、Fに、真空もしくは不活性
ガス雰囲気中で射出して急冷することを特徴とする急冷
磁石合金の製造方法。 4、サマリウム(Sm ) 45〜!J2 wt%。鉄
(Fe)8〜55 wt%、コバルト(co)0.1〜
41W【%よりなる合金溶湯を、表面速1徒が2.5・
〜30 m/ SeGの回転体−ヒに、真空もしくは不
活性、ガス雰囲気中で射出して急冷ザることを特徴とす
る急冷磁石合金の製造方法 5、冑られる合金を200〜600℃で0.5〜7時間
、真空もしくは不活性ガス雰囲気中で熱処理づる特許請
求の範囲第3項または第4項記載の急冷磁石合金の製造
方法。 6、熱処理を15000エルステツド以下の磁界中で行
なう特許請求の範囲第5項記載の急冷磁石合金の製造方
法。
[Claims] 1. Samarium (Sm) 45-92 wt%, iron (
A rapidly solidified magnetic alloy comprising 8 to 55 wt% of Fe), characterized in that it is rapidly cooled from a molten metal. 2. Samarium (SIR) 45-92 wt%, iron (
Fc) 8-55W [%, cobalt (GO) 0.1-47
A quenched magnetic alloy characterized in that it is composed of 50% by weight or less and is rapidly cooled from a molten metal. 3.Samarium (Sm) 45-92%, iron (Fe) 8
A molten alloy consisting of ~55 wt% was heated at a surface velocity of 2.5.
A method for producing a rapidly solidified magnetic alloy, which comprises injecting into a rotating body of ~30 m/SeC, F, in a vacuum or an inert gas atmosphere, and rapidly cooling it. 4. Samarium (Sm) 45~! J2 wt%. Iron (Fe) 8~55 wt%, cobalt (co) 0.1~
A molten alloy consisting of 41W [%] has a surface velocity of 2.5%.
~30 m/SeG rotating body - Method 5 for producing a rapidly cooled magnetic alloy characterized by injecting and rapidly cooling in a vacuum or an inert gas atmosphere. A method for producing a rapidly solidified magnet alloy according to claim 3 or 4, which comprises heat treatment in a vacuum or inert gas atmosphere for 5 to 7 hours. 6. The method for producing a rapidly solidified magnet alloy according to claim 5, wherein the heat treatment is carried out in a magnetic field of 15,000 oersted or less.
JP57016393A 1982-02-05 1982-02-05 Quenched magnet alloy and method for producing the same Expired - Lifetime JPH0649912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57016393A JPH0649912B2 (en) 1982-02-05 1982-02-05 Quenched magnet alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57016393A JPH0649912B2 (en) 1982-02-05 1982-02-05 Quenched magnet alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPS58136739A true JPS58136739A (en) 1983-08-13
JPH0649912B2 JPH0649912B2 (en) 1994-06-29

Family

ID=11914994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57016393A Expired - Lifetime JPH0649912B2 (en) 1982-02-05 1982-02-05 Quenched magnet alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0649912B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940725U (en) * 1982-09-07 1984-03-15 三菱電機株式会社 air conditioner
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629639A (en) * 1979-08-17 1981-03-25 Seiko Instr & Electronics Ltd Amorphous rare earth magnets and producing thereof
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629639A (en) * 1979-08-17 1981-03-25 Seiko Instr & Electronics Ltd Amorphous rare earth magnets and producing thereof
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940725U (en) * 1982-09-07 1984-03-15 三菱電機株式会社 air conditioner
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet

Also Published As

Publication number Publication date
JPH0649912B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JPH0774419B2 (en) Method for producing Fe-based soft magnetic alloy
US5474624A (en) Method of manufacturing Fe-base soft magnetic alloy
JPH06104870B2 (en) Method for producing amorphous thin film
JPH044393B2 (en)
US4834813A (en) Wear-resistant alloy of high permeability and methods of producing the same
JPS6123848B2 (en)
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
JPS5842741A (en) Wear resistant alloy with high permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
US5372657A (en) Amorphous material for regenerator
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPH05335129A (en) Fe-based soft magnetic alloy particle and manufacturing method thereof
JPS6212296B2 (en)
JPS58136739A (en) Rapidly cooled magnet alloy and its manufacture
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JPH0255494B2 (en)
JPH1012423A (en) Hard magnetic material and its manufacture
JP2000160241A (en) PRODUCTION OF Fe BASE SOFT MAGNETIC ALLOY
JPS5985845A (en) Rapidly cooled magnet alloy
JPH0525947B2 (en)
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPS6134160A (en) Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head
JPH032216B2 (en)
JP2842683B2 (en) Soft magnetic thin film material
CN115608996A (en) Iron-based nanocrystalline magnetically soft alloy powder and preparation method thereof