JPS58135133A - Ferrite magnetic material - Google Patents
Ferrite magnetic materialInfo
- Publication number
- JPS58135133A JPS58135133A JP57018450A JP1845082A JPS58135133A JP S58135133 A JPS58135133 A JP S58135133A JP 57018450 A JP57018450 A JP 57018450A JP 1845082 A JP1845082 A JP 1845082A JP S58135133 A JPS58135133 A JP S58135133A
- Authority
- JP
- Japan
- Prior art keywords
- ferrite
- powder
- densification
- glass
- diffusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はフェライト粉末にガラス粉末を混合し焼成して
成る材料に関するもので、かつ骸7エライト粉末の粒度
を検討することにより磁気特性の向上を計るものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a material made by mixing ferrite powder with glass powder and firing the mixture, and improves the magnetic properties by examining the particle size of the ferrite powder.
粉末冶金法で製造されるフェライト磁性材料は有用な電
子部品として各種デバイスに用いられ、これらデバイス
の発展に貢献している。Ferrite magnetic materials manufactured by powder metallurgy are used in various devices as useful electronic components, and are contributing to the development of these devices.
しかしながら粉末冶金法で製造されるため焼成時に10
〜20%もの収縮を伴ない、焼成体の寸法に大きなバラ
ツキを生じる。このため電子部品として用いる際1組立
品そのものにも大ぎな寸法バチツキをもたらし、デバイ
スの高性能化の障害となっている。従ってより高性能の
デバイスとするためにはフェライトの高寸法精度化が重
畳であり本発明の目的とする所である。However, since it is manufactured using a powder metallurgy method, 10
This is accompanied by a shrinkage of ~20%, resulting in large variations in the dimensions of the fired body. For this reason, when used as an electronic component, large dimensional variations occur even in one assembled product itself, which is an obstacle to improving the performance of the device. Therefore, in order to achieve a higher performance device, it is necessary to improve the dimensional accuracy of the ferrite, which is the object of the present invention.
従来高寸法精度を得るには収縮率を7#に一定に制御す
る努力が轟該業者にて払われてきたが、限界があり、高
寸法精度化は達成出来ていない。Conventionally, in order to obtain high dimensional accuracy, efforts have been made by manufacturers to control the shrinkage rate to a constant value of 7#, but there are limits and high dimensional accuracy has not been achieved.
また10〜2096もの大きな収縮率を小さくすること
により高寸法精度を得る努力も続けられ【はいるものの
充分ではない。Further, efforts have been made to obtain high dimensional accuracy by reducing the large shrinkage ratio of 10 to 2096, but this is not sufficient.
また高寸法精度を得るフェライトの製造方法としては、
フェライト粒子をバインダーで固化したいわゆるモール
ド法による製法が知られている。In addition, as a method for manufacturing ferrite that achieves high dimensional accuracy,
A manufacturing method using a so-called molding method in which ferrite particles are solidified with a binder is known.
しかしこの製法による製品は金瀝と製品の寸法の差は極
めて少なく高寸法精度を達成し得るものの製品強度が弱
く応用が限定される。However, products made using this manufacturing method have very little difference in size from those made using kinkei, and although high dimensional accuracy can be achieved, the product strength is weak and its applications are limited.
本発明はフェライトにガラス粉末を添加しフェライトの
緻密化の始まる以上の温度で焼成するととにより従来忙
ない低収縮率の材料を得、これKより高寸法精度を達成
せんとするものである。かつこの時フェライト粒度な吟
味することにより上記低収縮率材の透磁率の向上を計る
ものである。The present invention aims to obtain a material with a low shrinkage rate, which is conventionally difficult, by adding glass powder to ferrite and firing it at a temperature above the point at which the ferrite starts to become densified, thereby achieving higher dimensional accuracy than K. At this time, the magnetic permeability of the low shrinkage material can be improved by carefully examining the ferrite particle size.
従来磁性材料とガラスとを混合し加熱処理を行なう製法
としては、例えは峙開昭50−50207カ;あるが、
引用例ではホットプレスを行なうのに比べ本発明では通
常の焼成法で可能なため量産性に格段の差がある。さら
に本発明ではフェライトの緻密化を一定程度進行させる
の、に対し引用例はガラスと磁性材料を単に固化させる
ものである点が異なる。ここでフェライトの緻密化につ
いて簡単に触れておく、フェライト粉末を金製中で加圧
した成形体中には多くの空孔な含むが通常800〜10
00℃以上の温度に加熱するとフェライトを構成する原
子間に拡散が生じ、これに伴ない空孔が減少し成形体は
収縮する。この緻密化の進行に伴ない成形体では殆んど
磁性を示さないものが、磁性体としての機能を有するよ
うになると同時に強度も強くなる。本発明は、ガラスが
フェライト粒子の周囲を囲むため一定椙度の拡散による
緻密化を進行させると同時に途中で拡散を止めるととK
より低収縮率化を達成するものである。Conventional manufacturing methods in which magnetic materials and glass are mixed and heat treated include, for example,
In the cited example, hot pressing is performed, but in the present invention, a normal firing method can be used, so there is a significant difference in mass productivity. Furthermore, in the present invention, the ferrite is densified to a certain extent, whereas the cited example is different in that the glass and the magnetic material are simply solidified. Here, I would like to briefly touch on the densification of ferrite.A molded product made by pressing ferrite powder in a metal mold contains many pores, but usually 800 to 10 pores.
When heated to a temperature of 00° C. or higher, diffusion occurs between the atoms constituting the ferrite, and as a result, the number of pores decreases and the molded product contracts. As this densification progresses, the compact, which exhibits almost no magnetism, comes to function as a magnetic material and at the same time its strength increases. In the present invention, since the glass surrounds the ferrite particles, densification by diffusion at a certain degree progresses, and at the same time, the diffusion is stopped midway.
This achieves a lower shrinkage rate.
まず本発明の基本であるフェライトとガラス粉末の混合
体で低収縮率となる例を参考に述べる。First, an example will be described in which a mixture of ferrite and glass powder, which is the basis of the present invention, has a low shrinkage rate.
参考例
Fe1O147,5Mg025.OZnO2α5 mo
tts残部CuOよりなる混合粉を900〜1200℃
にて仮焼を行ない2〜5μmに微粉砕した後、該微粉砕
粉に軟化点650℃で粒径100メツシ島以下の非晶質
ガラス粉末を10重量−加えた粉末をライカイ機にて1
時間混合した。該混合粉にPVA水溶液を加え混練し造
粒を行なりた後、外径2−内径10■の金型中にて21
on/−の圧ガを加えた成形体を得た。核酸形体を大気
中1250℃にて焼成した試料の特性をガラス粉末を加
えず同一の処理を施したものの特性と合せ第−表に示す
。Reference example Fe1O147,5Mg025. OZnO2α5 mo
Mixed powder consisting of tts remainder CuO at 900-1200℃
After calcination and finely pulverizing the powder to 2 to 5 μm, 10% by weight of amorphous glass powder with a softening point of 650°C and a particle size of 100 mm or less was added to the finely pulverized powder, and the powder was pulverized using a Raikai machine.
Mixed for an hour. After adding a PVA aqueous solution to the mixed powder and kneading it to granulate it, it was granulated in a mold with an outer diameter of 2 cm and an inner diameter of 10 cm.
A molded article was obtained to which on/- pressure was applied. Table 1 shows the characteristics of a sample obtained by firing a nucleic acid form at 1250° C. in the air, together with the characteristics of a sample subjected to the same treatment without adding glass powder.
llN1表
この様にガラスを加えたものでは従来技術では得られな
かった10チ以下の低収縮率材を得ることが出来る。ま
た圧壊強度もフェライトを樹脂で固化したのみのものの
100〜30W−に比して大きい。Table IIN1 By adding glass in this manner, it is possible to obtain a material with a low shrinkage rate of 10 inches or less, which was not possible with the prior art. Moreover, the crushing strength is also greater than that of the ferrite solidified with resin, which is 100 to 30 W-.
また上記ガラス添加試料の破断面を鏡面研摩し顕微鏡で
観察した所、フェライト粒子の周囲をガラスが囲んでい
る組織であることが知れた。Furthermore, when the fractured surface of the glass-added sample was mirror-polished and observed under a microscope, it was found that the structure consisted of glass surrounding ferrite particles.
さらにガラスの添加量を種々変化させ検討した結果10
’16以下の低収縮率の得られることに変りはないが透
磁率の値はガラスの添加IKより変化することを見い出
した。この点をさらに深く検討した結果フェライト粒子
の周囲を囲うガラス層の厚さが厚いほど透磁率が低くな
ることが判明した。Furthermore, the results of various studies with various addition amounts of glass10
It has been found that although a low shrinkage rate of '16 or less can still be obtained, the value of magnetic permeability changes depending on the IK added to the glass. As a result of further investigation into this point, it was found that the thicker the glass layer surrounding the ferrite particles, the lower the magnetic permeability.
本発明は低収縮率を維持しかつ透磁率を向上させること
を目的にフェライト粉末の粒度な前記参考例より大きな
ものとするものである。In the present invention, the particle size of the ferrite powder is made larger than that of the above-mentioned reference example in order to maintain a low shrinkage rate and improve magnetic permeability.
以下に実施例を示す。Examples are shown below.
実施例1
参考例1と同一組成のフェライト混合体を同一温度で仮
焼した後粗砕し風力分級機を用い分級しだ0分級粉とし
て粒径が20〜25μmのものを採取しこれに参考例と
同一のガラス粉末を添加量を変えさらに参考例と同一の
焼成な總したものの特性を第2表に示す。Example 1 A ferrite mixture with the same composition as in Reference Example 1 was calcined at the same temperature, then coarsely crushed and classified using an air classifier. A powder with a particle size of 20 to 25 μm was collected as a zero-class powder and used as a reference. Table 2 shows the properties of the same glass powder as in the example but with different amounts of addition and the same firing as in the reference example.
第 2 表
冥IIIA例2
実施例1と同一の分級品で粒度が10〜15μmの範囲
にあるものを採取し同一ガラスを添加量を変え添加し同
一焼成を施したものの特性を第3!!に示す。2nd Table of Contents IIIA Example 2 The same classified product as in Example 1 with a particle size in the range of 10 to 15 μm was collected, the same glass was added in different amounts, and the same firing was performed. ! Shown below.
第3表
以上の実施例より明らかなごとくフェライト粒子の粒径
を参考例以上に大きくするととにより低収縮率を維持し
かつ透磁率の向上を計ることが出来る。なおフェライト
の粒径が大きくなると成形性が悪くなることから上限を
50μmと規定した。As is clear from the examples shown in Table 3 and above, when the particle size of the ferrite particles is made larger than that of the reference example, it is possible to maintain a low shrinkage rate and improve the magnetic permeability. Note that as the particle size of ferrite increases, the formability deteriorates, so the upper limit was defined as 50 μm.
以上のごとく本発明による材料は収縮率が小さく高寸法
精度を達成しひいてはデバイスの一層の高性能化に寄与
する所大である。As described above, the material according to the present invention has a small shrinkage rate, achieves high dimensional accuracy, and contributes to further improving the performance of devices.
なおガラスを添加することで透磁率は幾分低下するが、
フェライトに要求される透磁率の値は5〜20.000
の極めて広い範囲にあるので、本発明材の用途、・を何
ら制限するものではない。Although the magnetic permeability decreases somewhat by adding glass,
The magnetic permeability value required for ferrite is 5 to 20,000.
There are no limitations on the uses of the material of the present invention.
代理人 1)中 寿 l!4苅距Agent 1) Naka Kotobuki l! 4.
Claims (1)
比で0.5〜15%のガラス粉末とを混合したる後7エ
ライトの緻密化が始まる以上の温度で焼成したことを特
徴とする低収縮率軟磁性フェライト材料。ferrite powder with a particle size of 5 to 50 μm and a glass powder of 0.5 to 15% by weight to the powder are mixed and then fired at a temperature above which densification of 7 ferrite begins. Shrinkage rate soft magnetic ferrite material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57018450A JPS58135133A (en) | 1982-02-08 | 1982-02-08 | Ferrite magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57018450A JPS58135133A (en) | 1982-02-08 | 1982-02-08 | Ferrite magnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58135133A true JPS58135133A (en) | 1983-08-11 |
Family
ID=11971956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57018450A Pending JPS58135133A (en) | 1982-02-08 | 1982-02-08 | Ferrite magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58135133A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4956114A (en) * | 1987-07-01 | 1990-09-11 | Tdk Corporation | Sintered ferrite body, chip inductor, and composite LC part |
US5120366A (en) * | 1988-12-28 | 1992-06-09 | Matsushita Electric Industrial Co., Ltd. | Composite ferrite material |
-
1982
- 1982-02-08 JP JP57018450A patent/JPS58135133A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4956114A (en) * | 1987-07-01 | 1990-09-11 | Tdk Corporation | Sintered ferrite body, chip inductor, and composite LC part |
US5120366A (en) * | 1988-12-28 | 1992-06-09 | Matsushita Electric Industrial Co., Ltd. | Composite ferrite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5363881B2 (en) | SOFT MAGNETIC MATERIAL AND METHOD FOR PRODUCING ARTICLE COMPRISING THE SOFT MAGNETIC MATERIAL | |
WO2005015581A1 (en) | Soft magnetic composite powder and production method therefor and production method for soft magnetic compact | |
JPS6054976A (en) | Silicon nitride sintered body and manufacture | |
EP0376319B1 (en) | A composite ferrite material | |
JPH0423658B2 (en) | ||
KR20010067174A (en) | Process for producing amorphous magnetically soft body | |
CN103693957A (en) | Method for preparing microwave dielectric ceramic material | |
JPS58135133A (en) | Ferrite magnetic material | |
JPH0521220A (en) | Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density | |
JPS5918414B2 (en) | Manufacturing method for plastic bonded magnetic molded body | |
JPS58135607A (en) | Ferrite magnetic material | |
JPS58135606A (en) | Ferrite magnetic material | |
JP2762531B2 (en) | Ferrite magnetic body and method of manufacturing the same | |
JPS60113403A (en) | Manufacture of rare earth resin magnet | |
JPH05326229A (en) | Permanent magnet powder and production thereof | |
JP3467838B2 (en) | Ferrite resin and method for producing ferrite resin | |
JPS58135609A (en) | Preparation of ferrite magnetic material | |
JPH036803A (en) | Ferrite magnetic material and manufacture thereof | |
JPS58141511A (en) | Ferrite magnetic material | |
Sreckovic | Sintering of mechanically activated powders | |
JPH02163302A (en) | Manufacture of composition for injection molding powder metallurgy | |
JPS58135177A (en) | Manufacture of ferrite composite material | |
JPS63242970A (en) | Manufacture of silicon nitride sintered body | |
JP2760026B2 (en) | Ferrite magnetic body and method of manufacturing the same | |
JP2001214202A (en) | Granulating method and compacting method for magnetic powder |