JPS58135607A - Ferrite magnetic material - Google Patents

Ferrite magnetic material

Info

Publication number
JPS58135607A
JPS58135607A JP1843782A JP1843782A JPS58135607A JP S58135607 A JPS58135607 A JP S58135607A JP 1843782 A JP1843782 A JP 1843782A JP 1843782 A JP1843782 A JP 1843782A JP S58135607 A JPS58135607 A JP S58135607A
Authority
JP
Japan
Prior art keywords
ferrite
powder
glass
magnetic material
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1843782A
Other languages
Japanese (ja)
Inventor
Shunichi Nishiyama
俊一 西山
Hajime Shinohara
篠原 肇
Kunio Kanai
邦夫 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1843782A priority Critical patent/JPS58135607A/en
Publication of JPS58135607A publication Critical patent/JPS58135607A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To enable a device to have high dimensional accuracy and to increase the performance of the device by adding a certain amount of glass to ferrite so as to reduce its contraction coeffiecient to 10% or less. CONSTITUTION:After 0.3-15wt% noncrystalline glass powder with the softening point at 700 deg.C or less is added to ferrite powder and mixed together, the mixture is sintered at temperatures higher than those at which the minute shrinkage of the ferrite begins. Although a compact obtained by pressurizing the ferrite powder in a metal mold contains void holes, diffusion will occurs among atoms constituting the ferrite if the compact is heated at temeprature higher than 800- 1,000 deg.C. As the minute shrinkage progresses, the compact indicates almost nearly no magnetism, however, the strength thereof increases when it begins to function as a magnetic material.

Description

【発明の詳細な説明】 粉末冶金法で製造されるフェライト磁性材料は有用な電
子部品として各種デバイスに用いられ、これらデバイス
の発展に貢献している。
DETAILED DESCRIPTION OF THE INVENTION Ferrite magnetic materials produced by powder metallurgy are used as useful electronic components in various devices, and are contributing to the development of these devices.

しかしながら粉末冶金法で製造されるため焼成時に10
〜20%もの収縮を伴ない、焼成体の寸法に大きなバラ
ツキを生じる。このため電子部品として用いる際、組立
品そのものにも大きな寸法バラツキをもたらし、デバイ
スの高性能化の障害となっている。従ってよシ高性能の
デバイスとするためにはフェライトの高寸法精度化が重
要であシ本発明の目的とする所である。
However, since it is manufactured using a powder metallurgy method, 10
This is accompanied by a shrinkage of ~20%, resulting in large variations in the dimensions of the fired product. For this reason, when used as an electronic component, large dimensional variations occur in the assembled product itself, which is an obstacle to improving the performance of the device. Therefore, in order to obtain a device with high performance, it is important to improve the dimensional accuracy of the ferrite, which is the object of the present invention.

従来高寸法精度を得るには、収縮率を常に一定に制御す
る努力が当咳業者にて払われてきたが、限界があり、高
寸法精度化は達成出来ていない。また、10〜20%も
の大きな収縮率を小さくすることKより高寸法精度を得
る努力も続けられてはいるものの充分ではない。例えば
フェライトと樹脂とを混合したる後成形後固化したいわ
ゆるモールドタイプの製品は金型と製品の寸法の差は極
めて少なく高寸法精度を達成し得るものの製品強度が弱
く応用が限定される。
Conventionally, in order to obtain high dimensional accuracy, efforts have been made by manufacturers in the art to always control the shrinkage rate to a constant level, but there are limitations and high dimensional accuracy has not been achieved. Efforts have also been made to obtain higher dimensional accuracy by reducing the shrinkage rate, which is as high as 10 to 20%, but this is not sufficient. For example, so-called mold-type products made by mixing ferrite and resin and solidifying after molding have very little difference in dimension between the mold and the product and can achieve high dimensional accuracy, but the product strength is weak and its applications are limited.

本発明は収縮率が10憾以下と小さな材料を製造する新
規な方法を見い出したものであり、これにより高寸法精
度化ひいてはデバイスの一層の高性能化を図ることを目
的とするものである。
The present invention is based on the discovery of a new method for manufacturing a material with a small shrinkage rate of 10 or less, and the purpose of the present invention is to achieve higher dimensional accuracy and further improve the performance of devices.

本発明による新規な方法は、フェライトとガラス粉末と
を混合したる後、フェライトの歇寧化の進行する温度で
焼成を行うもので、この時添加したガラス粉末がフェラ
イト粒子の周囲をおおうことでフェライトの微密化を押
え低収縮率を達成するものである。
The novel method of the present invention involves mixing ferrite and glass powder and then firing at a temperature at which the ferrite becomes uniform.The glass powder added at this time covers the ferrite particles. This suppresses the densification of ferrite and achieves a low shrinkage rate.

従来磁性材料とガラスとを混合し加熱処理を行なう製法
としては例えば特開昭50−50207があるが引用例
ではホットプレスを行なうのに比べ本発明では通常の焼
成法で可能なため量産性に格段の差がある。さらに本発
明ではフェライトの微密化を一定程度進行させるのに対
し引用例はガラスと磁性材料を単に固化させるものであ
る点が異なる。ここでフェライトの微密化について簡単
に触れておく。フェライト粉末を金型中で加圧した成形
体中には多くの空孔を含むが通常800〜1000℃以
上の温度に加熱するとフェライトを構成する原子間に拡
散が生じこれに伴ない空孔が減少し成形体は収縮する。
For example, Japanese Patent Application Laid-Open No. 50-50207 discloses a conventional manufacturing method of mixing a magnetic material and glass and subjecting them to heat treatment, but the cited example uses hot pressing, whereas the present invention uses a normal firing method, making it easier to mass-produce. There is a huge difference. Furthermore, in the present invention, the ferrite is refined to a certain degree, whereas the cited example is different in that the glass and the magnetic material are simply solidified. Let me briefly touch on the microdensification of ferrite. A compact formed by pressing ferrite powder in a mold contains many pores, but when heated to a temperature of 800 to 1000°C or higher, diffusion occurs between the atoms that make up the ferrite, resulting in the formation of pores. decreases and the molded body shrinks.

この微密化の進行に伴ない成形体では殆んど磁性を示さ
ないものが、磁性体としての機能を有するようKなると
同時に強度も強くなる。本発明はガラスがフェライト粒
子の周囲を囲むため一定程度の拡散による微密化を進行
させると同時に途中で拡散を止めることによシ収縮率を
小さくするものである。以下に実施例を示す。
As this microdensification progresses, the molded product that exhibits almost no magnetism becomes K and becomes strong so that it has the function of a magnetic material. In the present invention, since the glass surrounds the ferrite particles, the shrinkage rate is reduced by progressing microdensification by diffusion to a certain degree and at the same time stopping the diffusion midway. Examples are shown below.

Fezes 47,5  Mg025.0 Zn020
.5 mol %残部Cuuよりなる混合粉を900〜
1200℃にて仮焼を行ない2〜5amに微粉砕した後
、該微粉砕粉に軟化点650℃で粒径100メツシ轟以
下の非晶質ガラス粉末を10重量−加えた粉末を2イ力
イ機にて1時間混合した。該混合粉KpvA水溶液を加
え混線し造粒を行なった後、外径2o■、内径10■の
金型中にて21On/cdの圧力を加えた成形体を得た
。該成形体を大気中1250℃にて焼成した試料の特性
をガラス粉末を加えず同一の処理を施したものの特性と
合せ第−表に示す。
Fezes 47,5 Mg025.0 Zn020
.. Mixed powder consisting of 5 mol % balance Cuu 900~
After calcining at 1200°C and finely pulverizing the powder to 2 to 5 am, 10% by weight of amorphous glass powder with a softening point of 650°C and a particle size of 100 mm or less was added to the finely pulverized powder. The mixture was mixed for 1 hour using a dryer. After adding the KpvA aqueous solution of the mixed powder and granulating it by mixing, a molded body was obtained by applying a pressure of 21 On/cd in a mold having an outer diameter of 2° and an inner diameter of 10°. Table 1 shows the characteristics of a sample obtained by firing the molded body at 1250 DEG C. in the atmosphere, together with the characteristics of a sample subjected to the same treatment without adding glass powder.

第1表 仁の様にガラスを加え九ものでは従来技術では得られな
かった10%以下の低収縮率材を得ることが出来る。ま
た圧壊強度もフェライトを樹脂で固化したのみのものの
100〜goo kg/m K比して大きい。
By adding glass as shown in the first layer, it is possible to obtain a material with a low shrinkage rate of 10% or less, which was not possible with the prior art. Moreover, the crushing strength is also greater than that of a material made of only ferrite solidified with resin, which is 100 to goo kg/mK.

実施例2 実施例1と同一のフェライト粉砕粉に同一のガラスを5
重量参加えたる後間−の処理を施した試料の特性を第2
表に示す。
Example 2 The same glass was added to the same crushed ferrite powder as in Example 1.
The characteristics of the sample subjected to the post-treatment with weight participation were determined in the second
Shown in the table.

第2表 実施例5 実施例1と同一のフェライト粉砕粉に同一のガラス粉末
2.5重量−を加え同一の処理を施した試料の特性を第
5表に示す。
Table 2 Example 5 Table 5 shows the characteristics of a sample obtained by adding 2.5 weight of the same glass powder to the same pulverized ferrite powder as in Example 1 and subjecting it to the same treatment.

第3表 実施例4 実施例1と同一のフェライト粉末に粒度が150メツシ
具以下て軟化点が580℃の非晶質ガラス粉末を5重量
参加え混合した後実施例1と同一の処理を施したものの
特性を第4表に示す。
Table 3 Example 4 The same ferrite powder as in Example 1 was mixed with 5 weights of amorphous glass powder with a particle size of 150 mesh or less and a softening point of 580°C, and then subjected to the same treatment as in Example 1. Table 4 shows the characteristics of the obtained products.

第4表 実施例5 FesOa 49,5 NiCNa、o  ZnO52
,5mol qbよシなる混合粉を800〜1100’
0にて仮焼を行ない軟化点380℃の非晶質ガラス粉末
を5重量参加えたものを実施例1と同様の造粒および成
形を施した後大気中1250℃にて焼成した試料の特性
をガラスを加えないものの特性と合せ第5表に示す。。
Table 4 Example 5 FesOa 49,5 NiCNa, o ZnO52
, 5 mol qb mixed powder 800-1100'
The properties of the sample were calcined at 1250°C in the air after being calcined at 0°C, granulated and molded in the same manner as in Example 1, with 5 weight of amorphous glass powder having a softening point of 380°C added. Table 5 shows the properties of the product without glass. .

第5表 以上の実施例に示したようにガラスを加えたフェライト
は従来にない109b以下の低収縮率となυ高寸法精度
化ひいてはデバイスの高性能化に寄与する所大である。
As shown in the examples in Table 5 and above, ferrite with glass added has an unprecedented low shrinkage rate of 109b or less, which greatly contributes to high dimensional accuracy and, in turn, to improved device performance.

なお、ガラスを加えることにより磁気特性は幾分低下す
るが、7エライ)VCl2求される特性は例えば透磁率
についてみると5〜20,000の極めて広い範囲にあ
るため本発明材の用途を制限するものではない。またガ
ラス量が15重量−以上となる。と殆んど磁性体として
の性質が失くなるため請求範囲を15重量−に限定した
。ガラス量が0.5重量−以下では手続補正書(自発) 8、(□l 5=761411 特許庁長官殿 昭和I$7年特許願第 1843・7 号補11:、を
する者 2  IItsO8111,−i’7.金属株式会社代
表#河野 典夫 代   理   人 居  所   東京都千代]11区丸の内2丁目1番2
号袖11:、の対象 補正の内容 l 明細書の「特許縛求の11を次の通り訂正する・ 以 「71ライト粉末に対し軟化点を?OO”C% 下(1
’)非晶質ガラス粉末を03〜15重量憾加え混合した
後7.ライトの、鐘J蜜二世−が始まる以上の温度で焼
成したことを特徴としな低騒縮率軟磁性78ツイ  ト
 材 料。 」 麗 明細書の「発明のlII&綱な#!明」の硼の記載
を下記の通り訂正する。
Although the magnetic properties are somewhat reduced by adding glass, the properties required for VCl2, for example, in terms of magnetic permeability, are in an extremely wide range of 5 to 20,000, which limits the application of the material of the present invention. It's not something you do. Further, the amount of glass is 15% by weight or more. Since the magnetic material almost loses its properties as a magnetic material, the claimed range was limited to 15% by weight. If the amount of glass is 0.5 weight or less, a procedural amendment (voluntary) 8. -i'7.Metal Co., Ltd. Representative #Norio Kono Osamu Address: Chiyo, Tokyo] 2-1-2 Marunouchi, 11-ku
Issue Sleeve 11: Contents of amendments to ``Patent Restrictions 11'' in the specification is corrected as follows: ``Softening point for 71 light powder?
7. After adding and mixing 0.3~15% of amorphous glass powder. A soft magnetic material with a low damping rate, characterized by being fired at a temperature higher than the temperature at which Wright's Kane J Mitsu II begins. ” Rei The statement in the description of ``Invention II & Structure #! Akira'' is corrected as follows.

記 豪 (1)明細書第2頁第16行の「徽寧」をrJ&密化」
に訂正する。
Ji Hao (1) ``Hui Ning'' on page 2, line 16 of the specification is rJ &Mifu.''
Correct.

(2)同書同fLiIIze行の「微密化」を「飄密化
」に訂正する@ (8)同書第3頁第6行の「微密化」を「繊密化」に訂
正する。
(2) Correct "miniaturization" in line fLiIIze of the same book to "densification" @ (8) Correct "miniaturization" in line 6 of page 3 of the same book to "densification."

(4)同書同貞第8行の「微密化」を「疎密化」に訂正
する。
(4) Correct "microdensification" in line 8 of the same book to "densification."

(6)同書同屓第14行の「微密化」を「膣密化」に訂
正する。
(6) "Mini-densification" in line 14 of the same book is corrected to "vaginal-densification."

(6)同書同頁第18行の「微密化」を「識密化」に訂
正する。
(6) In line 18 of the same page of the same book, "miniaturization" is corrected to "intelligence".

(7)同書114xjll1行の「第−表」を「第1表
」に訂正する。
(7) Correct "Table 1" in line 1 of 114xjll of the same book to "Table 1."

(8)同書*6j[ll1表中の「透磁率J )「66
J t−「70Jに訂正する。
(8) Same book *6j ["Magnetic permeability J" in table 1] "66
J t- “Corrected to 70J.

以  上that's all

Claims (1)

【特許請求の範囲】[Claims] フェライト粉末に対し軟化点が700 ”O以下の非晶
質ガラス粉末を0.5〜15重量慢重量混加した後フェ
ライトの微密化が始まる以上の温度で焼成したととを特
徴とした低収縮率軟磁性フェライト材料。
A low-temperature glass powder characterized by adding 0.5 to 15% of amorphous glass powder with a softening point of 700"O or less to ferrite powder, and then firing at a temperature above where ferrite begins to become finely densified. Shrinkage rate soft magnetic ferrite material.
JP1843782A 1982-02-08 1982-02-08 Ferrite magnetic material Pending JPS58135607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1843782A JPS58135607A (en) 1982-02-08 1982-02-08 Ferrite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1843782A JPS58135607A (en) 1982-02-08 1982-02-08 Ferrite magnetic material

Publications (1)

Publication Number Publication Date
JPS58135607A true JPS58135607A (en) 1983-08-12

Family

ID=11971615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1843782A Pending JPS58135607A (en) 1982-02-08 1982-02-08 Ferrite magnetic material

Country Status (1)

Country Link
JP (1) JPS58135607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956114A (en) * 1987-07-01 1990-09-11 Tdk Corporation Sintered ferrite body, chip inductor, and composite LC part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956114A (en) * 1987-07-01 1990-09-11 Tdk Corporation Sintered ferrite body, chip inductor, and composite LC part

Similar Documents

Publication Publication Date Title
JPS58135607A (en) Ferrite magnetic material
CN106316395A (en) Microwave dielectric ceramic with high dielectric constant and high quality factor and preparation method
US3674694A (en) Manganese zinc-ferrite core
JPS58135606A (en) Ferrite magnetic material
JPS58135609A (en) Preparation of ferrite magnetic material
JPS58141511A (en) Ferrite magnetic material
US2787520A (en) Process for producing piezoelectric transducers
JPS58135608A (en) Ferrite magnetic material
JPS58135133A (en) Ferrite magnetic material
JPS58135177A (en) Manufacture of ferrite composite material
US4444670A (en) Method of manufacturing magnetic, plastic-bonded molded bodies
US3527706A (en) Method of manufacturing binder-containing permanent magnets on a ferrite basis
JPH036803A (en) Ferrite magnetic material and manufacture thereof
JPS60101803A (en) Composition for high dielectric constant porcelain material
JP2823604B2 (en) Method for producing anisotropic ferrite magnet
JPH01319910A (en) Magnetic substance and manufacture thereof
JPS59228310A (en) Microwave dielectric porcelain composition
JPH07115013A (en) Magnetic body and manufacture thereof
JPS5832490B2 (en) Condenser capacitor
JPS58135134A (en) Ferrite magnetic material
US2534390A (en) Ceramic insulating material and method of manufacturing same
JP2950117B2 (en) Magnetic body and method of manufacturing the same
JP3612770B2 (en) Manufacturing method of ceramic foam
JP2967827B2 (en) Hard ferrite powder for composite magnet, compound using the same, and composite magnet
JP2544017B2 (en) Method for producing copper powder for powder metallurgy