JPS58135606A - Ferrite magnetic material - Google Patents

Ferrite magnetic material

Info

Publication number
JPS58135606A
JPS58135606A JP1843682A JP1843682A JPS58135606A JP S58135606 A JPS58135606 A JP S58135606A JP 1843682 A JP1843682 A JP 1843682A JP 1843682 A JP1843682 A JP 1843682A JP S58135606 A JPS58135606 A JP S58135606A
Authority
JP
Japan
Prior art keywords
ferrite
powder
glass
compact
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1843682A
Other languages
Japanese (ja)
Inventor
Shunichi Nishiyama
俊一 西山
Hajime Shinohara
篠原 肇
Kunio Kanai
邦夫 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1843682A priority Critical patent/JPS58135606A/en
Publication of JPS58135606A publication Critical patent/JPS58135606A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To enable a device to have high dimensional accuracy and to increase the performance of the device by adding glass to ferrite so as to reduce its contraction coefficient to 10% or less. CONSTITUTION:After 0.3-15wt% glass powder by weight is added to ferrite powder and mixed together, the mixture is sintered at temperature higher than those at which the minute shrinkage of the ferrite beings. Although a compact obtained by pressurizing the ferrite powder in a metal mold contains void holes, diffusion will occur among atoms constituting the ferrite if the compact is heated at temperature higher than 800-1,000 deg.C. This causes the void holes to decrease and the compact to shrink.

Description

【発明の詳細な説明】 粉末冶金法で製造されるフェライト磁性材料は有用な電
子部品として各種デバイスに用いられ、これらデバイス
の発展に貢献している。
DETAILED DESCRIPTION OF THE INVENTION Ferrite magnetic materials produced by powder metallurgy are used as useful electronic components in various devices, and are contributing to the development of these devices.

しかしながら粉末冶金法で製造されるため焼成時に10
〜20%もの収縮を伴ない、焼成体の寸法に大きなバラ
ツキを生じる。このため電子部品として用いる際、組立
品そのものにも大きな寸法バラツキをもたらし、デバイ
スの高性能化の障害となっている。従ってより高性能の
デバイスとするためにはフェライトの高寸法精度化が重
要でちゃ本発明の目的とする所である。
However, since it is manufactured using a powder metallurgy method, 10
This is accompanied by a shrinkage of ~20%, resulting in large variations in the dimensions of the fired product. For this reason, when used as an electronic component, large dimensional variations occur in the assembled product itself, which is an obstacle to improving the performance of the device. Therefore, in order to achieve higher performance devices, it is important to increase the dimensional accuracy of the ferrite, which is the object of the present invention.

従来高寸法精度を得るには、収縮率を常に一定に制御す
る努力が当咳業者にて払われてきたが、限界があり、高
寸法精度化は達成出来ていない。また10〜20%もの
大きな収縮率を小さくすることによシ高寸法精度を得る
努力も続けられてはいるものの充分ではない。例えばフ
ェライトと樹脂とを混合したる後成形後固化したいわゆ
るモールドタイプの製品は金型と製品の寸法の差は極め
て少なく高寸法精度を達成し得るものの製品強度が弱く
応用が限定される。
Conventionally, in order to obtain high dimensional accuracy, efforts have been made by manufacturers in the art to always control the shrinkage rate at a constant level, but there are limitations and high dimensional accuracy has not been achieved. Further, efforts have been made to obtain high dimensional accuracy by reducing the large shrinkage rate of 10 to 20%, but this is not sufficient. For example, so-called mold-type products, which are made by mixing ferrite and resin and solidifying after molding, have very little difference in dimension between the mold and the product and can achieve high dimensional accuracy, but the product strength is weak and its applications are limited.

本発明は収縮率が10%以下と小さな材料を製造する新
規な方法を見い出したものでアリ、これにより高寸法精
度化ひいてはデバイスの一層の高性能化を図ることを目
的とするものである。
The present invention is based on the discovery of a new method for manufacturing a material with a small shrinkage rate of 10% or less, and the purpose of this invention is to achieve higher dimensional accuracy and further improve the performance of devices.

本発明による新規な方法はフェライトとガラス粉末とを
混合したる後、フェライトの微密化の進行する温度で焼
成を行うもので、この時添加したガラス粉末がフェライ
ト粒子の周囲をおおうことでフェライトの微密化を押え
低収縮率を達成するものである。
The novel method of the present invention is to mix ferrite and glass powder and then perform firing at a temperature at which the ferrite becomes finer.The glass powder added at this time covers the ferrite particles, causing the ferrite to form. This achieves a low shrinkage rate by suppressing the miniaturization of the material.

従来磁性材料とガラスとを混合し、加熱処理を行なう製
法としては例えば特開昭50−50207号公報記載の
方法があるが咳方法例ではホットプレスを行なうのに比
べ本発明では通常の焼成法で可能なため量産性に格段の
差がある。さらに本発明ではフェライトの微密化を一定
程度進行させるのに対し引用例はガラスと磁性材料を単
に同化させるものである点が異なる。ここでフェライト
の微密化について簡単に触れておく。
Conventional manufacturing methods in which magnetic materials and glass are mixed and heated include the method described in Japanese Patent Application Laid-open No. 50-50207, but in contrast to the coughing method in which hot pressing is performed, the present invention uses a normal firing method. There is a significant difference in mass production. Furthermore, in the present invention, the ferrite is refined to a certain degree, whereas the cited example is different in that the glass and the magnetic material are simply assimilated. Let me briefly touch on the microdensification of ferrite.

フェライト粉末を金型中で加圧した成形体中には多くの
空孔を含むが通常eoo〜1000”0以上の温度に加
熱するとフェライトを構成する原子間に拡散が生じこれ
に伴ない空孔が減少し成形体は収縮する。この微密化の
進行に伴ない成形体では殆んど磁性を示さないものが、
磁性体としての機能を有するようになると同時に強度も
強くなる。本発明はガラスが7工2イト粒子の周囲を囲
むため一定程度の拡散による微密化を進行させると同時
に途中で拡散を止めることによシ収縮率を小さくするも
のである。以下に実施例を示す。
A molded product made by pressing ferrite powder in a mold contains many pores, but when heated to a temperature of 0 to 1000", diffusion occurs between the atoms that make up the ferrite, resulting in pores. decreases and the molded body contracts.As this microdensification progresses, the molded body that shows almost no magnetism becomes
It becomes strong as well as functions as a magnetic material. In the present invention, since the glass surrounds the heptad particles, microdensification is progressed by diffusion to a certain degree, and at the same time, the shrinkage rate is reduced by stopping the diffusion midway. Examples are shown below.

実施例1 FeyOs 47.5  Mg025.OZn020.
5mo1 %残部CuOよシなる混合粉を900〜12
00°0にて仮焼を行ない2〜5μ!nに微粉砕した後
、該微粉砕粉に軟化点650℃で粒径100メツシエ以
下の非晶質ガラス粉末を100重量%加た粉末をライカ
イ機にて1時間混合した。該混合粉にpvA水溶液を加
え混線し造粒を行なった後、外径20$径10■の金型
中にて2.ton/a/の圧力を加えた成形体を得た。
Example 1 FeyOs 47.5 Mg025. OZn020.
5mo1% balance CuO mixed powder 900~12
Calcinate at 00°0 to 2~5μ! After the powder was finely pulverized to 100% by weight, the finely pulverized powder was mixed with 100% by weight of amorphous glass powder having a softening point of 650° C. and a particle size of 100 meshier or less using a Raikai machine for 1 hour. After adding a pvA aqueous solution to the mixed powder and granulating it by mixing, it was placed in a mold with an outer diameter of 20 dollars and a diameter of 10 mm. A molded article was obtained to which a pressure of ton/a/ was applied.

該成形体を大気中1250℃にて焼成した試料の特性を
ガラス粉末を加えず同一の処理を施したものの特性と合
せ第−表に示す。
Table 1 shows the characteristics of a sample obtained by firing the molded body at 1250 DEG C. in the atmosphere, together with the characteristics of a sample subjected to the same treatment without adding glass powder.

第1表 この様にガラスを加えたものでは従来技術では得られな
かった101以下の低収縮率材を得ることが出来る。ま
た圧壊強度もフェライトを樹脂で固化したのみのものの
100〜sookg/7に比して大きい。
Table 1 By adding glass in this way, it is possible to obtain a material with a low shrinkage rate of 101 or less, which could not be obtained with the prior art. Moreover, the crushing strength is also higher than that of the ferrite solidified with resin, which is 100 to sookg/7.

実施例2 実施例1と同一のフェライト粉砕粉に同一のガラスを5
重量%加えたる後間−の処理を施した試料の特性を第2
表に示す。
Example 2 The same glass was added to the same crushed ferrite powder as in Example 1.
The characteristics of the sample subjected to the post-treatment with weight% addition were determined in the second
Shown in the table.

第2表 実施例3 実施例1と同一のフェライト粉砕粉に同一のガラス粉末
2.5重量%を加え同一の処理を施した試料の特性を第
3表に示す。
Table 2 Example 3 Table 3 shows the characteristics of a sample obtained by adding 2.5% by weight of the same glass powder to the same ferrite powder as in Example 1 and subjecting it to the same treatment.

第5表 実施例4 実施例1と同一のフェライト粉末に粒度が100メツシ
ユ以下の結晶化ガラス粉末を5重量%加え混合したもの
に実施例1と同一の処理を施しだ試料の特性を第4表に
示す。
Table 5 Example 4 The same ferrite powder as in Example 1 was mixed with 5% by weight of crystallized glass powder with a particle size of 100 mesh or less, and the same treatment as in Example 1 was applied to the mixture. Shown in the table.

第4表 実施例5 Fears 49.5 Ni018.OZn052,5
mo1 %よシなる混合粉を800〜1100℃にて仮
焼を行ない1〜5μmに微粉砕した後、該粉砕粉に実施
例1に用いたガラスを5重量%加えた粉末を実施例1と
同様の造粒おXび成形を施した試料を1500℃に焼成
した試料の特性をガラスを加えない試料の特性と合せ第
5表に示す。
Table 4 Example 5 Fears 49.5 Ni018. OZn052,5
After calcining a mixed powder of mo1% at 800 to 1100°C and pulverizing it to 1 to 5 μm, the powder was prepared by adding 5% by weight of the glass used in Example 1 to the pulverized powder. Table 5 shows the characteristics of a sample obtained by firing a sample subjected to similar granulation and molding at 1500° C., together with the characteristics of a sample to which no glass was added.

第5表 以上の実施例に示したようにガラスを加えたフェライト
は従来にない10%以下の低収縮率となり高寸法精度化
ひいてはデバイスの高性能化に寄与する所大である。な
おガラスを加えることによシ磁fPC特性は幾分低下す
るが、フェライトに要求される特性は例えば透磁率につ
いてみると5〜20,000の極めて広い範囲にあるた
め、本発明材の用途を制限するものではない6またガラ
ス量が15重量幅以上となると殆んど磁性体としての性
質が失くなるため請求範囲を15重量優に限定した。ガ
ラス量が0.5重量%以下ではf)許庁長宮殿 発 明 の 名 称  78.イ、磁性材料補市をする
者 に Iラ  ・sos+  [l立金属株式会社代l・
右河野 典夫 代   理   人 居  ト・t「    東5:(都E代111区丸の内
2丁目1番2跨II・“f令属株式会社内 電話 東京
 284−4642を市11″の文・を象 補正の内容 ■明細書の「特許請求の範囲」の欄の記載を次の通り訂
正する。
As shown in the examples in Table 5 and above, ferrite with glass added has a shrinkage rate as low as 10% or less, which is unprecedented, and greatly contributes to higher dimensional accuracy and higher performance of devices. Although the magnetic fPC characteristics deteriorate somewhat by adding glass, the characteristics required of ferrite, for example, in terms of magnetic permeability, are in an extremely wide range of 5 to 20,000. This is not intended to be limiting.6 Furthermore, if the amount of glass exceeds 15% by weight, it will almost lose its properties as a magnetic material, so the scope of the claims is limited to well over 15% by weight. If the amount of glass is less than 0.5% by weight, f) Name of the Invention 78. B. For those who provide magnetic materials assistance.
Norioyo Ukono Osamu To T 5 East 5: (Tokyo E-dai 111-ku Marunouchi 2-1-2 Straddle II, "F Regent Co., Ltd. Telephone Tokyo 284-4642" City 11") Contents of the amendment - The statement in the "Claims" column of the specification is corrected as follows.

「78ライト粉末に対しガラス粉末を03−15重ii
%加え混合し念る後7.ライトの枢密化が始まる温度以
上の温度で焼成することを特徴とした t低収縮軟磁性7.ライト材料。」 亘明細書の「発明の詳細な説明」の欄の記載を下記の如
く訂正する。
"03-15 heavy ii glass powder for 78 light powder
7. After adding % and mixing carefully. 7. Low shrinkage soft magnetism characterized by firing at a temperature above the temperature at which light densification begins. light material. ” The statement in the “Detailed Description of the Invention” column of the Wataru Specification is corrected as follows.

記 (1)明細書第2頁第15行の「微密化」を「朧密化」
に訂正する。
Note (1) “Microdensification” in line 15 of page 2 of the specification is changed to “obscurity”
Correct.

(2)同書同頁第18行の「微密化」を「琳密化」に訂
正する。
(2) In line 18 of the same page of the same book, ``Mini-densification'' is corrected to ``Rin-densification''.

彎同書第3貞第5行の「微密化J t−r#i密化」に
訂正する。
Corrected to ``Micro-densification J t-r#i-densification'' in the 5th line of the 3rd chapter of the same book.

(4)同書同頁#18行の「微密化」を「厭密化」に訂
正する。
(4) In line #18 on the same page of the same book, "microdensification" is corrected to "densification".

(5)同書同頁第13行の「微密化」を「厭密化」に訂
正する。
(5) In line 13 of the same page of the same book, "micro-densification" is corrected to "densification".

i)回書同頁第17行の「微密化」を「枢密化」に訂正
する。
i) In line 17 of the same page of the circular, "miniaturization" is corrected to "privacyization."

(γ)同書@4頁$18行の「第−表」を「#I1表」
K訂正する。
(γ) Same book @ page 4, line 18, “Table 1” is changed to “Table #I1”
K Correct.

(8)同書第6頁第16行の「1300℃に」を「1s
oo’cで」に訂正する。
(8) In the same book, page 6, line 16, “1300℃” was changed to “1s
Correct to "oo'c de".

以  上that's all

Claims (1)

【特許請求の範囲】[Claims] 7エライ)E末に対しガラス粉末を0.5〜15重量%
加え混合したる後フェライトの微密化が始まる温度以上
の温度で焼成することを特徴とした低収縮率軟磁性フェ
ライト材料。
7 Elai) 0.5 to 15% by weight of glass powder based on E powder
A low-shrinkage soft magnetic ferrite material characterized by being added and mixed and then fired at a temperature higher than the temperature at which ferrite begins to become finely densified.
JP1843682A 1982-02-08 1982-02-08 Ferrite magnetic material Pending JPS58135606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1843682A JPS58135606A (en) 1982-02-08 1982-02-08 Ferrite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1843682A JPS58135606A (en) 1982-02-08 1982-02-08 Ferrite magnetic material

Publications (1)

Publication Number Publication Date
JPS58135606A true JPS58135606A (en) 1983-08-12

Family

ID=11971591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1843682A Pending JPS58135606A (en) 1982-02-08 1982-02-08 Ferrite magnetic material

Country Status (1)

Country Link
JP (1) JPS58135606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956114A (en) * 1987-07-01 1990-09-11 Tdk Corporation Sintered ferrite body, chip inductor, and composite LC part
US5120366A (en) * 1988-12-28 1992-06-09 Matsushita Electric Industrial Co., Ltd. Composite ferrite material
WO1994012990A1 (en) * 1992-11-25 1994-06-09 Matsushita Electric Industrial Co., Ltd. Magnetic substance and method of its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956114A (en) * 1987-07-01 1990-09-11 Tdk Corporation Sintered ferrite body, chip inductor, and composite LC part
US5120366A (en) * 1988-12-28 1992-06-09 Matsushita Electric Industrial Co., Ltd. Composite ferrite material
WO1994012990A1 (en) * 1992-11-25 1994-06-09 Matsushita Electric Industrial Co., Ltd. Magnetic substance and method of its manufacture
US5518641A (en) * 1992-11-25 1996-05-21 Matsushita Electric Industrial Co., Ltd. Magnetic material and manufacturing method thereof
US5683617A (en) * 1992-11-25 1997-11-04 Matsushita Electric Industrial Co., Ltd. Magnetic material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
DE68921971T2 (en) Composite ferrite material.
JPS58135606A (en) Ferrite magnetic material
GB1466704A (en) Production of piezoelectric bodies
JPS58180985A (en) Nuclear fuel pellet and manufacture therefor
JPS55103705A (en) Ferrite composition with high initial permeability and method of manufacturing its compact
CN113773069B (en) Ferrite material and preparation method and application thereof
JPS58135609A (en) Preparation of ferrite magnetic material
JPS58135607A (en) Ferrite magnetic material
JPS58135608A (en) Ferrite magnetic material
US3840624A (en) Method of manufacturing a ferrite magnet
JPS58141511A (en) Ferrite magnetic material
JPS58135177A (en) Manufacture of ferrite composite material
JPS58135133A (en) Ferrite magnetic material
JPS58135134A (en) Ferrite magnetic material
JPH04210402A (en) Mixed iron powder
Qi et al. New magnetic composite based on Ni-Zn for magnetic screenings and power conversion with its recyclable and formulable features
JPS5918414B2 (en) Manufacturing method for plastic bonded magnetic molded body
JPH04285141A (en) Manufacture of ferrous sintered body
Balakrishna et al. PARTICLE AGGREGATES IN POWDER PROCESSING- A REVIEW
JPH02241007A (en) Ferrite magnetic material and its manufacture
JPS62219903A (en) Manufacture of low loss oxide magnetic material
JP2823604B2 (en) Method for producing anisotropic ferrite magnet
JPH0542128B2 (en)
JPS6364954A (en) Manufacture of porous ceramic sintered body
JP2000211979A (en) Production of silica porous body