JP2762531B2 - Ferrite magnetic body and method of manufacturing the same - Google Patents

Ferrite magnetic body and method of manufacturing the same

Info

Publication number
JP2762531B2
JP2762531B2 JP6243689A JP6243689A JP2762531B2 JP 2762531 B2 JP2762531 B2 JP 2762531B2 JP 6243689 A JP6243689 A JP 6243689A JP 6243689 A JP6243689 A JP 6243689A JP 2762531 B2 JP2762531 B2 JP 2762531B2
Authority
JP
Japan
Prior art keywords
ferrite magnetic
powder
temperature
glass
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6243689A
Other languages
Japanese (ja)
Other versions
JPH02241007A (en
Inventor
真二 原田
肇 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6243689A priority Critical patent/JP2762531B2/en
Priority to EP89124090A priority patent/EP0376319B1/en
Priority to KR1019890019939A priority patent/KR920004025B1/en
Priority to DE68921971T priority patent/DE68921971T2/en
Publication of JPH02241007A publication Critical patent/JPH02241007A/en
Priority to US07/745,639 priority patent/US5120366A/en
Application granted granted Critical
Publication of JP2762531B2 publication Critical patent/JP2762531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高結晶性フェライト磁性粉末をガラス材で
結着固化してなる超低収縮率のフェライト磁性体とその
製造方法に関するものであり、この種のフェライト磁性
体は有用な電子部品として利用される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-low shrinkage ferrite magnetic material obtained by binding and solidifying a highly crystalline ferrite magnetic powder with a glass material, and a method for producing the same. Kinds of ferrite magnetic materials are used as useful electronic components.

従来の技術 従来のフェライト磁性材料の製造方法は、主として粉
末治金法、すなわち粉末成形と高温焼成の工程を必要と
する焼結法がほとんどである。
2. Description of the Related Art Most of the conventional methods for producing a ferrite magnetic material are mainly a powder metallurgy method, that is, a sintering method that requires steps of powder molding and high-temperature firing.

フェライト磁性体を作る場合は、出発原料を所定の割
合で配合し、適当な条件で仮焼成して脱ガスおよびある
程度の固相反応を進めた後(これを仮焼粉という)、粉
砕,造粒,成形という工程を経て、その成形体を適切な
雰囲気中で前記の仮焼成温度より高温で本焼成すること
によって所望の磁気特性,機械的強度を有した多結晶質
のフェライト焼結体を得ている。
When a ferrite magnetic material is produced, the starting materials are mixed in a predetermined ratio, calcined under appropriate conditions, degassing and a certain amount of solid-phase reaction are advanced (this is called calcined powder), and then pulverized and formed. After the steps of graining and compacting, the compact is fully baked in an appropriate atmosphere at a temperature higher than the pre-baking temperature to obtain a polycrystalline ferrite sintered body having desired magnetic properties and mechanical strength. It has gained.

この多結晶質のフェライト焼結体の微細構造の模式図
を第2図に示す。第2図において、6は結晶粒、7は粒
界、8は粒界ポア、9は結晶粒6のポアである。
FIG. 2 shows a schematic diagram of the fine structure of this polycrystalline ferrite sintered body. In FIG. 2, 6 is a crystal grain, 7 is a grain boundary, 8 is a grain boundary pore, and 9 is a pore of the crystal grain 6.

上記工程中の仮焼温度は所定配合比率の出発原料が固
相反応を始める700〜1000℃の間に設定され、焼結を十
分にさせる本焼成温度は仮焼粉の材料および組成さらに
は粒径,形状によって異なるが通常は1000〜1400℃とい
う高温である。この時の焼成雰囲気は求められる材料,
組成によって酸化性雰囲気か非酸化性雰囲気が選ばれ
る。
The calcining temperature in the above process is set between 700 and 1000 ° C., at which the starting material of a predetermined blending ratio starts the solid-phase reaction, and the main calcining temperature for sufficient sintering is the material and composition of the calcined powder and the granules. Although it depends on the diameter and shape, it is usually a high temperature of 1000 to 1400 ° C. The firing atmosphere at this time depends on the required material,
An oxidizing atmosphere or a non-oxidizing atmosphere is selected depending on the composition.

このフェライト焼結法の欠点は、上記仮焼粉の成形体
を本焼成工程で焼結させると必ず寸法変化が生じるとい
うことである。つまり本焼成を終えると通常10〜20%、
大きい時にはそれ以上も収縮し、焼結品の寸法精度なら
びに歩留りを悪くする。従って、切削,研磨等の機械加
工である後処理が必要となってくる。
A disadvantage of the ferrite sintering method is that sintering of the calcined powder compact in the main sintering step necessarily causes a dimensional change. In other words, after the final firing, usually 10-20%,
When it is large, it shrinks more, and the dimensional accuracy and yield of the sintered product are deteriorated. Therefore, post-processing, which is mechanical processing such as cutting and polishing, is required.

上述した焼結過程での収縮は次のような原因で起る。
すなわち、仮焼粉を単に加圧した成形体は通常粒径が2
〜5μm程度もしくはそれ以下の粉末を使用するために
成形密度が低く、つまり粉末どうしが接触しているもの
のまだ空隙が多く、700〜1000℃以上の温度で加熱する
と仮焼粉間の接触部分で粒子を構成する原子の相互拡散
が生じて焼結現象が始まる。その結果、焼結の進行度合
とともに仮焼粉間の空隙が減少して行き、大きい時には
20%も越えて収縮するのである。
The above-mentioned shrinkage in the sintering process occurs for the following reasons.
That is, a compact obtained by simply pressing the calcined powder usually has a particle size of 2
The molding density is low due to the use of powder of about 5 μm or less, that is, there are still many voids although the powders are in contact with each other, and when heated at a temperature of 700 to 1000 ° C. or more, the contact portion between the calcined powders Interdiffusion of the atoms constituting the particles occurs, and the sintering phenomenon starts. As a result, the gap between the calcined powders decreases with the progress of sintering, and when it is large,
It shrinks by over 20%.

従って、焼結をきっちりと均一にかつ成形体に熱衝撃
を受けないようにするには本焼成時の昇温降温を比較的
緩慢にすることが重要になってくる。この結果、本焼成
工程は普通少なくとも半日以上長い場合で2日になるこ
ともある。
Therefore, it is important to make the temperature rise and fall during the main firing relatively slow in order to ensure that the sintering is exactly uniform and that the molded body is not subjected to thermal shock. As a result, the main calcination step may be as long as at least half a day or more in two days.

フェライト焼結法の欠点を改良する研究はこれまでに
も数多くなされてきた。そのうち焼結体の収縮問題に関
しては収縮率を極力下げる方法や収縮率を一定に制御す
る方法が種々検討されてきたが、いずれもフェライトの
性能,特性を確保しようとすればある程度の収縮が避け
られないのが実状である。たとえば、特開昭58-135133
号公報,特開昭58-135606号公報に記載されているよう
に、フェライト仮焼粉とガラス粉末とを混合した後に、
フェライトの緻密化(焼結化)の進行する温度で焼成す
ると、この時添加しているガラス粉末がフェライト粒子
の周囲を覆うことでフェライトの緻密化を一部抑えて低
収縮率の焼結体を得ることができるというものである。
しかし、この場合でも仮焼粉作成温度が後の成形体の本
焼成温度よりいずれも低いために、本焼成時には未だ直
接接触している仮焼粉間の相互拡散が生じるので成形体
の収縮現象は避け難く実際にはまだ数%の収縮が起きて
いた。
There have been many studies to improve the disadvantages of the ferrite sintering method. Among them, regarding the problem of shrinkage of the sintered body, various methods have been studied to reduce the shrinkage as much as possible and to control the shrinkage at a constant level. However, in order to ensure the performance and characteristics of ferrite, some shrinkage is avoided. The reality is that it cannot be done. For example, JP-A-58-135133
As described in JP-A-58-135606, after mixing ferrite calcined powder and glass powder,
When firing at a temperature at which ferrite densification (sintering) progresses, the glass powder added at this time covers the periphery of the ferrite particles, thereby partially suppressing ferrite densification and reducing the shrinkage of the sintered body. Can be obtained.
However, even in this case, since the calcined powder preparation temperature is lower than the final firing temperature of the compact afterwards, mutual diffusion occurs between the calcined powders that are still in direct contact during the final firing, and the compaction shrinkage phenomenon occurs. Was unavoidable and in fact shrank by a few percent.

発明が解決しようとする課題 以上述べてきたように、従来のフェライト焼結体では
所望の性能を得ようとして焼結を進めれば進める程収縮
は大きくなり、逆に収縮を抑えれば性能が確保できなく
て両立し難い。しかし、フェライト焼結体は電子部品,
デバイス材料として多用され、その性能および高寸法精
度が益々重要視されている。
Problems to be Solved by the Invention As described above, in the conventional ferrite sintered body, the more the sintering is performed in order to obtain the desired performance, the larger the shrinkage is, and conversely, if the shrinkage is suppressed, the performance is reduced. It is difficult to achieve both because they cannot be secured However, sintered ferrites are
It is widely used as a device material, and its performance and high dimensional accuracy are increasingly regarded as important.

本発明の目的は上述した従来技術の欠点を解消し、ほ
とんど収縮性のないかつ磁気特性に優れたガラス結着型
で超低収縮率のフェライト磁性体とそれを安価に製造で
きる方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to provide a glass-bound ultra-low-shrinkage ferrite magnetic material having almost no shrinkage and excellent magnetic properties, and a method for manufacturing the same at a low cost. Things.

課題を解決するための手段 上記課題を解決するために本発明のフェライト磁性体
は、高温焼成で十分にフェライト化が進んだ少なくとも
2種類の粒度分布をもった高結晶性フェライト磁性粉末
とこの焼成温度より低い軟化点をもつガラス粉末との混
合物を、このガラス粉末の軟化温度以上でかつ上記高結
晶性フェライト磁性粉末の焼成温度以下の範囲で加熱処
理をして高結晶性フェライト磁性粉末をガラス材で結着
した構成とするものである。
Means for Solving the Problems In order to solve the above problems, the ferrite magnetic material of the present invention comprises a highly crystalline ferrite magnetic powder having at least two types of particle size distributions, which has been sufficiently ferritized by high-temperature sintering. The mixture with the glass powder having a softening point lower than the temperature is heated at a temperature not lower than the softening temperature of the glass powder and not higher than the sintering temperature of the high crystalline ferrite magnetic powder to obtain a high crystalline ferrite magnetic powder. It is configured to be bound by a material.

作用 使用するフェライト磁性粉末自体を高温焼成により既
に完全に近いところまで結晶化を進めているので、後の
より低温の成形体加熱処理では、高結晶性フェライト磁
性粉末間の焼結がほとんど起こらず、高結晶性フェライ
ト磁性粉末間に混在するガラス粉末を単に溶融して高結
晶性フェライト磁性粉末を結着させるだけである。その
結果、成形体中の空隙率が加熱処理前後であまり変化し
ないから、金型成型寸法に近い高寸法精度でかつ磁気特
性にも優れた新規なフェライト磁性体が得られる。
Action Since the ferrite magnetic powder to be used has already been crystallized to near perfection by high-temperature firing, sintering between the highly crystalline ferrite magnetic powders hardly occurs in the subsequent heat treatment at a lower temperature. Simply, the glass powder mixed between the high crystalline ferrite magnetic powders is simply melted to bind the high crystalline ferrite magnetic powder. As a result, the porosity in the molded product does not change much before and after the heat treatment, so that a novel ferrite magnetic material having high dimensional accuracy close to the die molding dimensions and excellent magnetic properties can be obtained.

さらに成形体の加熱処理は焼結性を期待するものでは
なく、上述のようにガラス粉末が溶融して高結晶性フェ
ライト磁性粉末間に流れ結着効果がでればよいので基本
的には従来法の本焼成時間よりかなり短時間ですむ。こ
のために設備費や電気代が安くつき、製造方法も簡便で
あるので安価に製造できる。
Furthermore, the heat treatment of the molded body does not expect sintering properties, and it is basically necessary to melt the glass powder as described above and flow between the high-crystalline ferrite magnetic powders and obtain a binding effect. It is much shorter than the main firing time of the method. For this reason, equipment costs and electricity costs are low, and the manufacturing method is simple, so that it can be manufactured at low cost.

また、軟質フェライトではそれ自身の渦電流損失を極
力減らす必要から高抵抗化が望まれるが、本発明によれ
ば比較的電気抵抗の低いMn-Zn系フェライトであっても
溶融固化したガラス成分が高結晶性フェライト磁性粉末
を電気的に絶縁するので抵抗値が上り高周波特性を良く
するという利点も得られる。
Further, in the case of soft ferrite, it is desired to increase the resistance because it is necessary to minimize the eddy current loss of the ferrite itself. Since the high crystalline ferrite magnetic powder is electrically insulated, there is also obtained an advantage that the resistance value increases and the high frequency characteristics are improved.

実施例 以下本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

すなわち、本発明は第1図に示すように少なくとも2
種類以上の粒径分布の異なる高結晶性フェライト磁性粉
末1(以下、粗粉とよぶ),2(以下、微粉とよぶ)をこ
の高結晶性フェライト磁性粉末1,2の焼成温度以下で軟
化溶融するガラス材3で結着した構成とするものであ
る。
That is, the present invention requires at least two components as shown in FIG.
High-crystalline ferrite magnetic powders 1 (hereinafter, referred to as coarse powder) and 2 (hereinafter, referred to as fine powder) having different particle size distributions are softened and melted at a firing temperature of the high-crystalline ferrite magnetic powders 1, 2 or lower. It is configured to be bound by a glass material 3 to be formed.

具体的には、2種類以上の粒度分布の異なる高結晶性
フェライト磁性粉末1,2とガラス粉末とをよく混合し、
造粒した混合造粒物を加圧成型した後、この成形体中の
高結晶性フェライト磁性粉末1,2間に混在する上記ガラ
ス粉末を軟化溶融させることにより、高結晶性フェライ
ト磁性粉末1,2をガラス材3で単に結着し固化したフェ
ライト磁性体をいう。なお、図中4は空隙、5は高結晶
性フェライト磁性粉末1中のポアを示す。
Specifically, two or more kinds of highly crystalline ferrite magnetic powders 1 and 2 having different particle size distributions and glass powder are mixed well,
After press-molding the granulated mixed granules, the glass powder mixed between the highly crystalline ferrite magnetic powders 1 and 2 in this compact is softened and melted to obtain the highly crystalline ferrite magnetic powders 1 and 2. A ferrite magnetic material obtained by simply bonding and solidifying 2 with a glass material 3. In the figure, 4 indicates voids, and 5 indicates pores in the highly crystalline ferrite magnetic powder 1.

ここで使用する高結晶性フェライト磁性粉末1,2は高
温焼成によって十分にフェライト反応化したものであっ
て、通常は1000℃以上で焼成したものが好ましい。
The highly crystalline ferrite magnetic powders 1 and 2 used here are those which have sufficiently undergone a ferrite reaction by firing at a high temperature, and usually those fired at 1000 ° C. or higher are preferable.

軟質フェライト磁性体を得たい場合は、高結晶性フェ
ライト磁性粉末1の抗磁力HCが小さい程良いので、磁性
粒子のサイズは大きい程好ましいが、一方、高結晶性フ
ェライト磁性粉末1の充填密度が下がるので実際には10
0〜200μm径までが適している。また本発明において、
少なくとも2種類以上の粒度分布をもつフェライト磁性
粉末で構成するのは、磁性体の充填密度(成形密度)を
上げるためであって、できるだけ空隙4を減らす意味で
粒径が小さい微粉末2を粗粉末1と組み合わせた構成と
している。特にこの微粉末2の粒径は5μm以下の粉末
が最も効果的である。
If it is desired to obtain a soft magnetic ferrite, so the better the coercivity H C highly crystalline ferrite magnetic powder 1 is less, but preferably as the size of the magnetic particles is large, whereas, the high crystalline ferrite magnetic powder 1 pack density Actually goes down to 10
A diameter of 0 to 200 μm is suitable. In the present invention,
The ferrite magnetic powder having at least two kinds of particle size distribution is used to increase the packing density (molding density) of the magnetic material, and the fine powder 2 having a small particle size is coarsely reduced in order to reduce the voids 4 as much as possible. It is configured to be combined with the powder 1. Particularly, a powder having a particle size of 5 μm or less is most effective.

次に高結晶性フェライト磁性粉末1,2を結着するガラ
ス粉末の軟化温度は高結晶性フェライト磁性粉末1,2の
焼成温度以下であれば良いが、本発明によるフェライト
磁性体の応用を考えると耐熱性の観点から下限は300℃
以上であることが望ましい。高結晶性フェライト磁性粉
末1,2に加えるガラス粉末の量は0.3〜30重量%が良く、
0.3%より少ないと高結晶性フェライト磁性粉末1,2の結
着効果が小さく機械的強度が確保できない。一方、30%
より多いガラス量では、結着力は十分に強くなるが非磁
性量が増すためにフェライト磁性体としての磁気特性が
著しく悪化してよろしくない。
Next, the softening temperature of the glass powder that binds the high-crystalline ferrite magnetic powders 1 and 2 may be lower than the firing temperature of the high-crystalline ferrite magnetic powders 1 and 2, but the application of the ferrite magnetic material according to the present invention is considered. The lower limit is 300 ° C from the viewpoint of heat resistance
It is desirable that this is the case. The amount of glass powder added to the high crystalline ferrite magnetic powders 1 and 2 is preferably 0.3 to 30% by weight.
If it is less than 0.3%, the binding effect of the high crystalline ferrite magnetic powders 1 and 2 is so small that mechanical strength cannot be secured. Meanwhile, 30%
When the amount of glass is larger, the binding force becomes sufficiently strong, but the amount of non-magnetism is increased, so that the magnetic properties of the ferrite magnetic material are remarkably deteriorated.

高結晶性フェライト磁性粉末1,2とガラス粉末の混合
成形体の加熱処理は、ガラス粉末の溶融浸透を主な目的
とするものであるから、熱処理の保持時間および昇降温
に要する時間を含めて3時間以下でも可能である。
Since the main purpose of the heat treatment of the mixed molded body of the high crystalline ferrite magnetic powders 1 and 2 and the glass powder is to melt and infiltrate the glass powder, the heat treatment includes the holding time of the heat treatment and the time required for raising and lowering the temperature. Less than 3 hours is possible.

熱処理温度は基本的にはガラスの軟化温度より上であ
れば良いが、高結晶性フェライト磁性粉末1,2の焼成温
度に近くなるに従って特に800℃以上になるとガラス材
3の結着効果が増し、低収縮性であるにもかかわらず磁
気特性も優れるという好ましい効果が得られた。
The heat treatment temperature may be basically higher than the softening temperature of the glass. However, as the temperature approaches the sintering temperature of the highly crystalline ferrite magnetic powders 1 and 2, especially at 800 ° C. or more, the binding effect of the glass material 3 increases. A favorable effect that the magnetic properties are excellent despite the low shrinkage was obtained.

以下、具体的な実施例について説明する。 Hereinafter, specific examples will be described.

(実施例1〜10) Fe2O3 50,NiO 18,ZnO 32mol%よりなる出発混合造粒
粉を1320℃,6時間焼成したものを粉砕し、粒径が50〜10
0μmの粗粉末と5μm以下の微粉末のNi-Zn軟質フェラ
イト本焼粉をそれぞれ準備した。この粉末をX線解析し
た結果、軟質フェライト特有の鋭いスピネル構造回折線
が得られ結晶性の非常に高い磁性粉であることを確認し
た。
(Examples 1 to 10) A starting mixed granulated powder composed of 50 mol of Fe 2 O 3 , NiO 18 and ZnO 32 mol% was baked at 1320 ° C. for 6 hours.
A coarse powder of 0 μm and a fine powder of Ni-Zn soft ferrite of 5 μm or less were each prepared. As a result of X-ray analysis of this powder, a sharp spinel structure diffraction line unique to soft ferrite was obtained, and it was confirmed that the powder was a magnetic powder having extremely high crystallinity.

上記高結晶性フェライト磁性粉末1,2の構成比を各々
磁性粉末1(粗粉末)を100重量部、磁性粉末2(微粉
末)を30重量部とした高結晶性フェライト磁性粉末全量
に対して軟化点(Td)370℃、平均粒径1μmの無アル
カリホウケイ酸鉛系ガラス粉末を各々0,0.5,1,3,5,10,3
0,40wt%ずつ加えて混合,造粒した後、3ton/cmの圧力
で内径7mmφ,外径12mmφ,厚さ3mmのガラス含有量が各
々異なるリング状成形品を作製した。
The composition ratio of the high crystalline ferrite magnetic powders 1 and 2 is based on 100 parts by weight of the magnetic powder 1 (coarse powder) and 30 parts by weight of the magnetic powder 2 (fine powder). A non-alkali lead borosilicate glass powder having a softening point (Td) of 370 ° C. and an average particle size of 1 μm was added to each of 0,0.5,1,3,5,10,3.
After adding and granulating by adding 0,40 wt% each, a ring-shaped molded product having an inner diameter of 7 mmφ, an outer diameter of 12 mmφ, and a thickness of 3 mm with different glass contents was produced at a pressure of 3 ton / cm.

この各成形品を電気炉内に個々に設置し、1200℃,60
分空気中で加熱処理しガラス結着型のリング状フェライ
トコアを得た。
Each of these molded products is individually set in an electric furnace,
Heat treatment was performed in the air to obtain a glass-bound ring-shaped ferrite core.

上記実施例1〜10の試料の材料特性を第1表に示した (比較例1〜2) 実施例1と同一のフェライト本焼成粉末において磁性
粉末2(微粉末)として5〜20μmの粒径のものを30重
量部としたもの(比較例1)、磁性粉末2(微粉末)と
して20〜50μmの粒径のものを30重量部としたもの(比
較例2)にそれぞれ実施例1で用いた同一のガラス粉末
を5wt%加えて混合,造粒した後、実施例1と同様にし
て同サイズのリング状成形品を作製した。
The material properties of the samples of Examples 1 to 10 are shown in Table 1 (Comparative Examples 1 and 2). Particle size of 5 to 20 μm as magnetic powder 2 (fine powder) in the same ferrite main firing powder as in Example 1 The magnetic powder 2 (fine powder) having a particle size of 20 to 50 μm and the magnetic powder 2 (fine powder) having 30 parts by weight (Comparative Example 2) were used in Example 1 respectively. The same glass powder was added in an amount of 5 wt%, mixed and granulated, and a ring-shaped molded product having the same size was produced in the same manner as in Example 1.

この成形品を電気炉内に設置し、1200℃、60分空気中
で加熱処理してガラス含有型のリング状フェライトコア
を得た。
This molded product was placed in an electric furnace and heated at 1200 ° C. for 60 minutes in air to obtain a glass-containing type ring-shaped ferrite core.

この試料の材料特性を第1表に示した。 The material properties of this sample are shown in Table 1.

(実施例11〜15) 実施例1で用いた同一のフェライト本焼粉に対して同
一のガラス粉末を5wt%を加えて混合,造粒した後、3to
n/cmの圧力で内径7mmφ,外径12mmφ,厚さ3mmのリング
状成形品を5個作製した。
(Examples 11 to 15) The same ferrite main powder used in Example 1 was mixed with the same glass powder in an amount of 5 wt%, mixed and granulated.
Five ring-shaped molded articles having an inner diameter of 7 mm, an outer diameter of 12 mm, and a thickness of 3 mm were produced at a pressure of n / cm.

この各成形品を1個ずつ電気炉内に設置し、1300℃,1
000℃,800℃,600℃,450℃それぞれの温度で60分空気中
で加熱処理してガラス結着型リング状フェライトコアを
得た。
Place each of these molded products in an electric furnace one at a time
Heat treatment was performed in air at 000 ° C, 800 ° C, 600 ° C, and 450 ° C for 60 minutes to obtain a glass-bound ring-shaped ferrite core.

上記実施例11〜15の試料の材料特性を第2表に示し
た。
Table 2 shows the material properties of the samples of Examples 11 to 15 described above.

(実施例16) 実施例1で用いた同一のフェライト本焼粉に対して軟
化点(Ts)700℃,平均粒径1μmの無アルカリホウケ
イ酸鉛径ガラス粉末を5wt%を加えて混合,造粒した
後、3ton/cmの圧力で内径7mmφ,外径12mmφ,厚さ3cm
のリング状成形品を作製した。
(Example 16) 5% by weight of a non-alkali lead borosilicate glass powder having a softening point (Ts) of 700 ° C and an average particle size of 1 µm was added to the same ferrite main firing powder used in Example 1, and mixed and formed. After granulation, 3ton / cm pressure, inner diameter 7mmφ, outer diameter 12mmφ, thickness 3cm
Was produced.

この成形品を1200℃,60分間空気中で加熱処理してガ
ラス結着型リング状フェライトコアを得た。この実施例
16の材料特性を第2表に示した。
This molded product was heated in air at 1200 ° C. for 60 minutes to obtain a glass-bound ring-shaped ferrite core. This example
Table 2 shows the material properties of the 16 materials.

(実施例17〜28) Fe2O3 48,NiO 13,ZnO 34,CuO 5mol%よりなる出発混
合造粒粉を1320℃,6時間焼成したものを粉砕し、実施例
1と同様に粒径が50〜100μmの粗粉末と5μm以下の
微粉末のNi-Zn-Cu系軟質フェライト本焼粉をそれぞれ準
備した。この粉末をX線解析した結果、軟質フェライト
特有の鋭いスピネル構造回折線が得られ結晶性の非常に
高い磁性粉であることを確認した。
(Examples 17 to 28) A starting mixed granulated powder comprising Fe 2 O 3 48, NiO 13, ZnO 34, and CuO 5 mol% was baked at 1320 ° C. for 6 hours, and crushed. A Ni-Zn-Cu soft ferrite main firing powder of 50 to 100 µm in coarse powder and 5 µm or less in fine powder was prepared. As a result of X-ray analysis of this powder, a sharp spinel structure diffraction line unique to soft ferrite was obtained, and it was confirmed that the powder was a magnetic powder having extremely high crystallinity.

上記高結晶性フェライト磁性粉末1,2の構成比を各々
磁性粉末1(粗粉末)を100重量部、磁性粉末2(微粉
末)を30重量部とした高結晶性フェライト磁性粉末全量
に対して軟化点(Td)370℃、平均粒径1μmの無アル
カリホウケイ酸鉛系ガラス粉末を各々0,0.1,0.3,0.5,1,
3,5,10,30,40wt%ずつ加えて混合,造粒した後、3ton/c
m2の圧力で内径7mmφ、外径12mmφ、厚さ3mmのガラス含
有量が各々異なるリング状成形品を作製した。
The composition ratio of the high crystalline ferrite magnetic powders 1 and 2 is based on 100 parts by weight of the magnetic powder 1 (coarse powder) and 30 parts by weight of the magnetic powder 2 (fine powder). A non-alkali lead borosilicate glass powder having a softening point (Td) of 370 ° C. and an average particle size of 1 μm was respectively 0,0.1,0.3,0.5,1,1.
Add 3,5,10,30,40wt% each and mix and granulate, then 3ton / c
At a pressure of m 2 , ring-shaped molded articles having an inner diameter of 7 mmφ, an outer diameter of 12 mmφ, and a thickness of 3 mm with different glass contents were produced.

この各成形品を電気炉内に個々に設置し、1200℃,60
分間空気中で加熱処理しガラス結着型のリング状フェラ
イトコアを得た。
Each of these molded products is individually set in an electric furnace,
Heat treatment was performed in the air for 1 minute to obtain a glass-bound ring-shaped ferrite core.

上記実施例17〜28の試料の材料特性を第3表に示し
た。
Table 3 shows the material properties of the samples of Examples 17 to 28.

なお、上記実施例,比較例においては、初透磁率の測
定は、JIS規格(C2561)に準じ、まず前述のリング状フ
ェライトコアに絶縁テープを一層巻いた後、各々に線径
0.26mmφの絶縁銅線を全周にわたって一層巻いた試料を
準備した。次にこの自己インダクタンスをマクスウェル
ブリッジで測定磁界の強さが0.8(A/m)以下にて測定
し、これより周波数1(MHz)での初透磁率を算出し
た。
In the above Examples and Comparative Examples, the initial magnetic permeability was measured according to the JIS standard (C2561). First, an insulating tape was wound around the above-mentioned ring-shaped ferrite core, and then the wire diameter was measured.
A sample was prepared by further winding an insulated copper wire of 0.26 mmφ all around. Next, this self-inductance was measured with a Maxwell bridge when the strength of the measured magnetic field was 0.8 (A / m) or less, and the initial magnetic permeability at a frequency of 1 (MHz) was calculated from this.

また、飽和磁束密度は、各リングコアをJIS規格(C25
61)に準じ、自記磁束計法にて、10(Oe)の磁場での磁
束密度を測定した。
In addition, the saturation magnetic flux density is determined by JIS standard (C25
According to 61), the magnetic flux density at a magnetic field of 10 (Oe) was measured by the self-recording magnetometer method.

さらに、収縮率は熱処理前のリング状成形品と熱処理
後のリング状フェライトコアの外径寸法をそれぞれ測定
し、熱処理前後による寸法収縮率を算出した。引張強度
の測定は、JIS規格(C2564)に準じ、リングコアに2本
の細線をそれぞれ1回通し、うち1本を固定した後、残
り1本を垂直方向に5mm/min以下の速度で引張り、コア
が破壊する瞬間の引張り荷重を測定して求めた。
Furthermore, the shrinkage was measured by measuring the outer diameters of the ring-shaped molded product before the heat treatment and the ring-shaped ferrite core after the heat treatment, and calculating the dimensional shrinkage before and after the heat treatment. According to JIS standard (C2564), two thin wires were passed through the ring core once, and one of them was fixed. The tensile load at the moment when the core was broken was measured and determined.

発明の効果 以上のように本発明によれば、ガラス結着型高密度低
収縮率のフェライト磁性体は、寸法精度が良く、かつ磁
気特性に優れた磁性材料となりしかも安価に製造できる
ということから、各種磁気応用製品に使われる有用な電
子部品,材料として優れた効果を奏しうるものである。
Effect of the Invention As described above, according to the present invention, a glass-bound high-density low-shrinkage ferrite magnetic material has good dimensional accuracy, is a magnetic material having excellent magnetic properties, and can be manufactured at low cost. It can provide excellent effects as useful electronic components and materials used in various magnetic products.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるフェライト磁性体の微細構造の模
式図、第2図は従来の代表的な焼結型フェライト磁性体
の微細構造の模式図である。 1,2……高結晶性フェライト磁性粉末、3……ガラス
材、4……空隙、5……ポア。
FIG. 1 is a schematic diagram of a fine structure of a ferrite magnetic material according to the present invention, and FIG. 2 is a schematic diagram of a fine structure of a conventional typical sintered ferrite magnetic material. 1,2 ... High crystalline ferrite magnetic powder, 3 ... Glass material, 4 ... Void, 5 ... Pore.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温焼成で十分にフェライト化が進んだ少
なくとも2種類の粒度分布をもった高結晶性フェライト
磁性粉末とこの焼成温度より低い軟化点をもつガラス粉
末との混合物を、このガラス粉末の軟化温度以上でかつ
上記高結晶性フェライト磁性粉末の焼成温度以下の温度
範囲の加熱処理により高結晶性フェライト磁性粉末をガ
ラス材で結着してなるフェライト磁性体。
1. A mixture of a highly crystalline ferrite magnetic powder having at least two kinds of particle size distributions which have been sufficiently ferritized by high-temperature sintering and a glass powder having a softening point lower than the sintering temperature. A ferrite magnetic material obtained by binding a highly crystalline ferrite magnetic powder with a glass material by a heat treatment at a temperature not lower than the softening temperature of the above and below the firing temperature of the highly crystalline ferrite magnetic powder.
【請求項2】高結晶性フェライト磁性粉末とガラス粉末
の混合物の加熱処理温度を800℃以上で高結晶性フェラ
イト磁性粉末の焼成温度以下とした請求項1記載のフェ
ライト磁性体。
2. The ferrite magnetic material according to claim 1, wherein the heat treatment temperature of the mixture of the high crystalline ferrite magnetic powder and the glass powder is 800 ° C. or higher and the firing temperature of the high crystalline ferrite magnetic powder or lower.
【請求項3】高結晶性フェライト磁性粉末としてその粒
度分布の1種類が5μm以下の粒径からなる軟質磁性粉
末を用いた請求項1記載のフェライト磁性体。
3. The ferrite magnetic material according to claim 1, wherein a soft magnetic powder having a particle size distribution of 5 μm or less is used as the highly crystalline ferrite magnetic powder.
【請求項4】高結晶性フェライト磁性粉末に対するガラ
スの材料比率が0.3〜30wt%である請求項1記載のフェ
ライト磁性体。
4. The ferrite magnetic material according to claim 1, wherein the material ratio of the glass to the high crystalline ferrite magnetic powder is 0.3 to 30% by weight.
【請求項5】高温焼成で十分にフェライト化が進んだ少
なくとも2種類の粒度分布をもった高結晶性フェライト
磁性粉末とこの焼成温度より低い軟化点をもつガラス粉
末とを混合,造粒した混合物を、加熱成形した後、上記
フェライト磁性粉末の焼成温度以下の加熱処理により、
この成形体中に混在するガラス粉末を軟化溶融させて高
結晶性フェライト磁性粉末をガラス材で結着するフェラ
イト磁性体の製造方法。
5. A mixture obtained by mixing and granulating a highly crystalline ferrite magnetic powder having at least two kinds of particle size distributions sufficiently ferritized by high-temperature firing and a glass powder having a softening point lower than the firing temperature. After heat molding, by a heat treatment at a firing temperature of the ferrite magnetic powder or less,
A method for producing a ferrite magnetic material in which a glass powder mixed in the compact is softened and melted to bind a highly crystalline ferrite magnetic powder with a glass material.
JP6243689A 1988-12-28 1989-03-15 Ferrite magnetic body and method of manufacturing the same Expired - Lifetime JP2762531B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6243689A JP2762531B2 (en) 1989-03-15 1989-03-15 Ferrite magnetic body and method of manufacturing the same
EP89124090A EP0376319B1 (en) 1988-12-28 1989-12-28 A composite ferrite material
KR1019890019939A KR920004025B1 (en) 1988-12-28 1989-12-28 Ferrite magnets and making method thereof
DE68921971T DE68921971T2 (en) 1988-12-28 1989-12-28 Composite ferrite material.
US07/745,639 US5120366A (en) 1988-12-28 1991-09-09 Composite ferrite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6243689A JP2762531B2 (en) 1989-03-15 1989-03-15 Ferrite magnetic body and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02241007A JPH02241007A (en) 1990-09-25
JP2762531B2 true JP2762531B2 (en) 1998-06-04

Family

ID=13200139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6243689A Expired - Lifetime JP2762531B2 (en) 1988-12-28 1989-03-15 Ferrite magnetic body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2762531B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015109A1 (en) * 2001-08-09 2003-02-20 The Circle For The Promotion Of Science And Engineering Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
AU2003289465A1 (en) * 2002-12-20 2004-07-14 Fuji Electric Holdings Co., Ltd. Power supply-use transformer or reactor and switching power supply using it, and composite magnetic particle compact and production method therefor.
EP2131373B1 (en) * 2008-06-05 2016-11-02 TRIDELTA Weichferrite GmbH Soft magnetic material and method for producing objects from this soft magnetic material

Also Published As

Publication number Publication date
JPH02241007A (en) 1990-09-25

Similar Documents

Publication Publication Date Title
EP0376319B1 (en) A composite ferrite material
JP3492802B2 (en) Low loss ferrite material
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2812152B2 (en) Magnetic body and method of manufacturing the same
JP2762530B2 (en) Manufacturing method of ferrite magnetic material
JP2762532B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2830071B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2830241B2 (en) Ferrite magnetic material
JP2760026B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2914554B2 (en) Method for producing high permeability MnZn ferrite
JPH0374811A (en) Ferrite magnetic material
JP3391108B2 (en) Magnetic body and method of manufacturing the same
JPH05299229A (en) Ferrite magnetic body and manufacturing method thereof
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JPH02177511A (en) Ferrite magnetic material and manufacture thereof
JPH03233908A (en) Ferrite magnetic substance and its manufacture
JPH0433301A (en) Formation of ferrite magnetic substance
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
JPH08250318A (en) Frrite material and manufacture
JPH04101401A (en) Ferrite magnetic body and production thereof
JPH06151148A (en) Ferrite magnetic body and manufature thereof
JPH01319910A (en) Magnetic substance and manufacture thereof
JPH04237104A (en) Ferrite magnetic material and manufacture thereof
JPH0971455A (en) Ferrite material and its production
JPH04196201A (en) Manufacture of ferrite magnetic substance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090327

EXPY Cancellation because of completion of term