JP2762530B2 - Manufacturing method of ferrite magnetic material - Google Patents

Manufacturing method of ferrite magnetic material

Info

Publication number
JP2762530B2
JP2762530B2 JP6243589A JP6243589A JP2762530B2 JP 2762530 B2 JP2762530 B2 JP 2762530B2 JP 6243589 A JP6243589 A JP 6243589A JP 6243589 A JP6243589 A JP 6243589A JP 2762530 B2 JP2762530 B2 JP 2762530B2
Authority
JP
Japan
Prior art keywords
powder
temperature
ferrite magnetic
ferrite
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6243589A
Other languages
Japanese (ja)
Other versions
JPH02241006A (en
Inventor
真二 原田
肇 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6243589A priority Critical patent/JP2762530B2/en
Priority to KR1019890019939A priority patent/KR920004025B1/en
Priority to DE68921971T priority patent/DE68921971T2/en
Priority to EP89124090A priority patent/EP0376319B1/en
Publication of JPH02241006A publication Critical patent/JPH02241006A/en
Priority to US07/745,639 priority patent/US5120366A/en
Application granted granted Critical
Publication of JP2762530B2 publication Critical patent/JP2762530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高結晶性フェライト磁性粉末をガラス材で
結着固化してなる超低収縮率のフェライト磁性体の製造
方法に関するものであり、この種のフェライト磁性体は
有用な電子部品として利用される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-low shrinkage ferrite magnetic material obtained by binding and solidifying a highly crystalline ferrite magnetic powder with a glass material. Is used as a useful electronic component.

従来の技術 従来のフェライト磁性材料の製造方法は、主として粉
末治金法、すなわち粉末成形と高温焼成の工程を必要と
する焼結法がほとんどである。
2. Description of the Related Art Most of the conventional methods for producing a ferrite magnetic material are mainly a powder metallurgy method, that is, a sintering method that requires steps of powder molding and high-temperature firing.

フェライト磁性体を作る場合は、出発原料を所定の割
合で配合し、適当な条件で仮焼成して脱ガスおよびある
程度の固相反応を進めた後(これを仮焼粉という)、粉
砕,造粒,成形という工程を経て、その成形体を適切な
雰囲気中で前記の仮焼成温度より高温で本焼成すること
によって所望の磁気特性,機械的強度を有した多結晶質
のフェライト焼結体を得ている。
When a ferrite magnetic material is produced, the starting materials are mixed in a predetermined ratio, calcined under appropriate conditions, degassing and a certain amount of solid-phase reaction are advanced (this is called calcined powder), and then pulverized and formed. After the steps of graining and compacting, the compact is fully baked in an appropriate atmosphere at a temperature higher than the pre-baking temperature to obtain a polycrystalline ferrite sintered body having desired magnetic properties and mechanical strength. It has gained.

この多結晶質のフェライト焼結体の微細構造の模式図
を第3図に示す。第3図において、4は結晶粒、5は粒
界、6は粒界ポア、7は結晶粒4のポアである。
FIG. 3 shows a schematic diagram of the fine structure of this polycrystalline ferrite sintered body. In FIG. 3, 4 is a crystal grain, 5 is a grain boundary, 6 is a grain boundary pore, and 7 is a pore of the crystal grain 4.

上記工程中の仮焼温度は所定配合比率の出発原料が固
相反応を始める700〜1000℃の間に設定され、焼結を十
分にさせる本焼成温度は仮焼粉の材料および組成さらに
は粒径,形状によって異なるが通常は1000〜1400℃とい
う高温である。この時の焼成雰囲気は求められる材料,
組成によって酸化性雰囲気か非酸化性雰囲気が選ばれ
る。
The calcining temperature in the above process is set between 700 and 1000 ° C., at which the starting material of a predetermined blending ratio starts the solid-phase reaction, and the main calcining temperature for sufficient sintering is the material and composition of the calcined powder and the granules. Although it depends on the diameter and shape, it is usually a high temperature of 1000 to 1400 ° C. The firing atmosphere at this time depends on the required material,
An oxidizing atmosphere or a non-oxidizing atmosphere is selected depending on the composition.

このフェライト焼結法の欠点は、上記仮焼粉の成形体
を本焼成工程で焼結させると必らず寸法変化が生じると
いうことである。つまり本焼成を終えると通常10〜20
%、大きい時にはそれ以上も収縮し、焼結品の寸法精度
ならびに歩留りを悪くする。従って、切削,研磨等の機
械加工である後処理が必要となってくる。
A disadvantage of the ferrite sintering method is that sintering of the calcined powder compact in the main firing step necessarily causes a dimensional change. In other words, usually 10 to 20 after final firing
%, When it is large, it shrinks more, and deteriorates the dimensional accuracy and yield of the sintered product. Therefore, post-processing, which is mechanical processing such as cutting and polishing, is required.

上述した焼結過程での収縮は次のような原因で起る。
すなわち、仮焼粉を単に加圧した成形体は通常粒径が2
〜5μm程度もしくはそれ以下の粉末を使用するために
成形密度が低く、つまり粉末どうしが接触しているもの
のまだ空隙が多く、700〜1000℃以上の温度で加熱する
と仮焼粉間の接触部分で粒子を構成する原子の相互拡散
が生じて焼結現象が始まる。その結果、焼結の進行度合
とともに仮焼粉間の空隙が減少して行き、大きい時には
20%も越えて収縮するのである。
The above-mentioned shrinkage in the sintering process occurs for the following reasons.
That is, a compact obtained by simply pressing the calcined powder usually has a particle size of 2
The molding density is low due to the use of powder of about 5 μm or less, that is, there are still many voids although the powders are in contact with each other, and when heated at a temperature of 700 to 1000 ° C. or more, the contact portion between the calcined powders Interdiffusion of the atoms constituting the particles occurs, and the sintering phenomenon starts. As a result, the gap between the calcined powders decreases with the progress of sintering, and when it is large,
It shrinks by over 20%.

従って、焼結をきっちりと均一にかつ成形体に熱衝撃
を受けないようにするには本焼成時の昇温降温を比較的
緩慢にすることが重要になってくる。この結果、本焼成
工程は普通少なくとも半日以上長い場合で2日になるこ
ともある。
Therefore, it is important to make the temperature rise and fall during the main firing relatively slow in order to ensure that the sintering is exactly uniform and that the molded body is not subjected to thermal shock. As a result, the main calcination step may be as long as at least half a day or more in two days.

フェライト焼結法の欠点を改良する研究はこれまでに
も数多くなされてきた。そのうち焼結体の収縮問題に関
しては収縮率を極力下げる方法や収縮率を一定に制御す
る方法が種々検討されてきたが、いずれもフェライトの
性能,特性を確保しようとすればある程度の収縮が避け
られないのが実状である。たとえば、特開昭58-135133
号公報,特開昭58-135606号公報に記載されているよう
に、フェライト仮焼粉とガラス粉末とを混合した後に、
フェライトの緻密化(焼結化)の進行する温度で焼成す
ると、この時添加しているガラス粉末がフェライト粒子
の周囲を覆うことでフェライトの緻密化を一部抑えて低
収縮率の焼結体を得ることができるというものである。
しかし、この場合でも仮焼粉作製温度が後の成形体の本
焼成温度よりいずれも低いために、本焼成時には未だ直
接接触している仮焼粉間の相互拡散が生じるので成形体
の収縮現象は避け難く実際にはまだ数%の収縮が起きて
いた。
There have been many studies to improve the disadvantages of the ferrite sintering method. Among them, regarding the problem of shrinkage of the sintered body, various methods have been studied to reduce the shrinkage as much as possible and to control the shrinkage at a constant level. However, in order to ensure the performance and characteristics of ferrite, some shrinkage is avoided. The reality is that it cannot be done. For example, JP-A-58-135133
As described in JP-A-58-135606, after mixing ferrite calcined powder and glass powder,
When firing at a temperature at which ferrite densification (sintering) progresses, the glass powder added at this time covers the periphery of the ferrite particles, thereby partially suppressing ferrite densification and reducing the shrinkage of the sintered body. Can be obtained.
However, even in this case, since the calcined powder production temperature is lower than the final firing temperature of the compact afterwards, mutual diffusion occurs between the calcined powders that are still in direct contact during the final firing, so that the compaction shrinkage phenomenon Was unavoidable and in fact shrank by a few percent.

発明が解決しようとする課題 以上述べてきたように、従来のフェライト焼結体では
所望の性能を得ようとして焼結を進めれば進める程収縮
は大きくなり、逆に収縮を抑えれば性能が確保できなく
て両立し難い。しかし、フェライト焼結体は電子部品,
デバイス材料として多用され、その性能および高寸法精
度が益々重要視されている。
Problems to be Solved by the Invention As described above, in the conventional ferrite sintered body, the more the sintering is performed in order to obtain the desired performance, the larger the shrinkage is, and conversely, if the shrinkage is suppressed, the performance is reduced. It is difficult to achieve both because they cannot be secured However, sintered ferrites are
It is widely used as a device material, and its performance and high dimensional accuracy are increasingly regarded as important.

本発明の目的は上述した従来技術の欠点を解消し、ほ
とんど収縮性のないかつ磁気特性に優れたガラス結着型
で超低収縮率のフェライト磁性体とそれを安価に製造で
きる方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to provide a glass-bound ultra-low-shrinkage ferrite magnetic material having almost no shrinkage and excellent magnetic properties, and a method for manufacturing the same at a low cost. Things.

課題を解決するための手段 上記課題を解決するために本発明のフェライト磁性体
の製造方法は、高温焼成で十分にフェライト化が進んだ
高結晶性フェライト磁性粉末とこの焼成温度より低い軟
化点をもつガラス粉末とを混合、造成した混合物を加圧
成形しながら磁成粒子間に介在するガラス粉末を上記高
結晶性フェライト磁性粉末の焼成温度以下の加熱処理で
軟化溶融させて高結晶性フェライト磁性粉末をガラス材
で結着させた後、上記フェライト磁成粉末の焼成温度以
下で焼成する方法としたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for producing a ferrite magnetic material of the present invention comprises a highly crystalline ferrite magnetic powder which has been sufficiently ferritized at high temperature firing and a softening point lower than the firing temperature. The glass powder interposed between the magnetic particles is softened and melted by heat treatment at a temperature not higher than the firing temperature of the high crystalline ferrite magnetic powder while pressing and molding the formed mixture with the glass powder having the high crystalline ferrite magnetic properties. After binding the powder with a glass material, the powder is fired at a temperature not higher than the firing temperature of the ferrite magnetic powder.

作用 使用するフェライト磁性粉末自体を高温焼成により既
に完全に近いところまで結晶化を進めているので、後の
より低温の成形体加熱処理では、高結晶性フェライト磁
性粉末間の焼結がほとんど起らず、高結晶性フェライト
磁性粉末間に混在するガラス粉末を単に溶融して高結晶
性フェライト磁性粉末を結着させるだけである。
Action Since the ferrite magnetic powder to be used has already been crystallized to near perfection by high-temperature sintering, sintering between the highly crystalline ferrite magnetic powders hardly occurs in the subsequent heat treatment at a lower temperature. Instead, the glass powder mixed between the high crystalline ferrite magnetic powders is simply melted to bind the high crystalline ferrite magnetic powder.

つまり従来から焼結体を作るのに使われる加圧焼成法
は、通常空隙率の低減(高密度化)や焼成温度を下げる
ために焼結を促進する効果を期待するのに対し、本発明
の作用効果はまず、磁性粉末に介在するガラス粉末が溶
融している温度状態のもとで加圧し磁性粒子間の空隙を
大幅に減少させた高密度の成形体を得た後、これを次に
上記高結晶性フェライトの作製温度以下で加熱処理する
ため、その結果、成形体中の空隙率が加熱処理前後であ
まり変化しないから、金型成形寸法に近い高寸法精度で
かつ磁気特性にも優れた新規なフェライト磁性体が得ら
れる。
In other words, the pressure sintering method conventionally used for making a sintered body is generally expected to have the effect of promoting sintering in order to reduce the porosity (to increase the density) and lower the sintering temperature. First of all, after obtaining a high-density molded body in which the pressure between the magnetic particles is greatly reduced by applying pressure under a temperature state in which the glass powder interposed in the magnetic powder is molten, In order to heat treatment below the production temperature of the high crystalline ferrite, as a result, since the porosity in the molded body does not change much before and after the heat treatment, high dimensional accuracy close to the mold molding dimensions and magnetic properties An excellent new ferrite magnetic material can be obtained.

また、従来のホットプレス装置では700℃以上の高温
焼結であるために型材には通常金属が使えず、炭素,ア
ルミナ,SiC等の型材を使用しなければならないが、本発
明の装置では成形時の作業温度が700℃以下であるので
従来どうりの金属の型材が使用でき、通常のプレス機と
変わらない簡便な装置となる。
In addition, in the conventional hot press machine, since the sintering is performed at a high temperature of 700 ° C. or more, a metal cannot be generally used as a mold material, and a mold material such as carbon, alumina, or SiC must be used. Since the working temperature at this time is 700 ° C. or less, a metal mold material of the conventional type can be used, and the device is a simple device that is not different from an ordinary press machine.

さらに成形体の加熱処理は焼結性を期待するものでは
なく、上述のようにガラス粉末が溶融して高結晶性フェ
ライト磁性粉末間に流れ結着効果ができればよいので基
本的には従来法の本焼成時間よりかなり短時間ですむ。
このために設備費や電気代が安くつき、製造方法も簡便
であるので安価に製造できる。
Furthermore, the heat treatment of the molded body does not expect sinterability, and it is basically sufficient if the glass powder is melted as described above and a flow binding effect can be obtained between the high crystalline ferrite magnetic powders. It is much shorter than the firing time.
For this reason, equipment costs and electricity costs are low, and the manufacturing method is simple, so that it can be manufactured at low cost.

また、軟質フェライトではそれ自身の渦電流損失を極
力減らす必要から高抵抗化が望まれるが、本発明によれ
ば比較的電気抵抗の低いMn-Zn系フェライトであっても
溶融固化したガラス成分が高結晶性フェライト磁性粉末
を電気的に絶縁するので抵抗値が上り高周波特性を良く
するという利点も得られる。
Further, in the case of soft ferrite, it is desired to increase the resistance because it is necessary to minimize the eddy current loss of the ferrite itself. Since the high crystalline ferrite magnetic powder is electrically insulated, there is also obtained an advantage that the resistance value increases and the high frequency characteristics are improved.

実施例 以下本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

すなわち、本発明は第1図に示すように高結晶性フェ
ライト磁性粉末1を加圧下のもとでこの高結晶性フェラ
イト磁性粉末1の焼成温度以下で軟化溶融するガラス材
2で結着した構成とするものである。
That is, as shown in FIG. 1, the present invention comprises a structure in which a highly crystalline ferrite magnetic powder 1 is bonded with a glass material 2 which is softened and melted at a temperature lower than the firing temperature of the highly crystalline ferrite magnetic powder 1 under pressure. It is assumed that.

具体的には、高結晶性フェライト磁性粉末1とガラス
粉末とをよく混合し、造粒した混合造粒物を加圧成型し
ながら、この成形体中の高結晶性フェライト磁性粉末1
間に混在する上記ガラス粉末を軟化溶融させることによ
り、高結晶性フェライト磁性粉末1をガラス材2で単に
結着し固化した高密度磁性体をまず焼成以前に作成して
おき、次にこれを上記高結晶性フェライト磁性粉末の作
製温度以下で加熱処理したフェライト磁性体をいう。な
お、図中、3は高結晶性フェライト磁性粉末1中のポア
を示す。
Specifically, the highly crystalline ferrite magnetic powder 1 in this compact is mixed while the highly crystalline ferrite magnetic powder 1 and the glass powder are mixed well, and the granulated mixed granule is molded under pressure.
By softening and melting the glass powder mixed in between, a high-density magnetic material in which the high-crystalline ferrite magnetic powder 1 is simply bound with the glass material 2 and solidified is first prepared before firing, and then this is prepared. It refers to a ferrite magnetic material that has been heat-treated at a temperature equal to or lower than the production temperature of the high crystalline ferrite magnetic powder. In the figure, reference numeral 3 denotes pores in the highly crystalline ferrite magnetic powder 1.

ここで使用する高結晶性フェライト磁性粉末1は高温
焼成によって十分にフェライト反応化したものであっ
て、通常は1000℃以上で焼成したものが好ましい。
The highly crystalline ferrite magnetic powder 1 used here is one which has been sufficiently ferrite-reacted by firing at a high temperature, and is usually preferably fired at 1000 ° C. or higher.

軟質フェライト磁性体を得たい場合は、高結晶性フェ
ライト磁性粉末1の抗磁力Hが小さい程良いので、磁性
粒子のサイズは大きい程好ましいが、一方、高結晶性フ
ェライト磁性粉末1の充填密度が下がるので実際には10
0〜200μm径までが適している。硬質フェライト磁性体
を得る場合は、高結晶性フェライト磁性粉末1の抗磁力
H〜を上げてエネルギー積を増大させるために単磁区粒
子になる程の磁性微粒子が好ましい。
When it is desired to obtain a soft ferrite magnetic material, the smaller the coercive force H of the highly crystalline ferrite magnetic powder 1 is, the better the size of the magnetic particles is. Therefore, the packing density of the highly crystalline ferrite magnetic powder 1 is preferably small. Actually go down 10
A diameter of 0 to 200 μm is suitable. When a hard ferrite magnetic material is obtained, it is preferable to use magnetic fine particles that can be single magnetic domain particles in order to increase the coercive force H 力 of the highly crystalline ferrite magnetic powder 1 to increase the energy product.

次に高結晶性フェライト磁性粉末1を結着するガラス
粉末の軟化温度は高結晶性フェライト磁性粉末1の焼成
温度以下であれば良いが、ガラス粉末が十分に溶融し、
磁性粉末1間の空隙に素早く浸透する温度が最適であ
る。つまりこのガラス粉末の溶融状態の時に加圧するの
でフェライト磁性粉末1が一層詰まって高充填状態を実
現する。また、本発明によるフェライト磁性体の応用を
考えると耐熱性の観点から下限は300℃以上であること
が望ましい。
Next, the softening temperature of the glass powder that binds the high-crystalline ferrite magnetic powder 1 may be lower than the firing temperature of the high-crystalline ferrite magnetic powder 1;
The temperature at which the magnetic powder 1 quickly penetrates into the voids is optimal. In other words, since the glass powder is pressurized in the molten state, the ferrite magnetic powder 1 is further compacted to realize a high filling state. Further, considering the application of the ferrite magnetic material according to the present invention, the lower limit is desirably 300 ° C. or higher from the viewpoint of heat resistance.

通常、粉末治金法によって作成される焼結型磁性体の
焼成開始温度は約700℃程度から、また金属金型の実用
温度は700℃ぐらいまでが限界とされるので、本発明に
よる磁性体作成時のガラス結着作業温度はこの温度以下
でなければならず、ここで使用されるガラス粉末は650
℃以下で軟化し液相となるものが好ましい。
Normally, the firing start temperature of the sintered mold magnetic material produced by the powder metallurgy method is from about 700 ° C., and the practical temperature of the metal mold is limited to about 700 ° C. The glass bonding work temperature at the time of preparation must be below this temperature, the glass powder used here is 650
Those which soften at a temperature of not more than ℃ and become a liquid phase are preferred.

高結晶性フェライト磁性粉末1に加えるガラス粉末の
量は0.3〜30重量%が良く、0.3%より少いと高結晶性フ
ェライト磁性粉末1の結着効果が小さく機械的強度が確
保できない。一方、30%より多いガラス量では、結着力
は十分に強くなるが非磁性量が増すためにフェライト磁
性体としての磁気特性が著しく悪化してよろしくない。
The amount of the glass powder added to the high crystalline ferrite magnetic powder 1 is preferably 0.3 to 30% by weight, and if it is less than 0.3%, the binding effect of the high crystalline ferrite magnetic powder 1 is so small that mechanical strength cannot be secured. On the other hand, when the amount of glass is more than 30%, the binding force becomes sufficiently strong, but the amount of non-magnetic material increases, so that the magnetic properties of the ferrite magnetic material are not significantly deteriorated.

高結晶性フェライト磁性粉末1とガラス材2の混合成
形体の加熱処理は、ガラス材2のより一層の溶融浸透を
主な目的とするものであるから、熱処理の保持時間およ
び昇降温に要する時間を含めて3時間以下でも可能であ
る。
The main purpose of the heat treatment of the mixed molded body of the highly crystalline ferrite magnetic powder 1 and the glass material 2 is to further melt and infiltrate the glass material 2, and thus the holding time of the heat treatment and the time required for raising and lowering the temperature Or less than 3 hours.

熱処理温度は基本的にはガラスの軟化温度より上であ
れば良いが、高結晶性フェライト磁性粉末1の焼成温度
に近くなるに従って特に800℃以上になるとガラス材2
の結着効果が増し、低収縮性であるにもかかわらず磁気
特性も優れるという好ましい結果が得られた。
The heat treatment temperature may be basically higher than the softening temperature of the glass. However, as the temperature approaches the sintering temperature of the highly crystalline ferrite magnetic powder 1, especially when the temperature becomes 800 ° C. or more, the glass material 2
Has been obtained, and the favorable effect that the magnetic properties are excellent despite the low shrinkage property was obtained.

また、本発明のフェライト磁性体を作成する時の雰囲
気としては、磁性粉末1がフェライトのような磁性酸化
物である場合は、酸化性,非酸化性雰囲気のいずれでも
行える。
When the magnetic powder 1 is a magnetic oxide such as ferrite, the atmosphere for producing the ferrite magnetic material of the present invention can be either an oxidizing or non-oxidizing atmosphere.

以下、具体的な実施例について説明する。 Hereinafter, specific examples will be described.

(実施例1〜7) Fe2O3 50,NiO 18,ZnO 32mol%よりなる出発混合造粒
粉を1320℃,6時間焼成したものを粉砕し、粒径50〜100
μmのNi-Zn軟質フェライト本焼粉を準備した。この粉
末をX線解析した結果、軟質フェライト特有の鋭いスピ
ネル構造回折線が得られ結晶性の非常に高い磁性粉であ
ることを確認した。
(Examples 1 to 7) A starting mixed granulated powder composed of 50 mol of Fe 2 O 3 , NiO 18 and ZnO of 32 mol% was baked at 1320 ° C. for 6 hours, and pulverized to a particle size of 50 to 100.
A μm Ni-Zn soft ferrite main firing powder was prepared. As a result of X-ray analysis of this powder, a sharp spinel structure diffraction line unique to soft ferrite was obtained, and it was confirmed that the powder was a magnetic powder having extremely high crystallinity.

上記高結晶性フェライト磁性粉末に対して軟化点(T
d)370℃、平均粒径1μmの無アルカリホウ硅酸鉛系ガ
ラス粉末を各々0.5,1,3,5,10,30,40wt%ずつ加えて混
合,造粒した後、この混合造粒粉末をステライト製金型
に所定量充填し、温度420℃,加圧3t/cm2、2分間の空
気中ホットプレスを行って内径7mmφ、外径12mmφ厚さ3
mmのガラス含有量が各々異なるガラス結着型リング状成
形品を作製した。次に、この各成形品を電気炉内に設置
し、1200℃,60分間空気中で加熱処理しガラス結着型の
リング状フェライトコアを得た。
The softening point (T
d) Alkali-free lead borosilicate glass powder having an average particle size of 1 μm at 370 ° C is added in 0.5, 1, 3, 5, 10, 30, 40 wt% each, mixed and granulated. Into a stellite mold at a prescribed temperature, pressurized at 3 ° C / cm 2 at 420 ° C, and hot-pressed in air for 2 minutes to obtain an inner diameter of 7 mmφ and an outer diameter of 12 mmφ.
Glass-bound ring-shaped molded articles having different glass contents of mm were produced. Next, each of the molded products was placed in an electric furnace and heated at 1200 ° C. for 60 minutes in air to obtain a glass-bound ring-shaped ferrite core.

上記実施例1〜7の試料の材料特性を第1表に示し
た。
Table 1 shows the material properties of the samples of Examples 1 to 7 described above.

(比較例1) 実施例1で用いたNi-Zn系フェライト粉末をガラス粉
末なしで造粒,成形し実施例1と同様に内径7mmφ,外
径12mmφ,厚さ3mmのリング状成形品を作成した。この
成形品を高温用電気炉内に設置し、1200℃、1時間空気
中で焼成した後、炉冷しZNi-Zn系フェライト焼結型リン
グコアを得た。この時磁性体の初透磁率は低い値であっ
た。
(Comparative Example 1) The Ni-Zn ferrite powder used in Example 1 was granulated and molded without glass powder, and a ring-shaped molded product having an inner diameter of 7 mmφ, an outer diameter of 12 mmφ, and a thickness of 3 mm was prepared in the same manner as in Example 1. did. This molded product was placed in an electric furnace for high temperature, fired in air at 1200 ° C. for one hour, and then cooled in a furnace to obtain a ZNi-Zn ferrite sintered ring core. At this time, the initial permeability of the magnetic material was a low value.

(比較例2) 実施例1で用いたのと同一のNi-Zn系フェライト粉末
に同一の無アルカリ鉛系ガラス粉末を5wt%加えて混
合,造粒した後、3t/cm2の圧力で内径7mmφ,外径12mm
φ,厚さ3mmのリング状成形品を作成した。この成形品
を電気炉内に設置し、空気中1200℃,1時間保持した後、
炉冷しガラス結着型リング状コアを得た。この方法によ
って得た磁性体の模式図を第2図に示す。
(Comparative Example 2) 5 wt% of the same alkali-free lead-based glass powder was added to the same Ni-Zn-based ferrite powder used in Example 1 and mixed and granulated, and then the inner diameter was increased at a pressure of 3 t / cm 2. 7mmφ, outer diameter 12mm
A ring-shaped molded product with a diameter of 3 mm was created. After placing this molded product in an electric furnace and holding it at 1200 ° C in air for 1 hour,
The furnace was cooled to obtain a glass-bound ring-shaped core. FIG. 2 is a schematic diagram of the magnetic material obtained by this method.

比較例1,2それぞれの材料特性を第1表に示した。 Table 1 shows the material properties of Comparative Examples 1 and 2.

(実施例8) 実施例1で用いたのと同一の磁性粉末に対して軟化温
度650℃、平均粒径1μmの無アルカリ鉛系ガラス粉末
を5wt%加えて良く混合,造粒した後、この混合造粒粉
をステライト製金型に所定量充填し、温度700℃,加圧3
t/cm2、2分間の空気中ホットプレスを行って内径7mm
φ、外径12mm、厚さ3mmのガラス結着型リング状コアを
作成し、実施例1と同様の温度1200℃で、1時間焼成を
行い実施例8とした。この試料の特性を第1表に示し
た。
(Example 8) 5 wt% of a non-alkali lead-based glass powder having a softening temperature of 650 ° C and an average particle diameter of 1 µm was added to the same magnetic powder used in Example 1, mixed well and granulated. A predetermined amount of mixed granulated powder is filled in a stellite mold, and the temperature is 700 ° C and the pressure is 3
t / cm 2 , hot press in air for 2 minutes, inner diameter 7mm
A glass-bound ring-shaped core having a diameter of φ, an outer diameter of 12 mm and a thickness of 3 mm was prepared, and baked at 1200 ° C. for 1 hour in the same manner as in Example 1 to obtain Example 8. The properties of this sample are shown in Table 1.

上記ホットプレス温度を800℃にした場合は、ステラ
イト製金型が変形し試料が取り出せなかった。
When the hot press temperature was 800 ° C., the stellite mold was deformed and the sample could not be taken out.

(実施例9〜13) 実施例1で用いた同一のフェライト本焼粉に対して同
一のガラス粉末を5wt%を加えて混合,造粒した後、こ
の混合造粒粉末をステライト製金型に所定量充填し、温
度420℃,加圧3t/cm2、2分間の空気中ホットプレスを
行って内径7mmφ、外径12mmφ、厚さ3mmのガラス結着型
リング状成形品を5個作成した。
(Examples 9 to 13) 5 wt% of the same glass powder was added to the same ferrite main firing powder used in Example 1 and mixed and granulated, and the mixed granulated powder was placed in a stellite mold. A predetermined amount was filled and hot-pressed in the air at a temperature of 420 ° C. under a pressure of 3 t / cm 2 for 2 minutes to produce five glass-bound ring-shaped molded products having an inner diameter of 7 mmφ, an outer diameter of 12 mmφ, and a thickness of 3 mm. .

この各成形品を1個ずつ電気炉内に設置し、1300℃,1
000℃,800℃,600℃,450℃,、それぞれの温度で60分間
空気中で処理加熱してガラス結着型リング状フェライト
コアを得た。
Place each of these molded products in an electric furnace one at a time
The glass-bound ring-shaped ferrite core was obtained by treating and heating in air at 000 ° C, 800 ° C, 600 ° C, and 450 ° C for 60 minutes.

上記実施例9〜13の試料の材料特性を第2表に示し
た。
Table 2 shows the material properties of the samples of Examples 9 to 13 described above.

(実施例14〜22) Fe2O3 48,NiO 13,ZnO 34,CuO 5mol%よりなる出発混
合造粒粉を1320℃,6時間焼成したものを粉砕し、実施例
1と同様に平均粒径が70μmのNi-Zn-Cu系軟質フェライ
ト本焼粉を準備した。この粉末をX線解析した結果、軟
質フェライト特有の鋭いスピネル構造回折線が得られ結
晶性の非常に高い磁性粉であることを確認した。
(Examples 14 to 22) A starting mixed granulated powder comprising Fe 2 O 3 48, NiO 13, ZnO 34, and CuO 5 mol% was baked at 1320 ° C. for 6 hours and pulverized. A Ni-Zn-Cu soft ferrite main firing powder having a diameter of 70 µm was prepared. As a result of X-ray analysis of this powder, a sharp spinel structure diffraction line unique to soft ferrite was obtained, and it was confirmed that the powder was a magnetic powder having extremely high crystallinity.

上記高結晶性フェライト磁性粉末に対して軟化点(T
d)370℃、平均粒径1μmの無アルカリホウケイ酸鉛系
ガラス粉末を各々0.1,0.3,0.5,1,3,5,10,30,40wt%ずつ
加えて混合,造粒した後、この混合造粒粉末をステライ
ト製金型に所定量充填し、温度420℃,加圧3ton/cm2
2分間の空気中ホットプレスを行って内径7mmφ、外径1
2mmφ、厚さ3mmのガラス含有量が各々異なるリング状成
形品を作製した。
The softening point (T
d) Add 0.1,0.3,0.5,1,3,5,10,30,40wt% each of alkali-free lead borosilicate glass powder with average particle size of 1μm at 370 ℃, mix and granulate. A predetermined amount of the granulated powder is filled in a stellite mold, and the temperature is 420 ° C., the pressure is 3 ton / cm 2 ,
Perform hot press in air for 2 minutes, inner diameter 7mmφ, outer diameter 1
Ring-shaped molded articles having a glass content of 2 mmφ and a thickness of 3 mm, each having a different glass content, were produced.

この各成形品を電気炉内に個々に設置し、1200℃,60
分間空気中で加熱処理しガラス結着型のリング状フェラ
イトコアを得た。
Each of these molded products is individually set in an electric furnace,
Heat treatment was performed in the air for 1 minute to obtain a glass-bound ring-shaped ferrite core.

上記実施例14〜22の試料の材料特性を第3表に示し
た。
Table 3 shows the material properties of the samples of Examples 14 to 22.

実施例14で用いたNi-Zn-Cu系フェライト粉末をガラス
粉末なしで造粒,成形し実施例14と同様に内径7mmφ,
外径12mmφ,厚さ3mmのリング状成形品を作成した。こ
の成形品を高温用電気炉内に個々に設置し、1200℃、1
時間空気中で焼成した後、炉冷してNi-Zn-Cu系フェライ
ト焼結型リングコアを得た。
The Ni-Zn-Cu ferrite powder used in Example 14 was granulated and molded without a glass powder, and the inner diameter was 7 mmφ in the same manner as in Example 14.
A ring-shaped molded product with an outer diameter of 12mmφ and a thickness of 3mm was created. Each of the molded products was placed in a high-temperature electric furnace,
After firing in air for a period of time, the furnace was cooled to obtain a Ni-Zn-Cu ferrite sintered ring core.

(比較例4) 実施例14で用いたのと同一のNi-Zn-Cu系フェライト粉
末に同一の無アルカリ鉛系ガラス粉末を5wt%加えて混
合,造粒した後、3ton/cm2の圧力で内径7mmφ,外径12m
mφ,厚さ3mmのリング状成形品を作製した。この成形品
を高温電気炉内に個々に設置し、1200℃,1時間空気中で
焼成した後、炉冷してガラス結着型リング状コアを得
た。
Comparative Example 4 The same alkali-free lead-based glass powder was added to the same Ni-Zn-Cu-based ferrite powder used in Example 14 at 5 wt%, mixed and granulated, and then subjected to a pressure of 3 ton / cm 2 . 7mmφ inside diameter, 12m outside diameter
A ring-shaped molded product of mφ and thickness of 3 mm was produced. The molded articles were individually placed in a high-temperature electric furnace, fired in air at 1200 ° C. for 1 hour, and then cooled in a furnace to obtain a glass-bound ring-shaped core.

比較例3,4それぞれの材料特性を第3表に示した。 Table 3 shows the material properties of Comparative Examples 3 and 4.

なお、上記実施例,比較例においては、初透磁率の測
定は、JIS規格(C2561)に準じ、まず前述のリング状フ
ェライトコアに絶縁テープを一層巻いた後、各々に線径
0.26mmφの絶縁銅線を全周にわたって一層巻いた試料を
準備した。次にこの自己インダクタンスをマクスウェル
ブリッジで測定磁界の強さが0.8(A/m)以下にて測定
し、これより周波数1(MHz)での初透磁率を算出し
た。
In the above Examples and Comparative Examples, the initial magnetic permeability was measured according to the JIS standard (C2561). First, an insulating tape was wound around the above-mentioned ring-shaped ferrite core, and then the wire diameter was measured.
A sample was prepared by further winding an insulated copper wire of 0.26 mmφ all around. Next, this self-inductance was measured with a Maxwell bridge when the strength of the measured magnetic field was 0.8 (A / m) or less, and the initial magnetic permeability at a frequency of 1 (MHz) was calculated from this.

また、飽和磁束密度は、各リングコアをJIS規格(C25
61)に準じ、自記磁束計法にて、10(Oe)の磁場での磁
束密度を測定した。
In addition, the saturation magnetic flux density is determined by JIS standard (C25
According to 61), the magnetic flux density at a magnetic field of 10 (Oe) was measured by the self-recording magnetometer method.

さらに、収縮率は熱処理前のリング状成形品と熱処理
後のリング状フェライトコアの外径寸法をそれぞれ測定
し、熱処理前後による寸法収縮率を算出した。引張強度
の測定は、JIS規格(C2564)に準じ、リングコアに2本
の細線をそれぞれ1回通し、うち1本を固定した後、残
り1本を垂直方向に5mm/mm以下の速度で引張り、コアが
破壊する瞬間の引張り荷重を測定して求めた。
Furthermore, the shrinkage was measured by measuring the outer diameters of the ring-shaped molded product before the heat treatment and the ring-shaped ferrite core after the heat treatment, and calculating the dimensional shrinkage before and after the heat treatment. According to JIS standard (C2564), two thin wires were passed through the ring core once, and one of them was fixed. Then, the remaining one was pulled vertically at a speed of 5 mm / mm or less. The tensile load at the moment when the core was broken was measured and determined.

(実施例23) BaO 1mol%,Fe2O3 6mol%よりなる混合造粒粉を1300
℃,2時間焼成したものを粉砕し、平均粒径1μmの結晶
性に良いバリウムフェライト硬質磁性材料を準備した。
Example 23 A mixed granulated powder composed of 1 mol% of BaO and 6 mol% of Fe 2 O 3 was mixed with 1300%
A barium ferrite hard magnetic material having an average particle diameter of 1 μm and having good crystallinity was prepared by pulverizing the material fired at 2 ° C. for 2 hours.

このバリウムフェライト粉末に対し軟化点370℃、平
均粒径1μmの無アルカリホウケイ酸鉛系ガラス粉末を
5wt%加えて混合,造粒した後、この混合造粒粉末をス
テライト製金型に所定量充填し、温度420℃,加圧3t/cm
2、2分間の空気中ホットプレスを行って10mmφ×7mm厚
の円柱状成形体を作成した。
An alkali-free lead borosilicate glass powder having a softening point of 370 ° C. and an average particle size of 1 μm was added to the barium ferrite powder.
After mixing and granulating by adding 5 wt%, a predetermined amount of the mixed granulated powder is filled into a stellite mold, and the temperature is 420 ° C. and the pressure is 3 t / cm.
2. A 10 mmφ × 7 mm thick columnar compact was prepared by hot pressing in air for 2 minutes.

次にこれを電気炉内に設置し、1200℃、30分間空気中
で加熱処理しガラス結着型バリウムフェライト磁石を得
た。この磁石は元の成形寸法からほとんど変化しなかっ
た。上記実施例23の試料に関する特性を第4表に示し
た。
Next, this was placed in an electric furnace and heat-treated in air at 1200 ° C. for 30 minutes to obtain a glass-bound barium ferrite magnet. The magnet did not change much from the original molding dimensions. Table 4 shows the characteristics of the sample of Example 23.

発明の効果 以上のように本発明によれば、ガラス結着型高密度低
収縮率のフェライト磁性体は、寸法精度が良く、かつ磁
気特性に優れた磁性材料となりしかも安価に製造できる
ということから、各種磁気応用製品に使われる有用な電
子部品,材料として優れた効果を奏しうるものである。
Effect of the Invention As described above, according to the present invention, a glass-bound high-density low-shrinkage ferrite magnetic material has good dimensional accuracy, is a magnetic material having excellent magnetic properties, and can be manufactured at low cost. It can provide excellent effects as useful electronic components and materials used in various magnetic products.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるフェライト磁性体の微細構造の模
式図、第2図は比較例による常圧下での成形におけるフ
ェライト磁性体の微細構造の模式図、第3図は従来の代
表的な焼結型フェライト磁性体の微細構造の模式図であ
る。 1……高結晶性フェライト磁性粉末、2……ガラス材、
3……ポア。
FIG. 1 is a schematic diagram of the fine structure of a ferrite magnetic material according to the present invention, FIG. 2 is a schematic diagram of the fine structure of a ferrite magnetic material formed under normal pressure by a comparative example, and FIG. It is a schematic diagram of the fine structure of a shaped ferrite magnetic material. 1 ... High crystalline ferrite magnetic powder, 2 ... Glass material,
3 ... Pore.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温焼成で十分にフェライト化が進んだ高
結晶性フェライト磁性粉末とこの焼成温度より低い軟化
点をもつガラス粉末とを混合、造粒した混合物を加圧成
形しながら磁性粉末間に介在するガラス粉末を上記フェ
ライト磁性粉末の焼成温度以下の加熱処理で軟化溶融さ
せて高結晶性フェライト磁性粉末をガラス材で結着した
後、上記フェライト粉末の焼成温度以下で焼成するフェ
ライト磁性体の製造方法。
1. A high-crystalline ferrite magnetic powder which has been sufficiently ferritized by high-temperature sintering and a glass powder having a softening point lower than the sintering temperature are mixed and granulated. A ferrite magnetic material which is softened and melted by heat treatment at a temperature not higher than the firing temperature of the ferrite magnetic powder, binds the highly crystalline ferrite magnetic powder with a glass material, and is fired at a temperature not higher than the firing temperature of the ferrite powder. Manufacturing method.
【請求項2】高結晶性フェライト磁性粉末とガラス粉末
の混合物の加熱処理温度を800℃以上で高結晶性フェラ
イト磁性粉末の焼成温度以下とした請求項(1)記載の
フェライト磁性体の製造方法。
2. The method for producing a ferrite magnetic material according to claim 1, wherein the heat treatment temperature of the mixture of the highly crystalline ferrite magnetic powder and the glass powder is 800 ° C. or higher and the firing temperature of the highly crystalline ferrite magnetic powder or lower. .
【請求項3】高結晶性フェライト磁性粉末として軟質磁
性粉末を用いた請求項(1)記載のフェライト磁性体の
製造方法。
3. The method for producing a ferrite magnetic material according to claim 1, wherein a soft magnetic powder is used as the highly crystalline ferrite magnetic powder.
【請求項4】高結晶性フェライト磁性粉末として軟質磁
性粉末を用いた請求項(1)記載のフェライト磁性体の
製造方法。
4. The method for producing a ferrite magnetic material according to claim 1, wherein a soft magnetic powder is used as the highly crystalline ferrite magnetic powder.
【請求項5】ガラス粉末としてその軟化温度が650℃以
下であるものを用いた請求項(1)記載のフェライト磁
性体の製造方法。
5. The method for producing a ferrite magnetic material according to claim 1, wherein the glass powder has a softening temperature of 650 ° C. or lower.
【請求項6】高結晶性フェライト磁性粉末に対するガラ
スの材料比率が0.3〜30wt%である請求項(1)記載の
フェライト磁性体の製造方法。
6. The method for producing a ferrite magnetic material according to claim 1, wherein the material ratio of the glass to the highly crystalline ferrite magnetic powder is 0.3 to 30 wt%.
JP6243589A 1988-12-28 1989-03-15 Manufacturing method of ferrite magnetic material Expired - Lifetime JP2762530B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6243589A JP2762530B2 (en) 1989-03-15 1989-03-15 Manufacturing method of ferrite magnetic material
KR1019890019939A KR920004025B1 (en) 1988-12-28 1989-12-28 Ferrite magnets and making method thereof
DE68921971T DE68921971T2 (en) 1988-12-28 1989-12-28 Composite ferrite material.
EP89124090A EP0376319B1 (en) 1988-12-28 1989-12-28 A composite ferrite material
US07/745,639 US5120366A (en) 1988-12-28 1991-09-09 Composite ferrite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6243589A JP2762530B2 (en) 1989-03-15 1989-03-15 Manufacturing method of ferrite magnetic material

Publications (2)

Publication Number Publication Date
JPH02241006A JPH02241006A (en) 1990-09-25
JP2762530B2 true JP2762530B2 (en) 1998-06-04

Family

ID=13200106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6243589A Expired - Lifetime JP2762530B2 (en) 1988-12-28 1989-03-15 Manufacturing method of ferrite magnetic material

Country Status (1)

Country Link
JP (1) JP2762530B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041575C (en) * 1993-05-11 1999-01-06 皇家菲利浦电子有限公司 Sintered transformer of inductor core of NiZn ferrite material
CN104395972B (en) * 2012-08-10 2017-06-23 株式会社村田制作所 magnetic composition and coil component
CN115594498B (en) * 2021-06-28 2023-08-22 浙江工业大学 Low-temperature bonding Z-type ferrite material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH02241006A (en) 1990-09-25

Similar Documents

Publication Publication Date Title
KR920004025B1 (en) Ferrite magnets and making method thereof
CN108706968B (en) Low-temperature sintered direct-current bias resistant NiCuZn ferrite and preparation method thereof
KR100650354B1 (en) Process for producing amorphous magnetically soft body
JP3492802B2 (en) Low loss ferrite material
JP2762530B2 (en) Manufacturing method of ferrite magnetic material
JP2812152B2 (en) Magnetic body and method of manufacturing the same
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
CN115626820A (en) Preparation method of heterogeneous laminated co-fired ferrite ceramic
JPH09501397A (en) Magneto-dielectric ceramic composite material, method of manufacturing this material, applications and multifunctional parts
JP2830071B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2762532B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2830241B2 (en) Ferrite magnetic material
JP2760026B2 (en) Ferrite magnetic body and method of manufacturing the same
JPH09270314A (en) Ferrite material and ferrite
JPH0374811A (en) Ferrite magnetic material
JPH05299229A (en) Ferrite magnetic body and manufacturing method thereof
JPH0433301A (en) Formation of ferrite magnetic substance
JPH02177511A (en) Ferrite magnetic material and manufacture thereof
JP3391108B2 (en) Magnetic body and method of manufacturing the same
JPH03233908A (en) Ferrite magnetic substance and its manufacture
JPH06151148A (en) Ferrite magnetic body and manufature thereof
JPH04101401A (en) Ferrite magnetic body and production thereof
JPH0590019A (en) Soft magnetic material
JPH04196201A (en) Manufacture of ferrite magnetic substance
JPH04237104A (en) Ferrite magnetic material and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080327

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090327

EXPY Cancellation because of completion of term