JPH04237104A - Ferrite magnetic material and manufacture thereof - Google Patents

Ferrite magnetic material and manufacture thereof

Info

Publication number
JPH04237104A
JPH04237104A JP3005684A JP568491A JPH04237104A JP H04237104 A JPH04237104 A JP H04237104A JP 3005684 A JP3005684 A JP 3005684A JP 568491 A JP568491 A JP 568491A JP H04237104 A JPH04237104 A JP H04237104A
Authority
JP
Japan
Prior art keywords
powder
ferrite powder
highly crystalline
glass
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3005684A
Other languages
Japanese (ja)
Inventor
Atsushi Inuzuka
敦 犬塚
Shinji Harada
真二 原田
Michihisa Ooba
美智央 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3005684A priority Critical patent/JPH04237104A/en
Publication of JPH04237104A publication Critical patent/JPH04237104A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain superlow shrinkage factor ferrite magnetic material, having no DC superpositional deterioration, which can be utilized for various electronic parts. CONSTITUTION:A ferrite magnetic material, having excellent DC superpositional characteristics and ultra-low shrinkage factor, can be obtained by heat-treating the mixture of glass powder, containing Sb component, and high crystallinity ferrite powder at the temperature higher than glass softening point and lower than the calcination temperature of the above-mentioned ferrite powder; and high crystallinity ferrite powder 1, abundantly containing Sb component, is bonded on the outside surface of the above-mentioned powder.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はトランス,インダクタ,
磁気ヘッド等の各種電子部品に利用される高結晶性フェ
ライト粉末をガラス材で結着固化してなる超低収縮率の
フェライト磁性体およびその製造方法に関するものであ
る。
[Industrial Application Field] The present invention applies to transformers, inductors,
The present invention relates to a ferrite magnetic material with an ultra-low shrinkage rate obtained by bonding and solidifying highly crystalline ferrite powder with a glass material, which is used in various electronic components such as magnetic heads, and a method for manufacturing the same.

【0002】0002

【従来の技術】従来のフェライト磁性体の製造方法は、
主として粉末冶金法、すなわち、粉末成形と高温焼成の
工程を必要とする焼結法がほとんどである。
[Prior Art] The conventional method for manufacturing ferrite magnetic material is as follows:
Most of the methods are powder metallurgy, that is, sintering methods that require powder compaction and high-temperature firing steps.

【0003】Ni−Zn−Cu系フェライト磁性体を作
る場合は出発原料であるFe2O3,NiO,ZnO,
CuOを所定の割合で混合し、脱ガスおよびある程度の
固相反応を進めるために、700〜1000℃程度で仮
焼成し、その後、粉砕,造粒,成型という工程を経て、
その成形体を適切な雰囲気中で上記の仮焼温度より高温
である1000〜1400℃程度で本焼成することによ
って多結晶質のフェライト磁性体を得ている。
[0003] When producing a Ni-Zn-Cu based ferrite magnetic material, the starting materials Fe2O3, NiO, ZnO,
CuO is mixed in a predetermined ratio, pre-calcined at about 700 to 1000°C in order to proceed with degassing and a certain degree of solid phase reaction, and then through the steps of pulverization, granulation, and molding.
A polycrystalline ferrite magnetic material is obtained by subjecting the compact to main firing in an appropriate atmosphere at a temperature of about 1,000 to 1,400°C, which is higher than the above-mentioned calcination temperature.

【0004】所望の磁気特性を得るために、上記の出発
原料にさらに様々な酸化物が少量添加される場合も多い
。例えば、特開昭55−67565号公報,特開昭60
−210572号公報,特開昭63−260006号公
報,特開昭63−275104号公報にみられるように
各種の酸化物の添加など、多くの検討がなされてきてい
る。
In order to obtain desired magnetic properties, small amounts of various oxides are often added to the above-mentioned starting materials. For example, JP-A-55-67565, JP-A-60
Many studies have been made, including the addition of various oxides, as seen in Japanese Patent Application Laid-open No. 210572, Japanese Patent Application Laid-Open No. 63-260006, and Japanese Patent Application Laid-Open No. 63-275104.

【0005】[0005]

【発明が解決しようとする課題】従来の技術によって得
られるフェライト磁性体は、本焼成で数10%の焼成収
縮が起こり、焼成体の形状の歪みや亀裂の原因となって
いる。
[Problems to be Solved by the Invention] Ferrite magnetic materials obtained by conventional techniques undergo firing shrinkage of several tens of percent during main firing, causing distortion and cracks in the shape of the fired product.

【0006】そのため、以下のようにして焼成収縮率を
数%に抑えることを可能とした。すなわち、高温で十分
にスピネル化させた高結晶性フェライト粉末と、この焼
成温度より低い軟化点を持つガラス粉末を混合、これを
成型した後、このガラス粉末の軟化点以上でかつ上記高
結晶性フェライト粉末の焼成温度以下の範囲で加熱処理
することによって高結晶性フェライト粉末をガラスで結
着した超低収縮率フェライト磁性体を得た。
[0006] Therefore, it has been possible to suppress the firing shrinkage rate to several percent in the following manner. That is, a highly crystalline ferrite powder that has been sufficiently spinelized at a high temperature is mixed with a glass powder that has a softening point lower than this firing temperature, and after molding, An ultra-low shrinkage ferrite magnetic material in which highly crystalline ferrite powder is bonded with glass was obtained by heat treatment at a temperature below the sintering temperature of ferrite powder.

【0007】ところが、上記の超低収縮フェライト磁性
体は非磁性体で結着した構造であるために、従来のフェ
ライト磁性体よりも直流重畳特性が劣化するという欠点
を有している。
However, since the ultra-low shrinkage ferrite magnetic material described above has a structure in which it is bonded with a non-magnetic material, it has the disadvantage that the DC superimposition characteristics are worse than that of conventional ferrite magnetic materials.

【0008】本発明は、超低収縮フェライト磁性体にお
いて、特に直流重畳特性の向上を目的とするものである
[0008] The present invention particularly aims at improving the direct current superimposition characteristics in an ultra-low shrinkage ferrite magnetic material.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明では、高結晶性フェライト粉末と少なくともS
b成分を含有するガラス粉末との混合物、もしくは高結
晶性フェライト粉末とガラス粉末と粉末状の三酸化アン
チモンとの混合物を、このガラス粉末と三酸化アンチモ
ンの熔融反応の生じる温度以上でかつ上記高結晶性フェ
ライト粉末の焼成温度以下で加熱処理して、高結晶性フ
ェライト粉末をガラス材で結着した構造を持つ超低収縮
率フェライト磁性体とするものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention uses highly crystalline ferrite powder and at least S
A mixture with a glass powder containing component b or a mixture of a highly crystalline ferrite powder, a glass powder, and powdered antimony trioxide is heated at a temperature higher than the temperature at which a melting reaction occurs between the glass powder and antimony trioxide, and at the above-mentioned temperature. The material is heat-treated at a temperature below the firing temperature of crystalline ferrite powder to produce an ultra-low shrinkage ferrite magnetic material having a structure in which highly crystalline ferrite powder is bound with a glass material.

【0010】0010

【作用】以上のように高結晶性フェライト粉末の結着材
であるガラス材に含まれるSb成分が加熱処理中に高結
晶性フェライト粉末内に拡散していく段階で、処理時間
が短いために十分拡散できずに高結晶性フェライト粉末
の外表面にSb成分が多く存在するような構造となり、
直流重畳特性が向上すると考えられる。
[Function] As mentioned above, the Sb component contained in the glass material, which is the binder for the highly crystalline ferrite powder, diffuses into the highly crystalline ferrite powder during heat treatment, and the treatment time is short. Sb cannot be sufficiently diffused, resulting in a structure in which a large amount of Sb is present on the outer surface of the highly crystalline ferrite powder.
It is thought that the DC superposition characteristics are improved.

【0011】なお、高結晶性フェライト粉末とガラス粉
末と三酸化アンチモンの混合物を用いた場合でも同様な
結果が得られたのは、ガラス粉末と三酸化アンチモンの
熔融反応が先に生じ、Sb成分を含有したガラスを混合
した場合と同じ状態になり、次にSb成分の一部がフェ
ライト粉末の外表面に拡散するというプロセスをとるた
めと考えられる。
[0011] Similar results were obtained even when a mixture of highly crystalline ferrite powder, glass powder, and antimony trioxide was used because the melting reaction between the glass powder and antimony trioxide occurred first, and the Sb component This is thought to be due to the fact that the same state occurs when glass containing Sb is mixed, and then a part of the Sb component diffuses to the outer surface of the ferrite powder.

【0012】0012

【実施例】以下、本発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

【0013】すなわち、本発明は、図1に示すように外
表面に多くのSb成分を有する高結晶性フェライト粉末
1をこの高結晶性フェライト粉末1の焼成温度以下で軟
化熔融するガラス材2で結着した構造とするものである
。なお、図中3は空隙、4は高結晶性フェライト粉末1
中のポアである。
That is, the present invention, as shown in FIG. 1, uses a glass material 2 that softens and melts a highly crystalline ferrite powder 1 having a large Sb component on its outer surface at a temperature below the firing temperature of the highly crystalline ferrite powder 1. It is intended to have a cohesive structure. In the figure, 3 is a void, and 4 is a highly crystalline ferrite powder 1.
It is the pore inside.

【0014】具体的には、高結晶性フェライト粉末1と
Sb成分を含有するガラス粉末とをよく混合する。場合
によっては、例えば、ガラス作成が困難なほどSb成分
を多く含有させたい場合などでは、高結晶性フェライト
粉末1とガラス粉末と粉末状の三酸化アンチモンをよく
混合し、この混合物を造粒,加圧成型した後、この成形
体中の高結晶性フェライト粉末1の間に混在する上記ガ
ラス粉末を軟化熔融させることにより、高結晶性フェラ
イト粉末1をガラス材2で結着固化してフェライト磁性
体とする。ただし、粉末状の三酸化アンチモンを混合す
る場合はガラス粉末と三酸化アンチモンが熔融反応する
温度まで加熱する必要がある。
Specifically, highly crystalline ferrite powder 1 and glass powder containing an Sb component are thoroughly mixed. In some cases, for example, in cases where it is desired to contain so much Sb that it is difficult to make glass, highly crystalline ferrite powder 1, glass powder, and powdered antimony trioxide are thoroughly mixed, and this mixture is granulated. After pressure molding, by softening and melting the glass powder mixed between the highly crystalline ferrite powders 1 in this compact, the highly crystalline ferrite powders 1 are bound and solidified with the glass material 2 to form ferrite magnetism. Body. However, when mixing powdered antimony trioxide, it is necessary to heat the glass powder to a temperature at which the antimony trioxide melts and reacts.

【0015】ここで使用する高結晶性フェライト粉末1
は、高温焼成で十分にスピネル化したものであって、通
常は1000℃以上で焼成したものが望ましい。
Highly crystalline ferrite powder 1 used here
is one that has been sufficiently turned into spinel by firing at a high temperature, and is usually preferably one that is fired at a temperature of 1000° C. or higher.

【0016】軟質フェライト磁性体を得る場合は、高結
晶性フェライト粉末1の保磁力Hcが小さいほどよいの
で、磁性粉末のサイズが大きいほど望ましいが、一方、
高結晶性フェライト粉末1の充填密度が下がるので実際
には100〜200μm径までが適している。
In order to obtain a soft ferrite magnetic material, the smaller the coercive force Hc of the highly crystalline ferrite powder 1, the better; therefore, the larger the size of the magnetic powder, the better.
Since the packing density of the highly crystalline ferrite powder 1 decreases, a diameter of 100 to 200 μm is actually suitable.

【0017】次に、高結晶性フェライト粉末1を結着す
るガラス材2の軟化温度は加熱処理温度以下であればよ
いが、本発明によるフェライト磁性体の応用を考えると
耐熱性の観点から下限は300℃以上であることが望ま
しい。高結晶性フェライト粉末1に加えるガラス粉末の
量は0.3〜30wt%がよく0.3wt%より少ない
と高結晶性フェライト粉末1の結着効果が小さく機械的
強度が確保できない。一方、30wt%より多いガラス
量では結着力は十分に強くなるが非磁性体の量が増すた
めにフェライト磁性体としての磁気特性が著しく悪化し
て好ましくない。
Next, the softening temperature of the glass material 2 that binds the highly crystalline ferrite powder 1 may be lower than the heat treatment temperature, but considering the application of the ferrite magnetic material according to the present invention, the lower limit must be set from the viewpoint of heat resistance. It is desirable that the temperature is 300°C or higher. The amount of glass powder added to the highly crystalline ferrite powder 1 is preferably 0.3 to 30 wt%, and if it is less than 0.3 wt%, the binding effect of the highly crystalline ferrite powder 1 is small and mechanical strength cannot be ensured. On the other hand, if the amount of glass is more than 30 wt%, the binding force will be sufficiently strong, but since the amount of non-magnetic material will increase, the magnetic properties as a ferrite magnetic material will be significantly deteriorated, which is not preferable.

【0018】以下、具体的な実施例について説明する。 (実施例1)Fe2O3とNiOとZnOとCuOの配
合モル比が49.0:16.0:28.0:7.0より
なる混合物と、上記混合物に対しSb2O3を0.09
重量部添加した混合物を別々に1320℃で6時間焼成
し、平均粒径70μmのNi−Zn−Cu系フェライト
粉末を2種類準備した。X線解析した結果では2種類と
も軟質フェライト特有の鋭いスピネル構造回折線が得ら
れ、結晶性の非常に高いフェライト磁性粉末であり、す
なわち、十分にスピネル化が進んでいることを確認した
A specific example will be described below. (Example 1) A mixture of Fe2O3, NiO, ZnO, and CuO in a molar ratio of 49.0:16.0:28.0:7.0, and a mixture of 0.09 Sb2O3 to the above mixture.
The mixtures added in parts by weight were separately calcined at 1320° C. for 6 hours to prepare two types of Ni-Zn-Cu-based ferrite powders having an average particle size of 70 μm. As a result of X-ray analysis, sharp spinel structure diffraction lines characteristic of soft ferrite were obtained for both types, confirming that they were ferrite magnetic powders with extremely high crystallinity, that is, spinelization had progressed sufficiently.

【0019】一方、Sb成分を含まない無アルカリほう
けい酸鉛系ガラスにSb2O3を5wt%添加し、80
0℃に加熱熔融させた後に急冷し、平均粒径1μmのS
b成分を含有したガラス粉末を準備した。X線解析した
結果ではガラス質特有の回折パターンが得られ、十分反
応しガラス化していることを確認した。
On the other hand, 5 wt% of Sb2O3 was added to an alkali-free lead borosilicate glass containing no Sb component, and 80
After heating and melting at 0°C, the S
A glass powder containing component b was prepared. As a result of X-ray analysis, a diffraction pattern unique to glass was obtained, confirming that sufficient reaction had occurred and vitrification had occurred.

【0020】Sb2O3を添加しない上記高結晶性フェ
ライト粉末に対し、上記の5.0wt%のSb成分を含
有したガラス粉末を3重量部混合し、その混合物を造粒
後、圧力3ton/cm2で内径7mm,外径12mm
,厚さ3mmのリング状成型品を作成した。この成型品
を電気炉内に配置し、1200℃で60分間空気中で加
熱処理しガラス結着型のリング状フェライトコアを得た
(本発明品1)。
[0020] 3 parts by weight of the above-mentioned glass powder containing 5.0 wt% of Sb component was mixed with the above-mentioned highly crystalline ferrite powder to which no Sb2O3 was added, and after granulating the mixture, the inner diameter was 7mm, outer diameter 12mm
, a ring-shaped molded product with a thickness of 3 mm was created. This molded product was placed in an electric furnace and heat-treated in air at 1200° C. for 60 minutes to obtain a glass-bonded ring-shaped ferrite core (Product 1 of the present invention).

【0021】一方、Sb2O3を添加していない上記高
結晶性フェライト粉末と、Sb成分を含まないガラス粉
末と、Sb2O3を100:2.85:0.15重量比
でよく混合し、その混合物から本発明品1と同一条件で
ガラス結着型のリング状フェライトコアを得た(本発明
品2)。
On the other hand, the above-mentioned highly crystalline ferrite powder to which no Sb2O3 is added, glass powder containing no Sb component, and Sb2O3 are thoroughly mixed in a weight ratio of 100:2.85:0.15, and from this mixture, a book is prepared. A glass-bound ring-shaped ferrite core was obtained under the same conditions as Invention Product 1 (Invention Product 2).

【0022】比較のため、Sb2O3を添加した上記高
結晶性フェライト粉末にSb成分を含まない無アルカリ
ほうけい酸鉛系ガラスを3.0重量部添加した混合物か
ら本発明品1と同一条件でガラス結着型のリング状フェ
ライトコアを得た(比較品)。
For comparison, a glass was prepared under the same conditions as Inventive Product 1 from a mixture in which 3.0 parts by weight of alkali-free lead borosilicate glass containing no Sb component was added to the above-mentioned highly crystalline ferrite powder to which Sb2O3 was added. A bonded ring-shaped ferrite core was obtained (comparative product).

【0023】本発明品1,本発明品2,比較品は組成的
にはまったく同じである。図2は、各々の直流重畳磁場
における直流重畳磁場がない場合に対しての初透磁率の
変化率を示した図で、ゼロに近いほど直流重畳特性が優
れている。(表1)に示すように、焼成収縮率は1%未
満であり、成形体密度もほとんど差はない。また、これ
らの微細構造の走査型電子顕微鏡観察でも差異は認めら
れない。それにもかかわらずSb成分を含有することに
よって、本発明品1と本発明品2は比較品よりも直流重
畳磁場に対する初透磁率の変化が小さくなり、すなわち
直流重畳特性の改善がみられる。
Inventive product 1, inventive product 2, and comparative product are completely the same compositionally. FIG. 2 is a diagram showing the rate of change of initial magnetic permeability in each DC superimposed magnetic field with respect to the case without the DC superimposed magnetic field, and the closer it is to zero, the better the DC superimposed characteristics are. As shown in Table 1, the firing shrinkage rate is less than 1%, and there is almost no difference in the density of the compacts. Moreover, no difference is observed in scanning electron microscopy of these microstructures. Nevertheless, by containing the Sb component, Invention Product 1 and Invention Product 2 have smaller changes in initial magnetic permeability with respect to a DC superimposed magnetic field than comparative products, that is, an improvement in DC superimposition characteristics is observed.

【0024】[0024]

【表1】[Table 1]

【0025】(実施例2)実施例1と同一条件で作成し
たリング状成形体を3個ずつ(本発明品1,本発明品2
,比較品を1個ずつ)電気炉内に設置し、1200℃で
加熱処理した。その際の温度プロフィールは昇温速度を
240℃/1h、高温速度を300℃/hとし、120
0℃での保持時間を30〜180分で行った。得られた
磁性体の特性を図3に示す。本発明品1と本発明品2で
は特性にほとんど差が認められず、ともに比較品に対し
ては、いずれの保持時間においても直流重畳特性が優れ
ている。ただし、保持時間が長くなるにしたがってその
特性は比較品に近づく。微細構造を走査電子顕微鏡観察
したが、フェライト粒成長などの構造変化は認められず
、このことから、本発明品は高結晶性フェライト粉末の
外表面にSb成分が存在しており、保持時間が長くなる
にしたがって、Sb成分が高結晶性フェライト粉末内に
拡散していき、組成分布が比較品に近づくことを意味し
ていると考えられる。図3に示すように保持時間を60
分以下としたときに本発明の直流重畳限界点の特徴が大
きく現われている。
(Example 2) Three ring-shaped molded bodies were prepared under the same conditions as in Example 1 (inventive product 1, inventive product 2).
, comparative products) were placed in an electric furnace and heat-treated at 1200°C. The temperature profile at that time was a temperature increase rate of 240℃/1h, a high temperature rate of 300℃/h, and a temperature profile of 120℃/1h.
The holding time at 0°C was 30 to 180 minutes. The characteristics of the obtained magnetic material are shown in FIG. There is almost no difference in the characteristics between Inventive Product 1 and Inventive Product 2, and both have excellent DC superimposition characteristics at all holding times compared to the comparative product. However, as the holding time becomes longer, the characteristics become closer to those of the comparative product. The microstructure was observed using a scanning electron microscope, but no structural changes such as ferrite grain growth were observed. This indicates that the product of the present invention has an Sb component on the outer surface of the highly crystalline ferrite powder, and the retention time is This is thought to mean that as the length increases, the Sb component diffuses into the highly crystalline ferrite powder, and the composition distribution approaches that of the comparative product. Retention time is 60 as shown in Figure 3.
The characteristics of the DC superimposition limit point of the present invention are clearly visible when the voltage is set to less than 1 minute.

【0026】(実施例3)Fe2O3とNiOとZnO
とCuOの配合モル比が49.0:16.0:28.0
:7.0よりなる出発混合物を1320℃で6時間焼成
し、平均粒径70μmのNi−Zn−Cu系軟質フェラ
イト粉末を準備した。X線解析した結果では、軟質フェ
ライト特有の鋭いスピネル構造回折線が得られ、結晶性
の非常に高いフェライト磁性粉であり、すなわち十分に
スピネル化が進んでいることを確認した。
(Example 3) Fe2O3, NiO and ZnO
The blending molar ratio of and CuO is 49.0:16.0:28.0
:7.0 was fired at 1320° C. for 6 hours to prepare Ni-Zn-Cu soft ferrite powder with an average particle size of 70 μm. As a result of X-ray analysis, sharp spinel structure diffraction lines characteristic of soft ferrite were obtained, confirming that the powder was a highly crystalline ferrite magnetic powder, that is, spinelization had progressed sufficiently.

【0027】上記高結晶性フェライト粉末に対し、Sb
成分を含まない無アルカリほうけい酸鉛系ガラス粉末を
3重量部、粉末状のSb2O3を0〜0.50重量部添
加した混合物から実施例1と同一条件でリング状フェラ
イトコアを作成した。
[0027] Regarding the above-mentioned highly crystalline ferrite powder, Sb
A ring-shaped ferrite core was prepared under the same conditions as in Example 1 from a mixture containing 3 parts by weight of alkali-free lead borosilicate glass powder and 0 to 0.50 parts by weight of powdered Sb2O3.

【0028】0.20重量部より添加量が多くなると、
図4に示すように初透磁率が減少していくにもかかわら
ず直流重畳特性は余り変化しないことから、Sb2O3
の添加は0.20重量部以下が望ましい。
[0028] When the amount added is greater than 0.20 parts by weight,
As shown in Fig. 4, although the initial permeability decreases, the DC superimposition characteristics do not change much, so Sb2O3
The addition amount is preferably 0.20 parts by weight or less.

【0029】ここで、高結晶性フェライト粉末に混合し
た粉末状のSb2O3の一部もしくはすべてを無アルカ
リほうけい酸鉛系ガラスのSb成分とした場合でも、同
一の特性が得られることは実施例1から明らかである。
[0029] Here, even if part or all of the powdered Sb2O3 mixed with the highly crystalline ferrite powder is used as the Sb component of the alkali-free lead borosilicate glass, the same characteristics can be obtained as shown in the example. It is clear from 1.

【0030】なお、上記実施例において、初透磁率の測
定はJIS規格(C2561)に準じ、まず前述のリン
グ状フェライトコアに絶縁テープを一層巻いた後、線径
0.26mmφの絶縁銅線を全周に渡って一層巻いた試
料を準備した。次に、10kHz〜10MHzでの自己
インダクタンスLをマクスウェルブリッジで測定磁界の
強さが0.8(A/m)以下にて測定し、自己インダク
タンスLから初透磁率を算出した。
In the above example, the initial magnetic permeability was measured in accordance with the JIS standard (C2561). First, one layer of insulating tape was wrapped around the ring-shaped ferrite core, and then an insulated copper wire with a wire diameter of 0.26 mmφ was wrapped around the ring-shaped ferrite core. A sample was prepared that was wrapped in one layer around the entire circumference. Next, the self-inductance L at 10 kHz to 10 MHz was measured with a Maxwell bridge at a measurement magnetic field strength of 0.8 (A/m) or less, and the initial magnetic permeability was calculated from the self-inductance L.

【0031】また、初透磁率が重畳磁場がない場合に対
して10%減少したときの直流重畳磁場を直流重畳限界
点とした。
Further, the DC superimposed magnetic field when the initial magnetic permeability decreased by 10% compared to the case without the superimposed magnetic field was defined as the DC superimposed limit point.

【0032】[0032]

【発明の効果】以上のように、本発明によれば、高結晶
性フェライト粉末を用いたガラス結着型超低収縮のフェ
ライト磁性体において、高結晶性フェライト粉末の外表
面にSb成分が存在する構造となることによって、直流
重畳特性が優れた磁性材料となり、各種磁気応用製品に
使われる有用な電子部品材料として優れた効果を奏し得
るものである。
As described above, according to the present invention, in a glass bonded ultra-low shrinkage ferrite magnetic material using highly crystalline ferrite powder, Sb components are present on the outer surface of the highly crystalline ferrite powder. With this structure, it becomes a magnetic material with excellent direct current superimposition characteristics, and can exhibit excellent effects as a useful electronic component material used in various magnetic application products.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のフェライト磁性体の一実施例を示す微
細構造の模式図
[Fig. 1] Schematic diagram of a microstructure showing an example of the ferrite magnetic material of the present invention

【図2】第1の実施例における直流重畳特性図[Fig. 2] DC superposition characteristic diagram in the first embodiment

【図3】
第2の実施例における1200℃での保持時間と直流重
畳限界点の関係を示す図
[Figure 3]
Diagram showing the relationship between the holding time at 1200°C and the DC superposition limit point in the second example

【図4】第3の実施例におけるSb2O3の配合量と直
流重畳限界点の関係を示す図
[Fig. 4] A diagram showing the relationship between the blending amount of Sb2O3 and the DC superposition limit point in the third example.

【符号の説明】 1  高結晶性フェライト粉末 2  ガラス材 3  空隙 4  ポア[Explanation of symbols] 1 Highly crystalline ferrite powder 2 Glass material 3 Voids 4 Pore

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高温焼成で十分にスピネル化が進んだNi
−Zn系もしくはNi−Zn−Cu系の内部より外表面
にSb成分を多く有する高結晶性フェライト粉末をこの
焼成されたフェライト粉末より低い軟化点を持つガラス
材で結着したフェライト磁性体。
Claim 1: Ni that has been sufficiently turned into spinel by high-temperature firing
- A ferrite magnetic material in which a Zn-based or Ni-Zn-Cu-based highly crystalline ferrite powder having a higher Sb content on its outer surface than its inside is bonded with a glass material having a softening point lower than that of the fired ferrite powder.
【請求項2】高温焼成で十分にスピネル化が進んだNi
−Zn系もしくはNi−Zn−Cu系の高結晶性フェラ
イト粉末と、この焼成されたフェライト粉末より低い軟
化点を持ち少なくともSb成分を含有するガラス粉末と
を混合,造粒した混合物を加圧成型した後、上記高結晶
性フェライト粉末の焼成温度以下の加熱処理により、こ
の成形体中に混在するガラス粉末を軟化熔融させて高結
晶性フェライト粉末をガラス材で結着するフェライト磁
性体の製造方法。
Claim 2: Ni that has been sufficiently spinelized by high-temperature firing
- Pressure molding of a mixture obtained by mixing and granulating Zn-based or Ni-Zn-Cu-based highly crystalline ferrite powder and glass powder that has a softening point lower than this fired ferrite powder and contains at least an Sb component. After that, the glass powder mixed in the molded body is softened and melted by heat treatment at a temperature below the firing temperature of the highly crystalline ferrite powder, and the highly crystalline ferrite powder is bound with a glass material. .
【請求項3】高温で十分にスピネル化が進んだNi−Z
n系もしくはNi−Zn−Cu系の高結晶性フェライト
粉末と、この焼成されたフェライト粉末より低い軟化点
を持つガラス粉末と粉末状の三酸化アンチモンとを混合
,造粒した混合物を加圧成型し、ガラス粉末と三酸化ア
ンチモンが熔融反応する温度以上でかつ上記高結晶性フ
ェライト粉末の焼成温度以下の加熱処理により高結晶性
フェライト粉末をガラス材で結着するフェライト磁性体
の製造方法。
[Claim 3] Ni-Z that is sufficiently spinelized at high temperatures
A mixture of n-based or Ni-Zn-Cu-based highly crystalline ferrite powder, glass powder with a softening point lower than that of the fired ferrite powder, and powdered antimony trioxide is mixed and granulated, and then the mixture is pressure-molded. and a method for producing a ferrite magnetic material, which comprises binding highly crystalline ferrite powder with a glass material by heat treatment at a temperature higher than the temperature at which the glass powder and antimony trioxide melt and react and lower than the firing temperature of the high crystalline ferrite powder.
JP3005684A 1991-01-22 1991-01-22 Ferrite magnetic material and manufacture thereof Pending JPH04237104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005684A JPH04237104A (en) 1991-01-22 1991-01-22 Ferrite magnetic material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005684A JPH04237104A (en) 1991-01-22 1991-01-22 Ferrite magnetic material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04237104A true JPH04237104A (en) 1992-08-25

Family

ID=11617927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005684A Pending JPH04237104A (en) 1991-01-22 1991-01-22 Ferrite magnetic material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04237104A (en)

Similar Documents

Publication Publication Date Title
KR920004025B1 (en) Ferrite magnets and making method thereof
US4540500A (en) Low temperature sinterable oxide magnetic material
JP2010238914A (en) Method of producing high strength low loss composite soft magnetic material, and high strength low loss composite soft magnetic material
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JPH04237104A (en) Ferrite magnetic material and manufacture thereof
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
JPH06215919A (en) Magnetic substance and manufacture thereof
JP2830241B2 (en) Ferrite magnetic material
JPH03233908A (en) Ferrite magnetic substance and its manufacture
JPH09501397A (en) Magneto-dielectric ceramic composite material, method of manufacturing this material, applications and multifunctional parts
JP2762530B2 (en) Manufacturing method of ferrite magnetic material
JPH04101401A (en) Ferrite magnetic body and production thereof
JP2830071B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2762532B2 (en) Ferrite magnetic body and method of manufacturing the same
JPH0374811A (en) Ferrite magnetic material
JPH05299229A (en) Ferrite magnetic body and manufacturing method thereof
JP2760026B2 (en) Ferrite magnetic body and method of manufacturing the same
JPH03278501A (en) Soft magnetic core material and manufacture thereof
JPH06151148A (en) Ferrite magnetic body and manufature thereof
EP0697383B1 (en) Method of preparing a ferrite compact
JPH02177511A (en) Ferrite magnetic material and manufacture thereof
JPH0433301A (en) Formation of ferrite magnetic substance
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
KR100302070B1 (en) Method for preparing soft magnetic ferrite
JPH01253209A (en) Magnetic material and manufacture thereof