JP2760026B2 - Ferrite magnetic body and method of manufacturing the same - Google Patents

Ferrite magnetic body and method of manufacturing the same

Info

Publication number
JP2760026B2
JP2760026B2 JP7882689A JP7882689A JP2760026B2 JP 2760026 B2 JP2760026 B2 JP 2760026B2 JP 7882689 A JP7882689 A JP 7882689A JP 7882689 A JP7882689 A JP 7882689A JP 2760026 B2 JP2760026 B2 JP 2760026B2
Authority
JP
Japan
Prior art keywords
ferrite magnetic
powder
temperature
glass
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7882689A
Other languages
Japanese (ja)
Other versions
JPH02256204A (en
Inventor
真二 原田
肇 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7882689A priority Critical patent/JP2760026B2/en
Publication of JPH02256204A publication Critical patent/JPH02256204A/en
Application granted granted Critical
Publication of JP2760026B2 publication Critical patent/JP2760026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高結晶性フェライト磁性粉末をガラス材で
結着固化してなる超低収縮率のフェライト磁性体とその
製造方法に関するものであり、この種のフェライト磁性
体は有用な電子部品として利用される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-low shrinkage ferrite magnetic material obtained by binding and solidifying a highly crystalline ferrite magnetic powder with a glass material, and a method for producing the same. Kinds of ferrite magnetic materials are used as useful electronic components.

従来の技術 従来のフェライト磁性材料の製造方法は、主として粉
末治金法、すなわち、粉末成形と高温焼成の工程を必要
とする焼結法がほとんどである。
2. Description of the Related Art Conventional ferrite magnetic material manufacturing methods mainly include a powder metallurgy method, that is, a sintering method that requires steps of powder molding and high-temperature firing.

フェライト磁性体を作る場合は、出発原料を所定の割
合で配合し、適当な条件で仮焼成して脱ガスおよびある
程度の固相反応を進めた後(これを仮焼粉という)、粉
砕、造粒、成形という工程を経て、その成形体を適切な
雰囲気中で前記の仮焼成温度より高温で本焼成すること
によって所望の磁気特性、機械的強度を有した多結晶質
のフェライト焼結体を得ている。
When a ferrite magnetic material is produced, the starting materials are blended in a predetermined ratio, calcined under appropriate conditions, degassing and a certain amount of solid-phase reaction are advanced (this is called calcined powder), and then pulverized and molded. Through the steps of granulation and compaction, the compact is fired at a temperature higher than the calcination temperature in an appropriate atmosphere to produce a polycrystalline ferrite sintered body having desired magnetic properties and mechanical strength. It has gained.

この多結晶質のフェライト焼結体の微細構造の模式図
を第2図に示す。第2図において、5は結晶粒、6は粒
界、7は粒界ポア、8は結晶粒5のポアである。
FIG. 2 shows a schematic diagram of the fine structure of this polycrystalline ferrite sintered body. In FIG. 2, 5 is a crystal grain, 6 is a grain boundary, 7 is a grain boundary pore, and 8 is a pore of the crystal grain 5.

上記工程中の仮焼温度は所定配合比率の出発原料が固
相反応を始める700〜1000℃の間に設定され、焼結を十
分にさせる本焼成温度は仮焼粉の材料および組成さらに
は粒径、形状によって異なるが通常は1000〜1400℃とい
う高温である。この時の焼成雰囲気は求められる材料、
組成によって酸化性雰囲気か非酸化性雰囲気が選ばれ
る。
The calcining temperature in the above process is set between 700 and 1000 ° C., at which the starting material of a predetermined blending ratio starts the solid-phase reaction, and the main calcining temperature for sufficient sintering is the material and composition of the calcined powder and the granules. Although it depends on the diameter and shape, it is usually a high temperature of 1000 to 1400 ° C. The firing atmosphere at this time is the required material,
An oxidizing atmosphere or a non-oxidizing atmosphere is selected depending on the composition.

このフェライト焼結法の欠点は、上記仮焼粉の成形体
を本焼成工程で焼結させると必ず寸法変化が生じるとい
うことである。つまり本焼成を終えると通常10〜20%、
大きいときにはそれ以上も収縮し、焼結品の寸法精度な
らびに歩留まりを悪くする。従って、切削、研磨等の機
械加工である後処理が必要となってくる。
A disadvantage of the ferrite sintering method is that sintering of the calcined powder compact in the main sintering step necessarily causes a dimensional change. In other words, after the final firing, usually 10-20%,
When it is large, it shrinks more, and the dimensional accuracy and yield of the sintered product are deteriorated. Therefore, post-processing, which is mechanical processing such as cutting and polishing, is required.

上述した焼結過程での収縮は次のような原因で起こ
る。すなわち、仮焼粉を単に加圧した成形体は通常粒径
が2〜5μm程度もしくはそれ以下の粉末を使用するた
めに成形密度が低く、つまり粉末どうしが接触している
もののまだ空隙が多く、700〜1000℃以上の温度で加熱
すると仮焼粉間の接触部分で粒子を構成する原子の相互
拡散が生じて焼結現象が始まる。その結果、焼結の進行
度合とともに仮焼粉間の空隙が減少して行き、大きい時
には20%を越えて収縮するのである。
Shrinkage during the sintering process described above occurs for the following reasons. That is, the compact obtained by simply pressing the calcined powder usually has a low compaction density because a powder having a particle size of about 2 to 5 μm or less is used. That is, although the powders are in contact with each other, there are still many voids, When heated at a temperature of 700 to 1000 ° C. or more, inter-diffusion of atoms constituting the particles occurs at the contact portion between the calcined powders, and the sintering phenomenon starts. As a result, the voids between the calcined powders decrease with the progress of sintering, and shrink more than 20% when large.

従って、焼結をきっちり均一にかつ成形体に熱衝撃を
受けないようにするには本焼成時の昇温、高温を比較的
緩慢にすることが重要になってくる。
Therefore, it is important to make the temperature rise and the temperature at the time of main firing relatively slow in order to make the sintering uniform and not to receive the thermal shock to the compact.

この結果、本焼成工程は普通少なくとも半日以上長い
場合でも2日になることもある。
As a result, the main firing step may take two days even if it is usually at least half a day or longer.

フェライト焼成法の欠点を改良する研究はこれまでに
も数多くなされてきた。そのうち焼結体の収縮問題に関
しては収縮率を極力下げる方法や収縮率を一定に制御す
る方法が種々検討されてきたが、いずれもフェライトの
性能、特性を確保しようとすればある程度の収縮が避け
られないのが実情である。たとえば、特開昭58-135133
号公報、特開昭58-135606号公報に記載されているよう
に、フェライト仮焼粉とガラス粉末を混合した後に、フ
ェライトの緻密化(焼結化)の進行する温度で焼成する
と、この時添加しているガラス粉末がフェライト粒子の
周囲を覆うことでフェライトの緻密化を一部抑えて低収
縮率の焼結体を得ることができるというものである。し
かし、この場合でも仮焼粉作製温度が後の成形体の本焼
成温度よりいずれも低いために、本焼成時には未だ直接
接触している仮焼粉間の相互拡散が生じるので成形体の
収縮現象は避け難く実際にはまだ数%の収縮が起きてい
た。
There have been many studies to improve the disadvantages of the ferrite firing method. Among them, regarding the problem of shrinkage of the sintered body, various methods have been studied to reduce the shrinkage as much as possible and to control the shrinkage at a constant level.However, in order to secure the performance and characteristics of ferrite, some shrinkage is avoided. The fact is that it cannot be done. For example, JP-A-58-135133
As described in JP-A-58-135606, after calcined ferrite powder and glass powder are mixed, firing is performed at a temperature at which densification (sintering) of ferrite proceeds. By adding the glass powder to the periphery of the ferrite particles, the densification of the ferrite can be partially suppressed to obtain a sintered body having a low shrinkage. However, even in this case, since the calcined powder production temperature is lower than the final firing temperature of the compact afterwards, mutual diffusion occurs between the calcined powders that are still in direct contact during the final firing, so that the compaction shrinkage phenomenon Was unavoidable and in fact shrank by a few percent.

発明が解決しようとする課題 以上述べてきたように、従来のフェライト焼結体では
所望の性能を得ようとして焼結を進めれば進める程収縮
は大きくなり、逆に焼結を抑えれば性能が確保できなく
なって両立し難い。しかし、フェライト焼結体は電子部
品、デバイス材料として多用され、その性能、および高
寸法精度が益々重要視されている。
Problems to be Solved by the Invention As described above, in the conventional ferrite sintered body, the more the sintering is advanced in order to obtain the desired performance, the larger the shrinkage is, and conversely, if the sintering is suppressed, the performance is reduced. Can not be secured, it is difficult to balance. However, sintered ferrites are widely used as electronic parts and device materials, and their performance and high dimensional accuracy are increasingly regarded as important.

本発明の目的は上述した従来技術の欠点を解消し、ほ
とんど収縮性のない、しかも磁気特性に優れたガラス結
着型で超低収縮率のフェライト磁性体とそれを安価に製
造できる方法を提供するものである。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a glass-bound ultra-low-shrinkage ferrite magnetic material having almost no shrinkage and excellent magnetic properties, and a method of manufacturing the same at a low cost. Is what you do.

課題を解決するための手段 上記課題を解決するための本発明のフェライト磁性体
は、高温焼成で十分にフェライト化が進んだ少なくとも
Cuを含む高結晶性フェライト磁性粉末と、この焼成温度
より低い軟化点をもつガラス粉末との混合物を、このガ
ラス粉末の軟化温度以上でかつ上記高結晶性フェライト
磁性粉末の焼成温度以下の範囲で加熱処理をして高結晶
性フェライト磁性粉末をガラス材で結着した構成とする
ものである。
Means for Solving the Problems The ferrite magnetic material of the present invention for solving the above problems has at least sufficiently advanced ferrite formation at high temperature firing.
A mixture of a highly crystalline ferrite magnetic powder containing Cu and a glass powder having a softening point lower than the sintering temperature in a range of not less than the softening temperature of the glass powder and not more than the sintering temperature of the highly crystalline ferrite magnetic powder. The heat treatment is performed so that the high crystalline ferrite magnetic powder is bound with a glass material.

作用 使用する少なくともCuを含むフェライト磁性粉末自体
を高温焼成により既に完全に近いところまで結晶化を進
めているので、後の低温の成形体加熱処理では、高結晶
性フェライト磁性粉末間の焼結がほとんど起こらず、高
結晶性フェライト磁性粉末間に混在するガラス粉末を単
に溶融して高結晶性フェライト磁性粉末を結着させるだ
けである。その結果、成形体中の空隙率が加熱処理前後
であまり変化しないため、金型成形寸法に近い高寸法精
度でかつ磁気特性にも優れた新規なフェライト磁性体が
得られる。
Action Since the ferrite magnetic powder containing at least Cu to be used has already been crystallized to near perfection by high-temperature sintering, sintering between the highly crystalline ferrite magnetic powders in the subsequent low-temperature molding heat treatment This hardly occurs, and the glass powder mixed between the high crystalline ferrite magnetic powders is simply melted to bind the high crystalline ferrite magnetic powder. As a result, the porosity in the molded body does not change much before and after the heat treatment, so that a novel ferrite magnetic body having high dimensional accuracy close to the mold forming dimensions and excellent magnetic properties can be obtained.

さらに成形体の加熱処理は焼結性を期待するものでは
なく、上述のようにガラス粉末が溶融して高結晶性フェ
ライト磁性粉末間に流れ結着効果がでればよいので基本
的には従来法の本焼成時間よりかなり短時間ですむ。そ
のために設備費や電気代が安くつき、製造方法も簡便で
あるので安価に製造できる。
Furthermore, the heat treatment of the molded body does not expect sintering properties, and it is basically necessary to melt the glass powder as described above and flow between the high-crystalline ferrite magnetic powders and obtain a binding effect. It is much shorter than the main firing time of the method. Therefore, equipment costs and electricity costs are low, and the manufacturing method is simple, so that it can be manufactured at low cost.

また、軟質フェライトではそれ自身の渦電流損失を極
力減らす必要から高抵抗化が望まれるが、本発明によれ
ば比較的電気抵抗の低いMn-Zn系フェライトであっても
溶融固化したガラス成分が高結晶性フェライト磁性粉末
を電気的に絶縁するので抵抗値が上がり高周波特性を良
くするという利点も得られる。
In addition, in the case of soft ferrite, high resistance is desired because it is necessary to reduce eddy current loss of the ferrite as much as possible.However, according to the present invention, even when a Mn-Zn ferrite having a relatively low electric resistance is melted and solidified, a glass component is hardened. Since the highly crystalline ferrite magnetic powder is electrically insulated, the resistance value can be increased and the high frequency characteristics can be improved.

実施例 以下、本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

すなわち、本発明は第1図に示すように高結晶性フェ
ライト磁性粉末1をこの高結晶性フェライト磁性粉末1
の焼成温度以下で軟化溶融するガラス材2で結着した構
成とするものである。
That is, according to the present invention, as shown in FIG.
And a glass material 2 that softens and melts at a firing temperature or lower.

具体的には、高結晶性フェライト磁性粉末1とガラス
粉末とをよく混合し、造粒した混合造粒物を加圧成形し
た後、この成形体中の高結晶性フェライト磁性粉末1間
に混在する上記ガラス粉末を軟化溶融させることによ
り、高結晶性フェライト磁性粉末1をガラス材2で単に
結着し固化したフェライト磁性体をいう。なお、図中3
は空隙、4は高結晶性フェライト磁性粉末1中のポアを
示す。
Specifically, the highly crystalline ferrite magnetic powder 1 and the glass powder are mixed well, and the granulated mixed granule is pressed and then mixed with the highly crystalline ferrite magnetic powder 1 in the compact. A ferrite magnetic material in which the above-mentioned glass powder is softened and melted so that the highly crystalline ferrite magnetic powder 1 is simply bound with the glass material 2 and solidified. In addition, 3 in the figure
Indicates voids, and 4 indicates pores in the highly crystalline ferrite magnetic powder 1.

ここで使用する高結晶性フェライト磁性粉末1は高温
焼成によって十分にフェライト化したものであって、通
常は900℃以上で焼成したものが好ましい。
The highly crystalline ferrite magnetic powder 1 used here is sufficiently ferritized by firing at a high temperature, and usually preferably fired at 900 ° C. or higher.

軟質フェライト磁性体を得たい場合は、高結晶性フェ
ライト磁性粉末1の抗磁力Hcが小さい程良いので、磁性
粒子のサイズは大きい程好ましいが、一方、高結晶性フ
ェライト磁性粉末1の充填密度が下がるので実際には10
0〜200μm径までが適している。
When it is desired to obtain a soft ferrite magnetic substance, the smaller the coercive force Hc of the highly crystalline ferrite magnetic powder 1 is, the better the size of the magnetic particles is. Thus, the packing density of the highly crystalline ferrite magnetic powder 1 is preferably small. Actually go down 10
A diameter of 0 to 200 μm is suitable.

次に高結晶性フェライト磁性粉末1を結着するガラス
粉末の軟化温度以下であれば良いが、本発明によるフェ
ライト磁性体の応用を考えると耐熱性の観点から下限は
300℃以上であることが望ましい。高結晶性フェライト
磁性粉末1に加えるガラス粉末の量は0.3〜30wt%が良
く、0.3wt%より少ないと高結晶性フェライト磁性粉末
1の結着効果が小さく機械的強度が確保できない。一
方、30wt%より多いガラス量では、結着力は十分に強く
なるが非磁性量が増すためにフェライト磁性体としての
磁気特性が著しく悪化してよろしくない。
Next, the temperature should be equal to or lower than the softening temperature of the glass powder that binds the high crystalline ferrite magnetic powder 1. However, considering the application of the ferrite magnetic material according to the present invention, the lower limit is from the viewpoint of heat resistance.
It is desirable that the temperature be 300 ° C. or higher. The amount of the glass powder added to the high-crystalline ferrite magnetic powder 1 is preferably 0.3 to 30% by weight. If the amount is less than 0.3% by weight, the binding effect of the high-crystalline ferrite magnetic powder 1 is so small that mechanical strength cannot be secured. On the other hand, when the amount of glass is more than 30% by weight, the binding force becomes sufficiently strong, but the non-magnetic amount increases, so that the magnetic properties of the ferrite magnetic material are not significantly deteriorated.

高結晶性フェライト磁性粉末1とガラス粉末の混合成
形体の加熱処理は、ガラス粉末の混合成形体の加熱処理
は、ガラス粉末の溶融浸透を主な目的とするものである
から、熱処理の保持時間および昇降温に要する時間時間
を含めて3時間以下でも可能である。
The heat treatment of the mixed molded body of the high crystalline ferrite magnetic powder 1 and the glass powder is performed mainly because the heat treatment of the mixed molded body of the glass powder is mainly for melting and infiltration of the glass powder. In addition, the time required for raising and lowering the temperature may be 3 hours or less.

熱処理温度は基本的にはガラスの軟化温度より上であ
れば良いが、高結晶性フェライト磁性粉末1の焼成温度
に近くなるに従って特に800℃以上になるとガラス材2
の結着効果が増し、低収縮性であるにもかかわらず磁気
特性も優れるという好ましい結果が得られた。
The heat treatment temperature may be basically higher than the softening temperature of the glass. However, as the temperature approaches the sintering temperature of the highly crystalline ferrite magnetic powder 1, especially when the temperature becomes 800 ° C. or more, the glass material 2
Has been obtained, and the favorable effect that the magnetic properties are excellent despite the low shrinkage property was obtained.

以下、具体的な実施例について説明する。 Hereinafter, specific examples will be described.

(実施例1〜10) Fe2O348mol%、NiO13mol%、ZnO34mol%、CuO5mol%
よりなる出発混合造粒粉を1320℃、6時間焼成したもの
を粉砕し、平均粒径70μmのNi-Zn-Cu系軟質フェライト
本焼成粉を準備した。この粉末をX線解析した結果、軟
質フェライト特有の鋭いスピネル構造回折線が得られ結
晶性の非常に高い磁性粉末粉であることを確認した。
(Example 1~10) Fe 2 O 3 48mol% , NiO13mol%, ZnO34mol%, CuO5mol%
The obtained starting mixed granulated powder was calcined at 1320 ° C. for 6 hours and pulverized to prepare a Ni-Zn-Cu soft ferrite main calcined powder having an average particle diameter of 70 μm. As a result of X-ray analysis of this powder, a sharp spinel structure diffraction line unique to soft ferrite was obtained, and it was confirmed that the powder was a magnetic powder having extremely high crystallinity.

上記高結晶性フェライト磁性粉末に対して軟化点(T
d)370℃、平均粒径1μmの無アルカリホウケイ酸鉛系
ガラス粉末を各々0、0.1、0.3、0.5、1、3、5、1
0、30、40wt%ずつ加えて混合、造粒した後、3ton/cm2
の圧力で内径7mmφ、外形12mmφ、厚さ3mmのガラス含有
量が各々異なるリング状成形品を作製した。この成形品
を電気炉内に個々に設置し1200℃、60分空気中で加熱処
理したガラス結着型のリング状フェライトコアを得た。
The softening point (T
d) Alkali-free lead borosilicate glass powder having an average particle size of 1 μm at 370 ° C. was added to each of 0, 0.1, 0.3, 0.5, 1, 3, 5, and 1
After adding 0, 30, and 40 wt% each, mixing and granulating, 3 ton / cm 2
Under the above pressure, ring-shaped molded articles having an inner diameter of 7 mmφ, an outer diameter of 12 mmφ, and a thickness of 3 mm with different glass contents were produced. The molded articles were individually placed in an electric furnace and heated at 1200 ° C. for 60 minutes in air to obtain a glass-bound ring-shaped ferrite core.

上記実施例1〜10の試料の材料特性を第1表に示し
た。
Table 1 shows the material properties of the samples of Examples 1 to 10.

実施例1〜10では、ガラス含有量が多くなるに従って
コアの引張強度が増大するが、ガラス含有量が0.3wt%
より少ない場合は、実用上使用できない。また、30wt%
より多い場合は、磁気特性が悪化する。
In Examples 1 to 10, the core tensile strength increases as the glass content increases, but the glass content is 0.3 wt%.
If it is less, it cannot be used practically. Also, 30wt%
If it is larger, the magnetic properties will deteriorate.

(比較例1) 実施例1と同一の配合組成をもった出発混合造粒粉を
1000℃、2時間で仮焼を行い、2〜5μmに微粉砕し、
造粒した後、実施例1と同様にして同サイズのリング状
成形品を作製した。
(Comparative Example 1) A starting mixed granulated powder having the same composition as in Example 1 was prepared.
Perform calcination at 1000 ° C for 2 hours, finely pulverize to 2 to 5 μm,
After granulation, a ring-shaped molded product of the same size was produced in the same manner as in Example 1.

この成形品を電気炉内に設置し、1300℃、3時間空気
中で焼成した後、除冷しながら降温させNi-Zn-Cu系フェ
ライト焼結型リング状コアを得た。この試料の材料特性
を第1表に示した。
This molded product was placed in an electric furnace, fired in air at 1300 ° C. for 3 hours, then cooled and cooled to obtain a Ni-Zn-Cu ferrite sintered ring core. The material properties of this sample are shown in Table 1.

(比較例2) 比較例1で用いた同一の仮焼粉に実施例7で用いた同
一のガラス粉末を5wt%加えて混合、造粒した後、実施
例7と同様にして同サイズのリング状成形品を作製し
た。
Comparative Example 2 The same calcined powder used in Comparative Example 1 was mixed with the same glass powder used in Example 7 in an amount of 5 wt%, mixed and granulated. A shaped article was produced.

この成形品を電気炉内に設置し、1200℃、60分空気中
で加熱処理してガラス含有型のリング状フェライトコア
を得た。
This molded product was placed in an electric furnace and heated at 1200 ° C. for 60 minutes in air to obtain a glass-containing type ring-shaped ferrite core.

この試料の材料特性を第1表に示した。 The material properties of this sample are shown in Table 1.

比較例1〜2ではコア収縮率が10%以上となり低収縮
率を実現できない。
In Comparative Examples 1 and 2, the core shrinkage becomes 10% or more and a low shrinkage cannot be realized.

(実施例11〜15) 実施例7で用いた同一のフェライト本焼粉に対して同
一のガラス粉末を5wt%加えて混合、造粒した後、3ton/
cm2の圧力で内径7mmφ、外形12mmφ、厚さ3mmのリング
状成形品を5個作製した。
(Examples 11 to 15) 5 wt% of the same glass powder was added to the same ferrite main firing powder used in Example 7, mixed and granulated, and then 3 ton /
Five ring-shaped molded articles having an inner diameter of 7 mmφ, an outer diameter of 12 mmφ, and a thickness of 3 mm were produced at a pressure of cm 2 .

この各成形品を1個ずつ電気炉内に設置し、1300℃、
1000℃、800℃、600℃、450℃それぞれの温度で60分空
気中で加熱処理してガラス結着型リング状フェライトコ
アを得た。
Each of these moldings was placed in an electric furnace one at a time at 1300 ° C.
Heat treatment was performed in air at 1000 ° C., 800 ° C., 600 ° C., and 450 ° C. for 60 minutes to obtain a glass-bound ring-shaped ferrite core.

上記実施例11〜15の試料の材料特性を第2表に示し
た。
Table 2 shows the material properties of the samples of Examples 11 to 15 described above.

加熱処理温度が低くなるに従って磁気特性、コアの機
械強度が下がり800℃より低い処理温度では実用上使用
が困難である。
As the heat treatment temperature decreases, the magnetic properties and the mechanical strength of the core decrease, and it is practically difficult to use at a treatment temperature lower than 800 ° C.

(実施例16) 実施例1で用いた同一のフェライト本焼成粉に対して
軟化点(Td)700℃、平均粒径1μmの無アルカリホウ
ケイ酸鉛系ガラス粉末を5wt%加えて混合、造粒した
後、3ton/cm2の圧力で内径7mmφ、外形12mmφ、厚さ3mm
のリング状成形品を作製した。
(Example 16) 5 wt% of alkali-free lead borosilicate glass powder having a softening point (Td) of 700 ° C and an average particle diameter of 1 µm was added to the same ferrite main firing powder used in Example 1 and mixed and granulated. After 3 ton / cm 2 pressure, inner diameter 7mmφ, outer diameter 12mmφ, thickness 3mm
Was produced.

この成形品を1200℃、60分間空気中で加熱処理してガ
ラス結着型リング状フェライトコアを得た。
This molded product was heated in air at 1200 ° C. for 60 minutes to obtain a glass-bound ring-shaped ferrite core.

上記実施例16の材料特性を第2表に示した。 Table 2 shows the material properties of Example 16 described above.

なお、上記実施例、比較例においては、初透磁率の測
定は、JIS規格(C2561)に準じ、まず前述のリング状フ
ェライトコアに絶縁テープを一層巻いた後、各々に線径
0.26mmφの絶縁銅線を全周にわたって一層巻いた試料を
準備した。
In the above Examples and Comparative Examples, the initial magnetic permeability was measured according to the JIS standard (C2561).
A sample was prepared by further winding an insulated copper wire of 0.26 mmφ all around.

次にこの自己インダクタンスをマクスウェルブリッジ
で測定磁界の強さが0.8(A/m)以下にて測定し、これよ
り周波数1(MHz)での初透磁率を算出した。
Next, this self-inductance was measured with a Maxwell bridge when the strength of the measured magnetic field was 0.8 (A / m) or less, and the initial magnetic permeability at a frequency of 1 (MHz) was calculated from this.

また、飽和磁束密度は各リングコアをJIS規格(C256
1)に準じ、磁気磁束計法にて、10(Oe)の磁場での磁
束密度を測定した。
In addition, the saturation magnetic flux density is determined by JIS standard (C256
According to 1), the magnetic flux density at a magnetic field of 10 (Oe) was measured by a magnetic fluxmeter method.

さらに、収縮率は熱処理前のリング状成形品と熱処理
後のリング状フェライトコアの外径寸法をそれぞれ測定
し、熱処理前後による寸法収縮率を算出した。引張強度
の測定は、JIS規格(C2564)に準じ、リングコアに2本
の細線をそれぞれ一回通し、うち1本を固定した後、残
り1本を垂直方向に5mm/min以下の速度で引張り、コア
が破壊する瞬間の引張荷重を測定して求めた。
Furthermore, the shrinkage was measured by measuring the outer diameters of the ring-shaped molded product before the heat treatment and the ring-shaped ferrite core after the heat treatment, and calculating the dimensional shrinkage before and after the heat treatment. According to JIS standard (C2564), two thin wires were passed through the ring core once, and one of them was fixed, and the other one was pulled vertically at a speed of 5 mm / min or less. The tensile load at the moment when the core was broken was measured and determined.

発明の効果 以上のように本発明によれば、ガラス結着型高密度低
収縮のフェライト磁性体は、寸法精度が良く、かつ磁気
特性に優れた磁性材料となりしかも安価に製造できると
いうことから、各種磁気応用製品に使われる有用な電子
部品、材料として優れた効果を奏しうるものである。
Effects of the Invention As described above, according to the present invention, a glass-bound high-density low-shrink ferrite magnetic material has good dimensional accuracy, and becomes a magnetic material with excellent magnetic properties, and can be manufactured at low cost. It can provide excellent effects as useful electronic components and materials used in various magnetic products.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるフェライト磁性体の微細構造の模
式図、第2図は従来の代表的な焼結型フェライト磁性体
の微細構造の模式図である。 1……高結晶性フェライト磁性粉末、2……ガラス材、
3……空隙、4……ポア、5……結晶粒、6……粒界、
7……粒界ポア、8……ポア。
FIG. 1 is a schematic diagram of a fine structure of a ferrite magnetic material according to the present invention, and FIG. 2 is a schematic diagram of a fine structure of a conventional typical sintered ferrite magnetic material. 1 ... High crystalline ferrite magnetic powder, 2 ... Glass material,
3 voids 4 pores 5 crystal grains 6 grain boundaries
7 ... grain boundary pore, 8 ... pore.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温焼成で十分にフェライト化が進んだ少
なくともCuを含む高結晶性フェライト磁性粉末とこの焼
成温度より低い軟化点をもつガラス粉末との混合物を、
このガラス粉末の軟化温度以上でかつ上記高結晶性フェ
ライト磁性粉末の焼成温度以下の温度範囲で加熱処理し
て高結晶性フェライト磁性粉末をガラス材で結着してな
るフェライト磁性体。
A mixture of a highly crystalline ferrite magnetic powder containing at least Cu, which has been sufficiently ferritized by firing at a high temperature, and a glass powder having a softening point lower than the firing temperature,
A ferrite magnetic material obtained by heat-treating the high-crystalline ferrite magnetic powder in a temperature range not lower than the softening temperature of the glass powder and not higher than the firing temperature of the high-crystalline ferrite magnetic powder, and binding the high-crystalline ferrite magnetic powder with a glass material.
【請求項2】高結晶性フェライト磁性粉末とガラス粉末
の混合物の加熱処理温度を800℃以上で高結晶性フェラ
イト磁性粉末の焼成温度以下とした請求項1記載のフェ
ライト磁性体。
2. The ferrite magnetic material according to claim 1, wherein the heat treatment temperature of the mixture of the high crystalline ferrite magnetic powder and the glass powder is 800 ° C. or higher and the firing temperature of the high crystalline ferrite magnetic powder or lower.
【請求項3】高結晶性フェライト磁性粉末に対するガラ
スの材料比率が0.3〜30wt%である請求項1記載のフェ
ライト磁性体。
3. The ferrite magnetic material according to claim 1, wherein the material ratio of the glass to the high crystalline ferrite magnetic powder is 0.3 to 30 wt%.
【請求項4】高温焼成で十分にフェライト化が進んだ少
なくともCuを含む高結晶性フェライト磁性粉末とこの焼
成温度より低い軟化点をもつガラス粉末とを混合、造粒
した混合物を加熱成形した後、上記フェライト磁性粉末
の焼成温度以下の加熱処理により、この成形体中に混在
するガラス粉末を軟化溶融させて高結晶性フェライト磁
性粉末をガラス材で結着するフェライト磁性体の製造方
法。
4. A high-crystalline ferrite magnetic powder containing at least Cu, which has been sufficiently ferritized by high-temperature firing, mixed with a glass powder having a softening point lower than the firing temperature, and the mixture obtained by granulation is heated. And a method of producing a ferrite magnetic material in which the glass powder mixed in the compact is softened and melted by a heat treatment at a temperature not higher than the firing temperature of the ferrite magnetic powder to bind the highly crystalline ferrite magnetic powder with a glass material.
【請求項5】高結晶性フェライト磁性粉末とガラス粉末
の混合物の加熱処理温度を800℃以上で高結晶性フェラ
イト磁性粉末の焼成温度以下とした請求項4記載のフェ
ライト磁性体の製造方法。
5. The method for producing a ferrite magnetic material according to claim 4, wherein the heat treatment temperature of the mixture of the high crystalline ferrite magnetic powder and the glass powder is set to 800 ° C. or higher and the firing temperature of the high crystalline ferrite magnetic powder or lower.
JP7882689A 1989-03-29 1989-03-29 Ferrite magnetic body and method of manufacturing the same Expired - Fee Related JP2760026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7882689A JP2760026B2 (en) 1989-03-29 1989-03-29 Ferrite magnetic body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7882689A JP2760026B2 (en) 1989-03-29 1989-03-29 Ferrite magnetic body and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02256204A JPH02256204A (en) 1990-10-17
JP2760026B2 true JP2760026B2 (en) 1998-05-28

Family

ID=13672637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7882689A Expired - Fee Related JP2760026B2 (en) 1989-03-29 1989-03-29 Ferrite magnetic body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2760026B2 (en)

Also Published As

Publication number Publication date
JPH02256204A (en) 1990-10-17

Similar Documents

Publication Publication Date Title
KR920004025B1 (en) Ferrite magnets and making method thereof
KR100650354B1 (en) Process for producing amorphous magnetically soft body
EP0105375A1 (en) Oxide-containing magnetic material capable of being sintered at low temperatures
JP2812152B2 (en) Magnetic body and method of manufacturing the same
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2760026B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2762530B2 (en) Manufacturing method of ferrite magnetic material
JPH08231268A (en) Low loss ferrite material
JP2762532B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2830071B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2830241B2 (en) Ferrite magnetic material
JPH0433301A (en) Formation of ferrite magnetic substance
JPH02177511A (en) Ferrite magnetic material and manufacture thereof
JPH03233908A (en) Ferrite magnetic substance and its manufacture
JPH0374811A (en) Ferrite magnetic material
JPH01319910A (en) Magnetic substance and manufacture thereof
EP0697383B1 (en) Method of preparing a ferrite compact
JPH05299229A (en) Ferrite magnetic body and manufacturing method thereof
JP3391108B2 (en) Magnetic body and method of manufacturing the same
JPH01253209A (en) Magnetic material and manufacture thereof
JPH06151148A (en) Ferrite magnetic body and manufature thereof
JPH04237104A (en) Ferrite magnetic material and manufacture thereof
JPH04101401A (en) Ferrite magnetic body and production thereof
JPH08250318A (en) Frrite material and manufacture
JPH08259315A (en) Production of ferrite sintered compact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees