JPH08250318A - Frrite material and manufacture - Google Patents

Frrite material and manufacture

Info

Publication number
JPH08250318A
JPH08250318A JP7056039A JP5603995A JPH08250318A JP H08250318 A JPH08250318 A JP H08250318A JP 7056039 A JP7056039 A JP 7056039A JP 5603995 A JP5603995 A JP 5603995A JP H08250318 A JPH08250318 A JP H08250318A
Authority
JP
Japan
Prior art keywords
ferrite
powder
firing
crystal grain
ferrite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7056039A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujii
浩 藤井
Shinji Harada
真二 原田
Shinya Matsutani
伸哉 松谷
Yasuyuki Aono
保之 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7056039A priority Critical patent/JPH08250318A/en
Publication of JPH08250318A publication Critical patent/JPH08250318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To provide a ferrite material which is usable for various electronic parts and superior in magnetic characteristic and mechanical strength enough to eliminate the need of post-working by minimizing the dimensional variation and deformation in baking steps, irrespective of the size of the magnetic substance in the manufacturing method of the ferrite passage. CONSTITUTION: An Ni-Zn or Ni-Zn-Cu ferrite crystal grain powder 1 made by mixing and calcining ferrite raw powders, a filler powder 2 composed of oxides and metal powders constituting a ferrite, and at least one additive 3 0.05-10.0wt.% in total to supply 0 in the baking step are mixed and baked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種電子部品に利用され
るフェライト材料およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrite material used for various electronic parts and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の磁性体としてのフェライト材料は
以下に示す2通りの方法で製造されていた。
2. Description of the Related Art Conventional ferrite materials as magnetic materials have been manufactured by the following two methods.

【0003】まず第1の方法は、フェライト原料粉末を
仮焼してなるフェライト結晶粒塊を粉砕し、得られたフ
ェライト結晶粒粉末とバインダーを混合し、混練、造粒
後、所定の形状の成形体を作成し、前記成形体を本焼成
してフェライト材料を得るものであった。
First, the first method is to pulverize a ferrite crystal grain agglomerate obtained by calcining a ferrite raw material powder, mix the obtained ferrite crystal grain powder with a binder, knead and granulate, and then form a predetermined shape. A molded body was prepared, and the molded body was subjected to main firing to obtain a ferrite material.

【0004】しかしながら、第1の方法で作成したフェ
ライト材料は本焼成中に15〜20%の焼成収縮をして
焼成変形を伴うため、複雑形状のフェライト材料を得る
際、研削加工を必要とする問題点を有していた。
However, since the ferrite material produced by the first method undergoes firing contraction of 15 to 20% during main firing and is accompanied by firing deformation, grinding processing is required when obtaining a ferrite material having a complicated shape. I had a problem.

【0005】第2の方法は、フェライト原料粉末を仮焼
してなるフェライト結晶粒塊を粉砕し、得られたフェラ
イト結晶粒粉末中にモールド樹脂を分散、固化させてフ
ェライト材料を形成するものであった。
The second method is to form a ferrite material by crushing a ferrite crystal grain agglomerate obtained by calcining a ferrite raw material powder and dispersing and solidifying a mold resin in the obtained ferrite crystal grain powder. there were.

【0006】しかしながら、第2の方法では高寸法精度
のフェライト材料は得られるが、フェライト粒粉末どう
しの結合性が第1の方法で作成したフェライト材料と比
較して不十分なため、磁気特性や機械強度が劣るという
問題点を有していた。
However, although the second method can obtain a ferrite material with high dimensional accuracy, since the binding property between the ferrite grain powders is insufficient as compared with the ferrite material produced by the first method, magnetic properties and It had a problem of poor mechanical strength.

【0007】以上のフェライト材料の製造方法の問題に
鑑み、近年特開昭58−135606号公報、特開昭5
0−50207号公報記載の磁性体の製造方法のよう
に、ガラス粉末を添加して焼成することによって成形体
の体積収縮を抑えながらフェライト粉末どうしを焼結結
合させ、十分な機械強度と磁気特性を有するフェライト
材料を得る試みや、特開平1−264959号公報記載
のフェライト材料の製造方法のように、焼成中に窒化ま
たは酸化する金属粒子をフェライト粉末粒子に混合し、
窒化物または酸化物になる金属粒子でフェライト粉末を
結合するとともにフェライト粉末の粒子間の空隙を減少
させることによって、焼結時に起る成形体の寸法変化率
を減少させる試みがなされてきた。
In view of the above problems of the method for producing a ferrite material, in recent years, JP-A-58-135606 and JP-A-5-135606 have been used.
As in the method for producing a magnetic body described in Japanese Patent Application Laid-Open No. 0-50207, ferrite powders are sintered and bonded while suppressing volumetric shrinkage of a molded body by adding glass powder and firing the mixture to obtain sufficient mechanical strength and magnetic properties. And a method of producing a ferrite material described in JP-A-1-264959, the metal particles that are nitrided or oxidized during firing are mixed with the ferrite powder particles.
Attempts have been made to reduce the rate of dimensional change of the compact during sintering by binding the ferrite powder with metal particles that become nitrides or oxides and by reducing the voids between the particles of the ferrite powder.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
技術によって得られるフェライト材料はいずれも非磁性
で結合されているため、磁気特性の向上に限界がある
上、焼成時に成形体の寸法変化を低減できるものの、
0.8%以上の寸法変化および焼成時の変形を抑制する
ことはできなかった。その結果、成形体を焼成して形成
される焼成体を後加工して所望の寸法をしたフェライト
材料を得る必要があり、寸法精度の高いフェライト材料
を得るために焼成体の後加工を必要とするには、さらに
焼成時における成形体の寸法変化率および変形量を低減
させなければならないと言う問題点を有していた。
However, since all the ferrite materials obtained by the conventional techniques are non-magnetically bonded, there is a limit to the improvement of the magnetic properties, and the dimensional change of the compact is reduced during firing. Although you can
The dimensional change of 0.8% or more and the deformation during firing could not be suppressed. As a result, it is necessary to post-process the fired body formed by firing the molded body to obtain a ferrite material having a desired dimension, and post-working of the fired body is required to obtain a ferrite material with high dimensional accuracy. In order to achieve this, the dimensional change rate and the amount of deformation of the compact during firing must be further reduced.

【0009】本発明は上記課題を解決するものであり、
フェライトを構成する酸化物と金属粉体に焼成過程で酸
素を供給する添加物を加えることによって、優れた磁気
特性を有しながらも焼成時の成形体の寸法変化および変
形がほとんど生じず、焼結体の後加工を不必要とした高
寸法精度のフェライト材料およびその製造方法を提供す
ることを目的とするものである。
The present invention has been made to solve the above problems, and
By adding an additive that supplies oxygen to the oxides and metal powders that make up the ferrite during the firing process, dimensional changes and deformation of the compact during firing do not occur, even though it has excellent magnetic properties. An object of the present invention is to provide a ferrite material with high dimensional accuracy that does not require post-processing of a bonded body and a method for manufacturing the ferrite material.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題を解決
するために、フェライト原材料を混合仮焼してなるNi
−Zn系もしくはNi−Zn−Cu系フェライト結晶粒
粉末と、フェライトを構成する酸化物と金属粉末に、焼
成過程において酸素を供給する添加物を少なくとも一種
類以上を添加し、焼成することによって得られるフェラ
イト材料である。
In order to solve the above-mentioned problems, the present invention provides a Ni raw material prepared by mixing and calcining a ferrite raw material.
-Zn-based or Ni-Zn-Cu-based ferrite crystal grain powder, and oxides and metal powders forming ferrite are obtained by adding at least one additive that supplies oxygen in the firing process and firing. Ferrite material.

【0011】[0011]

【作用】成形体は自由表面から酸素の拡散による焼結反
応が進行するため、成形体の中心部は自由表面と比較し
て焼結反応速度が遅い。したがって大型の成形体および
低酸素分圧中で焼成し得られたフェライト材料は、成形
体の中心部に向かうほど酸素拡散が不十分となるため、
不均一な微細構造を有し、良好な磁気特性、機械強度を
得ることができない。そこで本発明では、焼成過程にお
いて酸素を供給する添加物を混合することで、成形体の
内部と自由表面での酸化拡散における金属粉末の酸化お
よびフェライト結晶粒粉末と酸化物と金属粉末との焼結
反応速度が同レベルとなり、均一な微細構造を形成する
ため、低収縮率で良好な磁気特性および機械強度を有す
るフェライト材料を得ることができるものである。
In the molded body, the sintering reaction due to the diffusion of oxygen from the free surface proceeds, so that the central portion of the molded body has a slower sintering reaction rate than the free surface. Therefore, a large-sized compact and a ferrite material obtained by firing in a low oxygen partial pressure have insufficient oxygen diffusion toward the center of the compact,
It has an inhomogeneous fine structure and cannot obtain good magnetic properties and mechanical strength. Therefore, in the present invention, by mixing an additive that supplies oxygen in the firing process, the oxidation of the metal powder in the oxidation diffusion in the inside and the free surface of the molded body and the firing of the ferrite crystal grain powder, the oxide and the metal powder are performed. Since the binding reaction rate is at the same level and a uniform fine structure is formed, it is possible to obtain a ferrite material having a low shrinkage ratio and good magnetic properties and mechanical strength.

【0012】[0012]

【実施例】 (実施例1)以下、本発明の第一の実施例について図面
を参照しながら説明する。図1は本発明の一実施例であ
る粉体圧縮成形時の微細構造を示す模式図であり、図2
は表面拡散および添加物により酸素拡散が促進されたと
きの焼結を示す模式図である。
First Embodiment Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a fine structure at the time of powder compression molding which is an embodiment of the present invention.
FIG. 3 is a schematic diagram showing sintering when surface diffusion and oxygen diffusion are promoted by additives.

【0013】図1に示すように、磁性体はFe23,N
iO,ZnOとCuOの配合モル比が、48.5:1
6.5:28.5:6.5(mol%)からなるフェラ
イト原料粉末を混合仮焼してなるフェライト結晶粒粉末
1に、表面拡散を促進させる充填粉末2として少なくと
もフェライトを構成する酸化物であるNiO,ZnO,
CuO粉末と金属粉末である金属Fe粉末を上記フェラ
イト結晶粒粉末1と同組成比で配合したものを、フェラ
イト結晶粒粉末1に対して35重量部、更に焼成過程で
酸素を供給する添加物3としてMnO2を5.0重量部
添加して混合したものを圧縮成形した構成である。
As shown in FIG. 1, the magnetic substance is Fe 2 O 3 , N.
The compounding molar ratio of iO, ZnO and CuO is 48.5: 1.
An oxide that forms at least ferrite as a filling powder 2 that promotes surface diffusion in a ferrite crystal grain powder 1 obtained by mixing and calcining a ferrite raw material powder of 6.5: 28.5: 6.5 (mol%). NiO, ZnO,
A mixture of CuO powder and metallic Fe powder, which is a metal powder, in the same composition ratio as the ferrite crystal grain powder 1, 35 parts by weight with respect to the ferrite crystal grain powder 1, and an additive 3 for supplying oxygen in the firing process. As described above, 5.0 parts by weight of MnO 2 was added and mixed, and the mixture was compression molded.

【0014】また、磁性体としてのフェライト材料の製
造方法は、Fe23,NiO,ZnOとCuOの配合モ
ル比が、48.5:16.5:28.5:6.5(mo
l%)からなるフェライト原料粉末を1300℃で3時
間仮焼してフェライト結晶粒塊を形成したものを粉砕
し、フェライト結晶粒粉末1を作成し、前記フェライト
結晶粒粉末1に充填粉末2として少なくともフェライト
を構成する酸化物であるNiO,ZnO,CuO粉末と
金属粉末である金属Fe粉末を前記フェライト結晶粒粉
末1と同組成比で配合したものを、フェライト結晶粒粉
末1に対して35重量部、更に焼成過程で酸素を供給す
る添加物3であるMnO2を5.0重量部添加して混合
したものに、ポリビニルブチラールを主成分としたバイ
ンダーを6.0(wt%)添加し造粒粉を作成した後、
前記造粒粉を3(t/cm2)の圧力で、内径12m
m、外径25mm、厚さ10mmのリング状成形体を形
成し、前記リング状成形体を1230℃で焼成してフェ
ライト結晶体であるリング状のフェライト材料を得る方
法である。
Further, in the method for producing a ferrite material as a magnetic material, the compounding molar ratio of Fe 2 O 3 , NiO, ZnO and CuO is 48.5: 16.5: 28.5: 6.5 (mo.
(1%) of the ferrite raw material powder is calcined at 1300 ° C. for 3 hours to form a ferrite crystal grain agglomerate, and a ferrite crystal grain powder 1 is prepared. The ferrite crystal grain powder 1 is used as a filling powder 2. A mixture of at least NiO, ZnO, CuO powders which are oxides forming ferrite and metal Fe powder which is a metal powder in the same composition ratio as the ferrite crystal grain powder 1 is 35 weight with respect to the ferrite crystal grain powder 1. Part, and 5.0 parts by weight of MnO 2 , which is an additive 3 that supplies oxygen during the firing process, was mixed and mixed, and 6.0 (wt%) of a binder containing polyvinyl butyral as a main component was added to the mixture. After making the granules,
The granulated powder is pressurized to 3 (t / cm 2 ) and the inner diameter is 12 m.
m, an outer diameter of 25 mm, and a thickness of 10 mm are formed, and the ring-shaped compact is fired at 1230 ° C. to obtain a ring-shaped ferrite material that is a ferrite crystal body.

【0015】上記構成のフェライト材料およびその製造
方法について、以下その特性について説明する。図3
(a)に示すように、フェライト結晶粒粉末1の空隙4
にフェライト結晶粒粉末1の表面拡散を促進させる充填
粉末2および焼成過程で酸素を供給する添加物3が存在
するため、焼成過程において充填粉末2の体積膨張と自
由表面からの酸素供給および添加物3が図3(a)中の
矢印で示すように内部から酸素を供給するため、フェラ
イト結晶粒粉末1の体積拡散が制限されると同時に、成
形体の内部と自由表面での酸素拡散における金属粉末の
酸化及びフェライト結晶粒粉末1とフェライトを構成す
る酸化物と金属粉末の焼結反応速度が同レベルとなり、
図3(b)の焼結モデル中の矢印で示すような体積拡散
に支配されて焼結が進行するため、均一な微細構造を有
したフェライト結晶体が形成される。したがって本発明
によれば、フェライト結晶粒粉末1が自己収縮性の物質
であるにもかかわらず、物質が表面拡散に支配され、か
つ成形体の自由表面および内部で均一な酸素拡散が起り
ながら焼結が進行するため、焼結中に粒子どうしは粒子
間距離を変化させず、かつ結晶粒内に気孔残留の少ない
微細構造を有するため、寸法変動および変形が生じるこ
となく十分な磁気特性及び機械強度のあるフェライト材
料が得られるものである。
The characteristics of the ferrite material having the above structure and the method of manufacturing the ferrite material will be described below. FIG.
As shown in (a), the voids 4 of the ferrite crystal grain powder 1
Since the filler powder 2 that promotes the surface diffusion of the ferrite crystal grain powder 1 and the additive 3 that supplies oxygen during the firing process are present in the above, the volume expansion of the filler powder 2 and the oxygen supply and additives from the free surface during the firing process are present. 3 supplies oxygen from the inside as shown by the arrow in FIG. 3 (a), the volume diffusion of the ferrite crystal grain powder 1 is limited, and at the same time, the metal in oxygen diffusion in the inside of the compact and the free surface is formed. Oxidation of the powder and the sintering reaction rate of the ferrite crystal grain powder 1 and the oxide constituting the ferrite and the metal powder are at the same level,
Since sintering proceeds under the control of volume diffusion as shown by the arrow in the sintering model of FIG. 3B, a ferrite crystal body having a uniform fine structure is formed. Therefore, according to the present invention, even though the ferrite crystal grain powder 1 is a self-shrinking substance, the substance is dominated by surface diffusion, and firing is performed while causing uniform oxygen diffusion on the free surface and inside of the molded body. Since the bonding progresses, the distance between particles does not change during sintering, and because it has a fine structure with few pores remaining in the crystal grains, sufficient magnetic characteristics and mechanical properties do not occur without dimensional fluctuation and deformation. A strong ferrite material can be obtained.

【0016】本発明における第一の実施例によるフェラ
イト材料(試料1)の特性と従来品との比較を(表1)
に示している。
Comparison of the characteristics of the ferrite material (Sample 1) according to the first embodiment of the present invention with the conventional product (Table 1).
Is shown in.

【0017】[0017]

【表1】 [Table 1]

【0018】試料1は本実施例によるフェライト材料、
比較品1はフェライト結晶粒粉末にバインダーを添加
し、成形、焼成を経て得られるフェライト材料、比較品
2は本実施例において、焼成過程で酸素を供給する添加
物を混合しないフェライト材料である。なおこれらのフ
ェライト材料をX線回折装置で測定したところ、スピネ
ル結晶構造を示すピークのみ観察された。
Sample 1 is a ferrite material according to this embodiment,
Comparative product 1 is a ferrite material obtained by adding a binder to ferrite crystal grain powder, molding and firing, and comparative product 2 is a ferrite material in which an additive for supplying oxygen in the firing process is not mixed. When these ferrite materials were measured by an X-ray diffractometer, only peaks showing a spinel crystal structure were observed.

【0019】(表1)から明らかなように、磁気特性、
機械強度は試料1、比較品1は同等であった。また寸法
変化率、変形量においては、比較品1は3%程度の寸法
収縮を生じるが、試料1、比較品2は成形体とほぼ同寸
法のフェライト材料を得ることができた。試料1の比較
品1に対する優位性は、寸法収縮が生じないフェライト
材料が得られること、試料1の比較品2に対する優位性
は、磁気特性、機械強度が向上するフェライト材料が得
られることである。以上、試料1のように寸法形状の大
きい成形体において、焼成後寸法変化が生じず、従来と
同等の磁気特性、機械強度を有するフェライト材料を得
るためには、焼成過程で酸素を供給するMnO2の添加
が有効であることがわかった。
As is clear from Table 1, the magnetic characteristics,
The mechanical strength of Sample 1 was the same as that of Comparative Product 1. Further, in the dimensional change rate and the deformation amount, the comparative product 1 causes a dimensional shrinkage of about 3%, but the sample 1 and the comparative product 2 were able to obtain the ferrite material having substantially the same size as the molded body. The superiority of sample 1 over comparative product 1 is that a ferrite material that does not cause dimensional shrinkage is obtained, and the superiority of sample 1 over comparative product 2 is that a ferrite material with improved magnetic properties and mechanical strength is obtained. . As described above, in a molded body having a large size and shape such as Sample 1, in order to obtain a ferrite material having the same magnetic characteristics and mechanical strength as before without causing dimensional change after firing, MnO that supplies oxygen in the firing process. It was found that the addition of 2 was effective.

【0020】(実施例2)以下、本発明の実施例2につ
いて説明する。実施例2で用いるフェライト材料および
その製造方法は実施例1と略同等なので省略する。以
下、焼成過程で酸素を供給する添加物の陽イオンの価数
を変化させた場合の特性について説明する。添加物3と
して、MnO2,Mn23,Mn34のうち少なくとも
1種類以上を合計、0.05〜10.0(wt%)添加
したとき得られるフェライト材料(試料2〜10)の特
性を(表2)に示している。
(Second Embodiment) A second embodiment of the present invention will be described below. The ferrite material and its manufacturing method used in the second embodiment are substantially the same as those in the first embodiment, and will not be described. Hereinafter, the characteristics when the valence of the cation of the additive that supplies oxygen in the firing process is changed will be described. As the additive 3, a ferrite material obtained when at least one kind of MnO 2 , Mn 2 O 3 , and Mn 3 O 4 is added in a total amount of 0.05 to 10.0 (wt%) (Samples 2 to 10) The characteristics are shown in (Table 2).

【0021】[0021]

【表2】 [Table 2]

【0022】(表2)から明らかなように、MnO2
Mn23,Mn34のうち少なくとも1種類以上を合
計、0.05〜10.0(wt%)添加したとき得られ
るフェライト材料(試料2〜8)は、寸法変動および変
形が小さくかつ磁気特性、機械強度の優れたフェライト
材料を得ることができた。試料9および試料10につい
ては、酸素供給量が適切でなく成形体の自由表面と内部
の焼結速度が不均一になったこと、あるいは異相の析出
および欠陥スピネルの固溶が原因で微細構造に影響を与
え、寸法変動は小さいが、磁気特性、機械強度が低くな
ったものと思われる。なお実施例1と同様に、試料2〜
8のフェライト材料についてX線回折装置を用い測定し
たところ、スピネル結晶構造を示すピークのみが観察さ
れた。
As is clear from (Table 2), MnO 2 ,
Ferrite materials (Samples 2 to 8) obtained when at least one of Mn 2 O 3 and Mn 3 O 4 is added in a total amount of 0.05 to 10.0 (wt%) have small dimensional variation and deformation. Moreover, a ferrite material having excellent magnetic properties and mechanical strength could be obtained. Regarding sample 9 and sample 10, the oxygen supply was not appropriate and the sintering rate on the free surface and inside of the molded body became non-uniform, or due to the precipitation of different phases and the solid solution of defect spinel, the microstructure was formed. Although it has an influence and the dimensional variation is small, it is considered that the magnetic properties and mechanical strength are lowered. As in Example 1, Samples 2 to
When the ferrite material of No. 8 was measured using an X-ray diffractometer, only peaks showing a spinel crystal structure were observed.

【0023】なお実施例1,2における寸法変化率、変
形量、初透磁率、機械強度(引張強度)の測定は、以下
のようにして算出、計算している。
The dimensional change rate, deformation amount, initial magnetic permeability, and mechanical strength (tensile strength) in Examples 1 and 2 were calculated and calculated as follows.

【0024】寸法変化率は、熱処理前のリング状成形体
と熱処理後のリング状フェライト材料の外径寸法を各々
測定しその比を算出した。マイナスの符号は焼成収縮を
表す。変形量は、熱処理後のリング状フェライト材料の
外径寸法の最大値と最小値を測定しその差を算出した。
The dimensional change rate was calculated by measuring the outer diameters of the ring-shaped compact before heat treatment and the ring-shaped ferrite material after heat treatment, and calculating the ratio. The minus sign represents firing shrinkage. As the amount of deformation, the maximum value and the minimum value of the outer diameter dimension of the ring-shaped ferrite material after heat treatment were measured and the difference was calculated.

【0025】初透磁率の測定は、まず前記に示したリン
グ状フェライト材料に絶縁テープを一層巻いた後、線径
0.26mmφの絶縁銅線を全周にわたって均一に一層
巻いた試料を準備する。次にインピーダンスアナライザ
ーを用いて1MHzで自己インダクタンスLを測定磁界
の強さが0.8(A/m)にて測定し、初透磁率を算出
した。
The initial permeability is measured by first winding one layer of insulating tape around the above-mentioned ring-shaped ferrite material, and then preparing a sample in which one layer of insulating copper wire having a wire diameter of 0.26 mm is evenly wound around the entire circumference. . Next, using an impedance analyzer, the self-inductance L was measured at 1 MHz at a measurement magnetic field strength of 0.8 (A / m), and the initial magnetic permeability was calculated.

【0026】引張強度の測定は、リング状フェライト材
料に二本の細線を各々一回通し、うち一本を固定した
後、残り一本を垂直方向に5mm/min以下の速度で
引っ張り、フェライト材料が破壊する瞬間の引張荷重を
測定し求めた。
The tensile strength was measured by passing two fine wires through the ring-shaped ferrite material once, fixing one of them, and then pulling the remaining one in the vertical direction at a speed of 5 mm / min or less. The tensile load at the moment of fracture was measured and determined.

【0027】[0027]

【発明の効果】以上のように本発明によれば、フェライ
ト原料粉末を混合仮焼してなるNi−Zn系もしくはN
i−Zn−Cu系フェライト結晶粒粉末と、フェライト
を構成する酸化物と金属粉体の充填粉末に、焼成過程で
酸素を供給する添加物を少なくとも一種類以上添加し、
焼成することにより得られるフェライト材料であるの
で、焼成過程において表面拡散を促進させる充填粉末が
フェライト結晶粒粉末の自己収縮を抑制し、かつ成形体
の内部と自由表面での酸化拡散における金属粉末の酸化
およびフェライト結晶粒粉末と酸化物と金属粉末との焼
結反応速度が同レベルとなり、均一な微細構造を形成す
るため、寸法変動および変形量が小さく、後加工の必要
としない高寸法精度のフェライト材料かつ良好な磁気特
性および機械強度を有するフェライト材料を提供できる
ものである。
As described above, according to the present invention, a Ni-Zn system or N obtained by mixing and calcining ferrite raw material powders is used.
At least one additive that supplies oxygen during the firing process is added to the i-Zn-Cu-based ferrite crystal grain powder, the oxide powder that forms the ferrite, and the filling powder of the metal powder,
Since it is a ferrite material obtained by firing, the filler powder that promotes surface diffusion in the firing process suppresses the self-shrinking of the ferrite crystal grain powder, and of the metal powder in the oxidation diffusion on the inside and the free surface of the formed body. Oxidation and sintering reaction rate of ferrite crystal grain powder, oxide and metal powder are at the same level, and a uniform fine structure is formed, so there is little dimensional variation and deformation, and high dimensional accuracy without post-processing is required. It is possible to provide a ferrite material having a ferrite material and good magnetic properties and mechanical strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるフェライト材料の粉
体圧縮成形時の微細構造を示す模式図
FIG. 1 is a schematic diagram showing a microstructure during powder compression molding of a ferrite material according to an embodiment of the present invention.

【図2】本発明の一実施例におけるフェライト材料の微
細構造を示す模式図
FIG. 2 is a schematic diagram showing a fine structure of a ferrite material in an example of the present invention.

【図3】(a),(b)表面拡散および成形体の自由表
面と内部で均一な酸素拡散が起る焼結を示す模式図
3 (a) and 3 (b) are schematic diagrams showing surface diffusion and sintering in which uniform oxygen diffusion occurs on the free surface and inside of the molded body.

【符号の説明】[Explanation of symbols]

1 フェライト結晶粒粉末 2 充填粉末 3 添加物 4 空隙 1 Ferrite crystal grain powder 2 Filling powder 3 Additives 4 Voids

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青野 保之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuyuki Aono 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フェライト原料粉末を混合仮焼してなる
Ni−Zn系もしくはNi−Zn−Cu系フェライト結
晶粒粉末と、フェライトを構成する酸化物と金属粉体の
充填粉末に、焼成過程で酸素を供給する添加物を少なく
とも一種類以上添加し、焼成して得たフェライト材料。
1. A Ni-Zn-based or Ni-Zn-Cu-based ferrite crystal grain powder obtained by mixing and calcining a ferrite raw material powder, and a filling powder of an oxide and a metal powder forming ferrite in a firing process. A ferrite material obtained by adding at least one additive for supplying oxygen and firing the mixture.
【請求項2】 添加物としてMnO2,Mn23,Mn3
4を少なくとも一種類以上を含み、添加量が合計で
0.05〜10.0(wt%)である請求項1記載のフ
ェライト材料。
2. MnO 2 , Mn 2 O 3 and Mn 3 as additives
The ferrite material according to claim 1, comprising at least one kind of O 4, and the total amount of addition is 0.05 to 10.0 (wt%).
【請求項3】 フェライト原料粉末を混合仮焼してなる
Ni−Zn系もしくはNi−Zn−Cu系フェライト結
晶粒粉末に、フェライトを構成する酸化物と金属粉体の
充填粉末に、焼成過程で酸素を供給する添加物を少なく
とも一種類以上を添加した粉体とバインダーとを混合
し、混練、造粒後、所定の形状の成形体を作成し、前記
成形体を焼成することによって得られるフェライト材料
の製造方法。
3. Ni-Zn-based or Ni-Zn-Cu-based ferrite crystal grain powder obtained by mixing and calcining a ferrite raw material powder, and a filler powder of oxide and metal powder that constitute ferrite in a firing process. A ferrite obtained by mixing a powder and a binder to which at least one kind of additive for supplying oxygen is added, kneading and granulating, then forming a molded body of a predetermined shape, and firing the molded body. Material manufacturing method.
JP7056039A 1995-03-15 1995-03-15 Frrite material and manufacture Pending JPH08250318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7056039A JPH08250318A (en) 1995-03-15 1995-03-15 Frrite material and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7056039A JPH08250318A (en) 1995-03-15 1995-03-15 Frrite material and manufacture

Publications (1)

Publication Number Publication Date
JPH08250318A true JPH08250318A (en) 1996-09-27

Family

ID=13015948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7056039A Pending JPH08250318A (en) 1995-03-15 1995-03-15 Frrite material and manufacture

Country Status (1)

Country Link
JP (1) JPH08250318A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054419A1 (en) * 2000-12-27 2002-07-11 Fdk Corporation Oxide magnetic material exhibiting low magnetic loss
KR100425993B1 (en) * 2000-05-12 2004-04-06 가부시키가이샤 무라타 세이사쿠쇼 Laminated electronic component
JP2017098482A (en) * 2015-11-27 2017-06-01 北川工業株式会社 Magnetic material and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425993B1 (en) * 2000-05-12 2004-04-06 가부시키가이샤 무라타 세이사쿠쇼 Laminated electronic component
WO2002054419A1 (en) * 2000-12-27 2002-07-11 Fdk Corporation Oxide magnetic material exhibiting low magnetic loss
US6800215B2 (en) 2000-12-27 2004-10-05 Fdk Corporation Low-loss magnetic oxide material and method for making
JP2017098482A (en) * 2015-11-27 2017-06-01 北川工業株式会社 Magnetic material and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0376319B1 (en) A composite ferrite material
KR0155414B1 (en) Magnetic material and manufacturing method thereof
JP2812152B2 (en) Magnetic body and method of manufacturing the same
JPH08250318A (en) Frrite material and manufacture
JPH0891917A (en) Ferrite material and its production
KR20200088373A (en) Ferrite powder for bond magnet and manufacturing method thereof
JP3391108B2 (en) Magnetic body and method of manufacturing the same
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2017149610A (en) Ferrite, ferrite core and method for producing ferrite core
JP2950117B2 (en) Magnetic body and method of manufacturing the same
JP2830071B2 (en) Ferrite magnetic body and method of manufacturing the same
JPH11307336A (en) Manufacture of soft magnetic ferrite
JPH0971455A (en) Ferrite material and its production
JP2762532B2 (en) Ferrite magnetic body and method of manufacturing the same
JP2762530B2 (en) Manufacturing method of ferrite magnetic material
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
JPH0374811A (en) Ferrite magnetic material
JP2002179460A (en) Ferrite material and ferrite core by using the same
JP2760026B2 (en) Ferrite magnetic body and method of manufacturing the same
JPH08259315A (en) Production of ferrite sintered compact
JPH1074612A (en) High-permeability oxide magnetic material
JPH06325920A (en) Low-loss magnetic material and manufacture thereof
JPH07115013A (en) Magnetic body and manufacture thereof
JPH07126015A (en) Production of ni-zn ferrite powder
JPH09115719A (en) High permeability oxide magnetic material and its manufacture