JPS58132977A - Preparation of schotkky gate type gaas field effect transistor - Google Patents

Preparation of schotkky gate type gaas field effect transistor

Info

Publication number
JPS58132977A
JPS58132977A JP1507382A JP1507382A JPS58132977A JP S58132977 A JPS58132977 A JP S58132977A JP 1507382 A JP1507382 A JP 1507382A JP 1507382 A JP1507382 A JP 1507382A JP S58132977 A JPS58132977 A JP S58132977A
Authority
JP
Japan
Prior art keywords
gaas
heat
electrode
mask
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1507382A
Other languages
Japanese (ja)
Other versions
JPS6312391B2 (en
Inventor
Nobuyuki Toyoda
豊田 信行
Akimichi Hojo
北條 顕道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP1507382A priority Critical patent/JPS58132977A/en
Publication of JPS58132977A publication Critical patent/JPS58132977A/en
Publication of JPS6312391B2 publication Critical patent/JPS6312391B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form a heat proof Schottky junction with excellent reproducibility by using Pt as a gate electrode metal and utilizing solid phase reaction between said Pt and GaAs. CONSTITUTION:The Si<+> ion is implanted to a semi-insulating GaAs crystal substrate 21 using a mask 22 and an active layer 23 is selectively formed by annealing the surface. Then, a gate electrode 24 is formed by vacuum deposition of Pt as a gate metal material and the Si<+> ion is implanted with said Pt used as the mask. Thereby, the self-aligned implanting layers 25, 26 are formed on the electrode 24. When this sample is heat processed, the electrode 24 reacts with the GaAs, producing a compound 27. Impurity of layers 25, 26 are activated by heat processng under a raised temperature and thereby a source region 25' and drain region 26' are formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はGaAmを用いたショットキーゲート型電界効
米トランジスタ(以下MliiSFgT )の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a Schottky gate field effect transistor (hereinafter referred to as MliiSFgT) using GaAm.

〔発明の技術的背景〕[Technical background of the invention]

GaAsME8FETは高周波場m器や発Jii器など
を構成する個別半纏体素子として広く使われている。ま
た、最近ではGaAs I Cの基本素子としても重要
な役割を来しつつある。このいずれの応用でもGaAs
 FETの性能を十分引き出すことが要求される。、G
aAa PETの制周波性能指数は良く知られているよ
うにCgs/gmで記述される。ここでCg、はゲート
・ソース間g1でありs gmはFETの相互コンダク
タンスである。
GaAsME8FETs are widely used as individual semi-integrated elements constituting high frequency field devices, generators, etc. Moreover, recently, it is playing an important role as a basic element of GaAs IC. In both of these applications, GaAs
It is required to fully bring out the performance of the FET. ,G
As is well known, the frequency control figure of merit of aAa PET is expressed in Cgs/gm. Here, Cg is the gate-source distance g1, and sgm is the mutual conductance of the FET.

Cgsを減らしbgrnを大きくしてやることにより高
周波性能指数は改善される。
The high frequency figure of merit is improved by reducing Cgs and increasing bgrn.

grrlに着目すると、FETの実質的なgmはgm。Focusing on grrl, the actual gm of the FET is gm.

gm= 1+蒜m。R8− となることが知られている。gllloはFETのチャ
ネル部の特性から決まる貞性相征コンダクタンスである
。これが引き出しうる竣大のgmであるが現実にはソー
ス・r−)閾の直列抵抗Rsがあり、上式のように実質
的なgmはgmoより小さなものとなってしまう。従っ
て、このRsをいかにして小さくするかが大きい相互コ
ンダクタンスを得てPETの高鳴波特性を改#するため
の鍵である。
gm=1+garlic m. It is known that R8-. glllo is the chastity phase conductance determined by the characteristics of the channel portion of the FET. This is the final gm that can be extracted, but in reality there is a series resistance Rs of the source/r-) threshold, and as shown in the above equation, the actual gm is smaller than gmo. Therefore, how to reduce this Rs is the key to obtaining a large mutual conductance and improving the high frequency characteristics of PET.

〔背景技術の問題点〕[Problems with background technology]

MB2 FETの直列抵抗R@の低減化をはかる方?去
としてセルファライン(自己1b)法が知られている。
How to reduce the series resistance R@ of MB2 FET? The self-line (self-1b) method is known as an alternative method.

これにはいくっがの方法があるが。There are several ways to do this.

代表的なのは#II1図に示すようにf −トX極13
をマスクとして茜嬢イイオン注入をし、篭子濃B−1 イか101 以上のソース、ドレイン頭載14゜15を
f−)電慟13に近接させて形成Tる方法である、11
は半絶縁性GaAs結晶、12はr古性噛、16.17
はそれぞれソース、ドレイン電極である。この方法で最
も雌しい技術は耐熱性r−)電極金−の選択である。r
−)電極なマスクとして高讃度イオン注入したソース。
A typical example is f-to-X pole 13 as shown in Figure #II1.
This is a method of implanting Akane's ions using the mask as a mask, and forming the source and drain heads of 14°15 and 101 above f-) in close proximity to the electrode 13.
is a semi-insulating GaAs crystal, 12 is an ancient crystal, 16.17
are source and drain electrodes, respectively. The most suitable technique for this method is the selection of heat-resistant r-) electrodes. r
-) Highly ion-implanted source as an electrode mask.

ドレイン部を高電子1(−とするにはアニーリング工程
が必要であるが、通常GaAsへのドナーイオン注入層
のアニール温度は約800 tにもなる。こうした高温
アニール工程を経たあともマスクとして使ったr−)電
極とG鳳入Sとが良好なショットキー障壁を有している
ことが2安である。こうした厳しい条件下でGaAsと
良好なショットキー障壁を形成しうる金属は数少い。主
にW、Mo、Ta、Trどの耐熱性金−その他T i 
/ Wなどの耐熱性金貞合金がその可能性を有している
。実際にTi/WダートのセルファラインGaAs M
BS FETの実験例が報道されている(例えば、N、
’ YOKOYAMA etal、 19811S8C
C)。しがし、こうした耐熱性ひ−は一般にGaAsと
の機械的密晋性が悪く、再現性よく良好な接合を得るこ
とは嬉しい。
An annealing process is required to make the drain region high electron 1 (-), but the annealing temperature for the donor ion implantation layer in GaAs is usually about 800 t. Even after such a high-temperature annealing process, it can still be used as a mask. It is important that the electrode and the G-type S have a good Schottky barrier. There are only a few metals that can form a good Schottky barrier with GaAs under such severe conditions. Mainly heat-resistant gold such as W, Mo, Ta, Tr - other Ti
Heat-resistant metal alloys such as /W have this possibility. Actually, Ti/W dirt self-line GaAs M
Experimental examples of BS FET have been reported (for example, N,
'YOKOYAMA etal, 19811S8C
C). However, such heat-resistant steel generally has poor mechanical adhesion to GaAs, so it is pleasing to be able to obtain good bonding with good reproducibility.

〔発明の目的〕[Purpose of the invention]

本発明はこうした従来の耐熱性金属に絣り、P(をr−
)電極金属として用い、これとGaAaとの固相反応を
利用して、耐熱性V−1!ットキー接合を再現性よく形
成し、それによりセルファライン型GaAs ME8F
FiTを安定に作ることを可能にするものである。
The present invention applies P(r-
) Used as an electrode metal and utilizing the solid phase reaction between this and GaAa, heat resistance V-1! The self-aligned GaAs ME8F
This makes it possible to stably produce FiT.

〔発明の概蜆〕[Summary of the invention]

PtとGaAmとは容易1;反応し、PtAs!。 Pt and GaAm easily react 1; PtAs! .

PtGa、などの金嬌間(ヒ合物が形成される。そして
、それら化合物の組成に依存してショットキー障壁の電
気的特性も変化する。第2図(al I (b)はGa
As ニPiを500 A ILtI!琢4し、温度を
変えて熱処理したときのショットキー障壁のD41!!
篩さくφB)と障壁の良し厩しを示す餉(nlを示した
ものである。5図中、破線は5inhaらが1973年
に発表したデータであり、実線が今回本発明者らが測定
したデータである。・この図から見られるよう(=約5
00℃以下ではPtとGaAsとの間【二反応が生じて
も一気的特性は大きく変らないが、600′C以Eとな
ると障壁特性が劣化−「る。従って、このままではPt
をy−トとして用いるとソース、ト°レインn+注入層
ノアニール(〜800℃)の際にショットキー障壁が劣
化してしまうためセルファラインME8FETはつくれ
ない。
PtGa, etc. are formed.The electrical characteristics of the Schottky barrier also change depending on the composition of these compounds.
As Ni Pi 500 A ILtI! Schottky barrier D41 when finished and heat treated at different temperatures! !
The graph shows the sieve size φB) and the thickness of the barrier (nl). In Figure 5, the broken line is the data published by Inha et al. in 1973, and the solid line is the data measured by the inventors this time. This is the data.・As seen from this figure (= about 5
Below 00°C, even if two reactions occur between Pt and GaAs, the instantaneous properties do not change significantly, but at temperatures above 600°C, the barrier properties deteriorate.
If this is used as a y-t, a self-line ME8FET cannot be made because the Schottky barrier deteriorates during the source and train n+ injection layer no-annealing (up to 800° C.).

ところが、本発明者らの実験によれば、 PtとGaA
aとを比較的低温(400℃明後)で−間熱処理をする
と、その後800℃まで昇温してもその電気的特性が変
らないということが明らかとなった。第3図および84
図は実験結果の一例を示すものである。n型GaAs結
晶にPtを50OA蒸着し、熱処理を行った。1つは第
3図の破@にのような温度プログラム、丁なわち室温か
ら一気に800℃まで昇温して10分間保持するという
もの、もう1つは実線Bのように400℃に昇温し、そ
こで60分間保持したあと、800℃に昇温して10分
間保持するというものである。これらの試料の裏面にA
uGeのオーミック電極を形成してショットキーダイオ
ードとして電気的特性を調べた結果、第3図のA、Bに
それぞれ対応して粥4図のA、Bのようなものであった
、mKfロダラムAの場合のショットキー特性は余りよ
くない。一方、Bの場合は良好なショットキー特性を示
した。
However, according to the inventors' experiments, Pt and GaA
It has become clear that when a is heat-treated at a relatively low temperature (400°C after dawn), its electrical characteristics do not change even if the temperature is subsequently raised to 800°C. Figures 3 and 84
The figure shows an example of experimental results. 50OA of Pt was deposited on the n-type GaAs crystal and heat treated. One is the temperature program as shown in Figure 3, which is to raise the temperature from room temperature to 800°C all at once and hold it for 10 minutes, and the other is to raise the temperature to 400°C as shown in solid line B. After holding there for 60 minutes, the temperature was raised to 800°C and held for 10 minutes. A on the back side of these samples
As a result of forming an ohmic electrode of uGe and examining its electrical characteristics as a Schottky diode, it was found that mKf Rodalum A was similar to A and B in Figure 4, corresponding to A and B in Figure 3, respectively. The Schottky characteristics are not very good in the case of . On the other hand, in the case of B, good Schottky characteristics were exhibited.

本発明は以tの物理現映を利用したものである。すなわ
ち、PtをFHTのダート金輌とし。
The present invention utilizes the following physical phenomena. In other words, Pt is FHT's dart gold tank.

被4flkl=それをマスクとしてセルファラインでソ
ース、Pレイン用のn イオン注入を行った後、まず4
00℃前後で熱処理してPiとGaAmの化合物を形成
し、次いで800℃自1優に昇温して熱処理をしてれ 
注入1mの不純物の活性化をするというものである。第
1段階のPtとGaAsの化合物を形成する熱処理は、
好ましくは400〜500℃、10〜60分である。ま
た活性化のための熱処理の好ましい温度範囲は750〜
850℃である。
4flkl = After performing n ion implantation for the source and P-rain using self-line as a mask, first 4flkl is used as a mask.
Heat-treat at around 00℃ to form a compound of Pi and GaAm, then heat-treat by raising the temperature to well above 800℃.
This involves activating impurities implanted for 1 meter. The first stage of heat treatment to form a compound of Pt and GaAs is
Preferably it is 400-500 degreeC and 10-60 minutes. The preferred temperature range for heat treatment for activation is 750~
The temperature is 850°C.

〔発明の効果〕〔Effect of the invention〕

本発明は従来411GされているTi/Wなどを用いた
セルファライン型GaAsMESFETの製造方法に比
ベシヨットキーダート金−とGaAmの密着性に優れ、
また電気的特性(14壁の高さなど)の再現性、安定性
などの点で優れており、Ga1n IGやLSIの有効
な製造方法となりつる、。
The present invention has excellent adhesion between gold and GaAm compared to the conventional manufacturing method of self-line type GaAs MESFET using Ti/W etc.
Furthermore, it is excellent in terms of reproducibility and stability of electrical characteristics (14 wall height, etc.), making it an effective manufacturing method for Ga1n IGs and LSIs.

〔発明の実施例〕[Embodiments of the invention]

以下で具体的実施例にもとずいてセルファライン型Ga
As MBSFETの製造方法について述べる。第5図
は製造工程の一例である。半絶縁性Gaps結晶基板2
1にSi  イオYをマスク221t  −! を用いて100KVで4X10 (JK  注入し、8
50℃で15分間アニールすること(二より活性1−2
3を選択的(=形成する(a)。つづいてデート金属と
してのPtを50OA蒸着してダート電極24を形成し
くb)、これをマスクとして再びSi  イオンを15
0 KVで3X10 m  注入してf−)電極24に
セルファラインされたイオン注入層25.26を形成す
る(C)。この試料を400℃で60分間熱処理すると
pty−トa極24とG a A sとが反応して化合
物22が形成される(d)。この60分の熱処理では蒸
着したPtは□ばゾ丁べて反応する。このあと800t
l:昇温して15分間熱処理して高−反イオン注入層r
i 、 z sの不純物活性化を行い、ソース領域25
11  ドレイン領域26’を形成し、その後AuGe
かうなるソース、ドレイン電極j 8 、29を形成す
るtel。
Below, based on specific examples, Selfaline type Ga
A method for manufacturing As MBSFET will be described. FIG. 5 shows an example of the manufacturing process. Semi-insulating Gaps crystal substrate 2
1 with Si io Y mask 221t -! 4X10 (JK injection, 8
Anneal at 50°C for 15 minutes (more active than 1-2).
3 is selectively formed (=forming (a). Next, 50 OA of Pt as a date metal is evaporated to form the dirt electrode 24 (b), and using this as a mask, Si ions are again deposited at 15 OA.
Implant 3×10 m at 0 KV to form f-) ion implantation layers 25 and 26 self-aligned to the electrode 24 (C). When this sample is heat-treated at 400° C. for 60 minutes, the pty-a electrode 24 and GaAs react to form a compound 22 (d). During this 60 minute heat treatment, the deposited Pt reacts across the squares. 800t after this
l: Heat treated for 15 minutes at elevated temperature to form a high-anti-ion implantation layer r
Impurity activation of i, zs is performed, and the source region 25
11 Form the drain region 26', then AuGe
tel forming such source and drain electrodes j 8 and 29.

こうして、直列抵抗の小さなセルファライン型01ム農
ME S F ETがつくれる。このMB2 FETは
従来のようなソース、ドレイン部1ニセルファラインで
n+層がつくられていないFIT i=比べ相がコンダ
クタンスが約2倍以上であり、妬速スイッチングが可能
であった。またショットキーl”−)電橋の密着性がよ
く、再現性、安定性に′−優れた特性が得られた。
In this way, a self-aligned MESFET with low series resistance can be created. This MB2 FET had a conductance more than twice as high as that of the conventional FIT (FIT i) in which no n+ layer was formed in the source and drain portions with one self-aligned line, and was capable of high-speed switching. In addition, the adhesion of the Schottky bridge was good, and excellent reproducibility and stability were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図はr−ト金−をマスクとしてソース。 ドレイン部にfj13111f不純物層を形成するセル
ファライン型ME 8 F ETの基本構造を示す図、
粥2図f1) 、 (blはPtとGaAsのショット
キー障壁特性の熱処理諷ず依存性を示す図、第3図およ
び嘱4図は熱処理温度プログラムとその違いによるPt
 −GmAs ;y :1ツトキー障壁の′を流−電圧
特性あ1いを示す図、@S図(a)〜(e)は、本発明
の一実施例のGaAa MBSFETの製造工程を示す
図である。 21・・・半絶縁性GaAs結晶基板、23・・・活性
層、24・・・r−ト電極(Pt)、 2s 、 xi
−@濃闇イオン注入1−121・・・化合物、25′・
・・ソース領域、261・・・ドレイン領域、28・・
・ソース電極、29・・・ドレイン電極。 出願人代理人  弁理士 鈴 江 武 彌第 1図 11W2v?J (a)            (b)慣4閲
@Figure 1 shows the source using gold as a mask. A diagram showing the basic structure of a self-line type ME 8 FET in which an fj13111f impurity layer is formed in the drain part,
Figure 2 f1), (bl is a diagram showing the direct dependence of the Schottky barrier properties of Pt and GaAs on heat treatment, Figures 3 and 4 are the heat treatment temperature programs and their differences in Pt
-GmAs ; y : 1 A diagram showing the current-voltage characteristics of the key barrier, @S diagrams (a) to (e) are diagrams showing the manufacturing process of a GaAa MBSFET according to an embodiment of the present invention. be. 21... Semi-insulating GaAs crystal substrate, 23... Active layer, 24... r-to electrode (Pt), 2s, xi
-@Dark ion implantation 1-121... Compound, 25'.
...Source region, 261...Drain region, 28...
- Source electrode, 29... drain electrode. Applicant's agent Patent attorney Takeshi Suzue Figure 1 11W2v? J (a) (b) Practice 4 review

Claims (1)

【特許請求の範囲】 il)  GaAs基板(二Ptからなるダート電極を
形成し、このr−)電極をマスクとしてソース。 ドレイン部にドナー不純物を高濃度にイオン注入した後
、比較的低温で熱処理してptとGaAmの化合物を形
成し、続いて昇温熱処理来トランジスタの製造方法。 +2)  PtとGaAsの化合物を形成Tる熱処理は
400〜500℃で10〜60分行ない、不純物を活性
化させる熱処理は750〜850ノスタの製造方法。
[Claims] il) GaAs substrate (forming a dart electrode made of two Pt, and using this r-) electrode as a mask for source. A method for manufacturing a transistor in which a donor impurity is ion-implanted into the drain region at a high concentration, and then heat-treated at a relatively low temperature to form a compound of pt and GaAm, followed by temperature-rising heat treatment. +2) The heat treatment to form a compound of Pt and GaAs is performed at 400 to 500°C for 10 to 60 minutes, and the heat treatment to activate impurities is a manufacturing method of 750 to 850 degrees.
JP1507382A 1982-02-02 1982-02-02 Preparation of schotkky gate type gaas field effect transistor Granted JPS58132977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1507382A JPS58132977A (en) 1982-02-02 1982-02-02 Preparation of schotkky gate type gaas field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1507382A JPS58132977A (en) 1982-02-02 1982-02-02 Preparation of schotkky gate type gaas field effect transistor

Publications (2)

Publication Number Publication Date
JPS58132977A true JPS58132977A (en) 1983-08-08
JPS6312391B2 JPS6312391B2 (en) 1988-03-18

Family

ID=11878674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1507382A Granted JPS58132977A (en) 1982-02-02 1982-02-02 Preparation of schotkky gate type gaas field effect transistor

Country Status (1)

Country Link
JP (1) JPS58132977A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012985A (en) * 1973-06-01 1975-02-10
JPS53125777A (en) * 1977-04-08 1978-11-02 Nec Corp Manufacture for field effect transistor
JPS56133872A (en) * 1980-03-21 1981-10-20 Sumitomo Electric Ind Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012985A (en) * 1973-06-01 1975-02-10
JPS53125777A (en) * 1977-04-08 1978-11-02 Nec Corp Manufacture for field effect transistor
JPS56133872A (en) * 1980-03-21 1981-10-20 Sumitomo Electric Ind Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS6312391B2 (en) 1988-03-18

Similar Documents

Publication Publication Date Title
JPS6239835B2 (en)
JPS58132977A (en) Preparation of schotkky gate type gaas field effect transistor
JPH10256173A (en) Method for implanting ion into silicon carbide and silicon carbide semiconductor device
JPS6064430A (en) Manufacture of gaas group compound semiconductor device
JPS58143578A (en) Manufacture of field effect transistor
JPS622625A (en) Insulation layer forming method for compound semiconductor
JPS60249371A (en) Manufacture of semiconductor device
JPS6077467A (en) Manufacture of field effect transistor
JPS58103175A (en) Semiconductor device and manufacture thereof
JPH0760830B2 (en) Method for manufacturing semiconductor device
JPS58169978A (en) Manufacture of semiconductor device
JPS6292377A (en) Field-effect transistor
JPS58135668A (en) Semiconductor device
JPS6116577A (en) Semiconductor device
JPS61170026A (en) Manufacture of group iii-v semiconductor device
JPS6215860A (en) Manufacture of gaas schottky gate type fet
JPS63142872A (en) Manufacture of self-alignment type field-effect transistor
JPS61102730A (en) Method of forming ohmic contact
JPS61100974A (en) Manufacture of field-effect transistor
JPS6223175A (en) Manufacture of semiconductor device
JPH0373542A (en) Manufacture of ga-as field effect transistor
JPS61174671A (en) Schottky junction type semiconductor device and manufacture thereof
JPS62149169A (en) Manufacture of semiconductor device
JPS58143575A (en) Manufacture of field-effect transistor
JPS6232656A (en) Semiconductor device and manufacture thereof