JPS58132671A - Measuring device for voltage wherein electron beam is used - Google Patents

Measuring device for voltage wherein electron beam is used

Info

Publication number
JPS58132671A
JPS58132671A JP57015065A JP1506582A JPS58132671A JP S58132671 A JPS58132671 A JP S58132671A JP 57015065 A JP57015065 A JP 57015065A JP 1506582 A JP1506582 A JP 1506582A JP S58132671 A JPS58132671 A JP S58132671A
Authority
JP
Japan
Prior art keywords
sample
electron
electrode
voltage
electrode grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57015065A
Other languages
Japanese (ja)
Inventor
Kiyomi Koyama
清美 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57015065A priority Critical patent/JPS58132671A/en
Publication of JPS58132671A publication Critical patent/JPS58132671A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To improve S/N of a detection signal and thereby to enable the accurate detection of the potential of a sample by a constitution wherein an electrode grid for accelerating a secondary electron from a material to be irradiated and an electrode grid for decelerating the same are provided in the foregoing part of a detector to increase the efficiency of focusing the secondary electron. CONSTITUTION:When a primary electron beam 21 is applied on a material 11 to be measured, a secondary electron 22 is emitted from the vicinity of the point of application and accelerated in the direction of an electrode grid 12 by an electric field generated by the grid. The electron 22 passing through the grid 12 is subjected to the action of an electric field generated by an electrode grid 13, and the potential gradient of an electric field formed between the grids 12 and 13 turns negative. Accordingly, the electron 22 which is accelerated and focused forcedly by the grid 12 is decelerated. At the tip of a detector 15 a deflection electrode 14 whereon a positive voltage is impressed is located, and the electron 22 is focused on the surface of the detector 15 by this deflection electrode.

Description

【発明の詳細な説明】 〔発明の技術分野」 本実−は、従来の金線による触針に代わって試料の電圧
1−**触で検出する電子線を用いた電圧測定装置の改
良に関する。
Detailed Description of the Invention [Technical Field of the Invention] This invention relates to an improvement in a voltage measuring device that uses an electron beam to detect the voltage of a sample by touching it instead of using a conventional gold wire stylus. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、半導体装置の故障診断や特性評価を行うものとし
て、試料の被測定部位に電子111t−照射し、試料か
らの放出2次電子を検出して試料の電圧を測定する電圧
測定装置が開発さnている。この装置は、試料表面の電
位変化と共に放出2次電子量および二ネルゼが変化する
と云う原理に基づくもので、次の(1)〜(4)のよう
な特長を有する。
Recently, a voltage measuring device has been developed that measures the voltage of the sample by irradiating the measured part of the sample with 111t electrons and detecting the secondary electrons emitted from the sample to perform failure diagnosis and characteristic evaluation of semiconductor devices. I'm here. This device is based on the principle that the amount of emitted secondary electrons and the binerase change as the potential of the sample surface changes, and has the following features (1) to (4).

(1)  試料と非接触で測定するため、機械的損傷の
虞れがない。
(1) There is no risk of mechanical damage because the measurement is performed without contacting the sample.

(2)  探針と違い浮遊容量およびリードイン〆クタ
ンスが零のため、高速6答がり能である。
(2) Unlike a probe, it has zero stray capacitance and lead inductance, so it is capable of high-speed response.

(3)  −子#Sを電気的に偏向して高速で!ローと
ングできる。
(3) - Electrically deflect child #S at high speed! Can be rowed.

(4)探針では不OT能な微小領域の測定がり能となる
(4) It becomes possible to measure minute areas that cannot be measured with a probe.

ところで、試料面に電子4Iを照射したときに放出する
2次゛1子信号を検出して試料の電位を測定する場合、
2次電子量の電位依存性と放出工事ルイの電位依存性と
の2つの性質が使われる。初老の場合、試料電位により
試料面直上に形成ざrした電界が電位障壁となって、放
出2次電子が引戻されたり1反発されたりすることによ
り検出器位置に到達する2次鑞子数が変化する。試料周
辺の電位領域がつくる局所電界の作用がなけnば、検出
2次電子直流の変化は、被測定試料の電位変化に1=1
で対応する。後者の場合、1次成子−によって試料表面
下から叩き出された2次電子の4テンシアルエネルギが
、J:、科表面の電位により増減するため、放出2次電
子の工率ルイ分布が被測定試料の電位変化分だけ平行移
動する。従って、この移動量を分光器、若しくはエネル
ギ分析器を用いた検出系で測定することにより試料電位
が求まる。こnらの方法で測定全行なうのに、従来シン
チレータや分光器の先端に数100〜数1000 CV
Jの正電圧を印加した集束電極で試料面から放出した2
次電子信号を捕捉していた。捕捉した2次電子信号の8
N比を向上させるには集束電極の印加電圧を上げて2次
電子の捕捉効率を高めnばよいが、電界強度をあまり大
きくすると1次電子IIIt−デフ寸−力スさせたり、
偏向させる恐7Lが出て来る。
By the way, when measuring the potential of the sample by detecting the secondary single signal emitted when the sample surface is irradiated with electrons 4I,
Two properties are used: the potential dependence of the amount of secondary electrons and the potential dependence of the emission structure. In the case of elderly people, the electric field formed just above the sample surface by the sample potential acts as a potential barrier, and the emitted secondary electrons are pulled back or repelled by 1, increasing the number of secondary electrons that reach the detector position. changes. Without the action of the local electric field created by the potential region around the sample, the change in the detected secondary electron direct current would be 1=1
Correspond with this. In the latter case, the 4-tensional energy of the secondary electrons ejected from below the surface of the sample by the primary electrons increases or decreases depending on the potential of the surface, so the power Louis distribution of the emitted secondary electrons is affected. Move in parallel by the amount of change in potential of the measurement sample. Therefore, the sample potential can be determined by measuring this amount of movement with a detection system using a spectrometer or an energy analyzer. To perform all measurements using these methods, conventional scintillators and spectrometers require several hundred to several thousand CVs at the tip.
2 emitted from the sample surface by the focusing electrode to which a positive voltage of J was applied.
The next electronic signal was captured. 8 of the captured secondary electron signal
In order to improve the N ratio, it is sufficient to increase the voltage applied to the focusing electrode to increase the efficiency of capturing secondary electrons, but if the electric field strength is too large, the primary electrons will be forced out.
A fear 7L that deflects will appear.

第1図は従来の電圧測定装置を示す概略4成図であり、
集束電極電界(図中破線で示す)によって1次電子線が
検出器方向に曲げらnた例を示している0図中IFi試
料、2は1次電子線、Sは2次電子、4は検出器、5は
検出器4の集束電極、5は集束電極に数100〜数10
00(vJの電圧を印加する電源である。この上うな溝
底の従来装置では、2次電子3の放出効率が1次電子−
2の入射方向で最大になるから検出64は1次電子−2
0入−射経路近傍に置かれる場合が多い。従って、検出
器4の先端に取付けらnる集束電極5への印加電圧は、
その電界が1次電子@2に影響を及ぼさない範囲で設定
するという制約がつき、結局2次電子3の集束効率が犠
牲にさルる。1次電子a2の入射経路と検出器4とf!
:4!すには被#1足試料1を傾斜させればよいが、こ
の場合検出2次電子信号に試料1表面のトポグラフィツ
クな情報が混入するという新たな問題が発生する。また
、集束電極電界が小さいと、検出器4に到達する2次電
子信号は破測l試料1局辺の電位領域がつくる局所電界
の影響を受けており、試料面電位の正確な測定會行なう
のが困−になる。
FIG. 1 is a four-dimensional schematic diagram showing a conventional voltage measuring device.
An example is shown in which the primary electron beam is bent toward the detector by the focusing electrode electric field (indicated by a broken line in the figure). In the figure, 2 is the IFi sample, 2 is the primary electron beam, S is the secondary electron, and 4 is the Detector, 5 is the focusing electrode of the detector 4, 5 is the focusing electrode with several hundred to several tens of
This is a power supply that applies a voltage of 00 (vJ).In addition, in the conventional device with the groove bottom, the emission efficiency of the secondary electrons 3 is lower than that of the primary electrons.
Since the maximum is in the incident direction of 2, the detection 64 is the primary electron -2
It is often placed near the 0-incidence path. Therefore, the voltage applied to the focusing electrode 5 attached to the tip of the detector 4 is:
There is a restriction that the electric field is set within a range that does not affect the primary electrons @2, and the focusing efficiency of the secondary electrons 3 is eventually sacrificed. The incident path of primary electron a2, detector 4 and f!
:4! This can be done by tilting the #1 leg of the sample 1, but in this case, a new problem arises in that topographical information on the surface of the sample 1 is mixed into the detected secondary electron signal. Furthermore, if the focusing electrode electric field is small, the secondary electron signal reaching the detector 4 will be affected by the local electric field created by the potential region around one sample, making it difficult to accurately measure the sample surface potential. It becomes difficult.

〔発明の目的」 本発明の目的は、試料面から放出した2次電子信号の儀
束幼卓を上げ検出信号のSN比の向上iiかり得ると共
に、試料周辺の電位領域が作る局所イ界の影響を低減し
正確な試料電位検出を行い得る電子ビームを用いた電圧
測定装置を提供することにある。
[Object of the Invention] The object of the present invention is to improve the efficiency of secondary electron signals emitted from the sample surface, improve the signal-to-noise ratio of the detection signal, and reduce the local electric field created by the potential region around the sample. An object of the present invention is to provide a voltage measuring device using an electron beam that can reduce the influence and accurately detect the potential of a sample.

〔発明O1!要〕 本発明は、被測定試料に電子mを照射し、該試料から放
出される2次電子を電子検出器により検出して上記試料
の電圧を測定する電子Sを用いた電圧測定装置において
、前記試料の成子縁入射側に前記2次電子會加速する第
1の電極格子を設けると共に、この第1の電極格子と前
記電子検出器との間に上記加速された2次電子を減速す
る第2の電極格子を設けるようにしたものである。
[Invention O1! Summary The present invention provides a voltage measuring device using electrons S that measures the voltage of the sample by irradiating a sample to be measured with electrons m and detecting the secondary electrons emitted from the sample with an electron detector. A first electrode grid for accelerating the secondary electrons is provided on the incident side of the adult edge of the sample, and a first electrode grid for decelerating the accelerated secondary electrons is provided between the first electrode grid and the electron detector. Two electrode grids are provided.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、1次電子の照射により試料面から放出
さnた2次電子が、第1の電極格子の作る電界により試
料および試料周辺の電位領域によって形成される局所電
界に逆らって検出器方向に加速され、さらに検出器の手
前位置において第2の電極格子の作る電界により減速さ
れることになる。このため、検出器先端に取り付けられ
た桑東電他等の電界により2次電子を検出器方向に効率
良く偏向せしめることができ。
According to the present invention, secondary electrons emitted from the sample surface by primary electron irradiation are detected by the electric field created by the first electrode grid against the local electric field formed by the sample and the potential region around the sample. The sensor is accelerated in the direction of the detector, and is further decelerated by the electric field created by the second electrode grid at a position in front of the detector. Therefore, the secondary electrons can be efficiently deflected toward the detector by the electric field of Kuwa TEPCO et al. attached to the tip of the detector.

こnにより2次電子の補集効率を上げ、しかも44楽さ
nる2次電子に与える前記局所電界の影響tutめて少
なくすることかできる。したがって、2次邂子検出信号
のSN比の向上をはか9侵ると共に、試料電位検出の高
精度化をはかり得る。
By doing so, it is possible to increase the efficiency of collecting secondary electrons and to further reduce the influence of the local electric field on the secondary electrons. Therefore, it is possible to significantly improve the S/N ratio of the secondary Sushi detection signal and to improve the accuracy of sample potential detection.

fた、試料會動咋状態に2き、1点に電子線?静上させ
て照射し、検出2次電子信号をシンクロスコープや(ン
Vコーダ等に入力して試料動作の時間的変化を波形とし
て観測する場合、→られるグラフの電圧精度が従来より
はるかに良くなる。また、試料!Ii1作と同期させて
電子線をチコッピングしながら試料面を走査すると試料
1![11[位に応じてコントラストが変化する1、l
ii儂が得らnるが、従来単に1儂の明暗から試料のr
OJ、rlJの論理状Iiを判断するにとどまっていた
。これに対し本発明では、電圧測定が正確に行えること
から、論理の遷移状態においてもきめの細かい1儂分析
が−T能になる。以上から本発明は半導体装置の測定・
押固の精度を大幅に高める効果を持つ。
Then, the sample is in a moving state, and an electron beam is placed at one point? When irradiating the sample while it is still above the ground and inputting the detected secondary electron signal into a synchroscope or V coder to observe the temporal change in sample motion as a waveform, the voltage accuracy of the graph shown is much better than before. In addition, if the sample surface is scanned while chipping the electron beam in synchronization with Sample!Ii1, the contrast changes depending on the position of Sample1!
However, conventionally, the r
It was only a matter of determining the logic Ii of OJ and rlJ. On the other hand, in the present invention, since voltage measurement can be performed accurately, detailed one-element analysis is possible even in logic transition states. From the above, the present invention provides measurement and
It has the effect of greatly increasing the precision of pressing.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例を示す概略構成図である0図
中11は半導体装置等の被測定試料であり、この試料1
1の上方(成子1−入射1Illlil)には試料上面
と平行に第1および第2の電極格子12813がそれぞ
れ配役さnている。そして、こnらの電極格子12.J
 3の上方には先端に偏向電極14を備えた7ンチレー
タ勢からなる電゛子検出器15が設けられている。なお
、図中16.17.18は上記電極格子12.13およ
び偏向電極14にそれぞれ所定の電圧全印加する電源を
示している。そして、試料1ノに最も近い、位置にある
第1の電極格子12には数10〜数i o o (v)
の正電圧が印加さ几、第2の電極格子13には0〜数〔
v〕の正電圧が印J)0サレ、偏向電極14にはa10
0〜数1000[V)の電圧が印加されるものとなって
いる。
FIG. 2 is a schematic configuration diagram showing an embodiment of the present invention. In FIG.
First and second electrode gratings 12813 are disposed above the sample 1 (Seriko 1-Incidence 1Illil) in parallel with the upper surface of the sample. And these electrode gratings 12. J
Above the electron detector 3, an electron detector 15 is provided, which is made up of seven antitilators and has a deflection electrode 14 at its tip. In the figure, reference numerals 16, 17, and 18 indicate power sources that apply a full predetermined voltage to the electrode grids 12, 13 and the deflection electrodes 14, respectively. The first electrode grid 12 located at the position closest to the sample 1 has several tens to several i o o (v)
When a positive voltage of 0 to several [
The positive voltage of [v] is marked J)0, and the deflection electrode 14 has a10
A voltage of 0 to several thousand volts is applied.

このような構成であれば、いま被測定試料11ンこ1次
電子線21が照射されると、照射点近傍〃為ら2次電子
22が放出される。この2次電子22は高々数10電子
?ルトのエネルギを持った荷電粒子である。放出量及び
分布エネルギ帯は試料11の表面電位と共に変化する。
With such a configuration, when the sample to be measured 11 is irradiated with the primary electron beam 21, secondary electrons 22 are emitted from the vicinity of the irradiation point. Is this secondary electron 22 at most several tens of electrons? They are charged particles with a certain amount of energy. The amount of emission and the distributed energy band change with the surface potential of the sample 11.

この2仄鑞子22V′i第1の電極格子12がっくる′
電界によって電極格子12方向に加速さnる。試料1ノ
上の41測定箇所の周辺に電位領域が存在する場合、そ
nぞれの電位領域が電極となって試料面直上に複雑な電
゛場を形成する。低エネルギの2次電子22はこの局所
電場の影り#全受けやすく、このため2次電子信号を使
って試料電圧全正確に測定することが困難になる。第1
の電極格子12は、この局所電場に打勝って被測定試料
面から放出された2次電子22t−検出azs方向に7
111速させる勘きを持つ。また、1次電子1ili1
21の照射点近傍から株々の勇健で放出された2次電子
22を検出aZS方向に強制加速するため、検出効率全
土げ2次電子信号の8N比を向上させる働きも持つ。な
お、電界放出により若干の電子が発生するが、この電子
の測定値への寄与分が一定であるため、電圧測定上の問
題はない。電極格子12方向に加速さn電極格子12を
くぐり抜けた2次電子22は今fは第2の電極格子13
がつくる電界の作用を受ける。
This two forceps 22V'i first electrode grid 12 is closed'
It is accelerated in the direction of the electrode grid 12 by the electric field. When potential regions exist around the 41 measurement points on the sample 1, each potential region serves as an electrode and forms a complex electric field directly above the sample surface. The low-energy secondary electrons 22 are easily affected by this local electric field, which makes it difficult to accurately measure the sample voltage using the secondary electron signal. 1st
The electrode grid 12 overcomes this local electric field and directs the secondary electrons 22t-7 in the detection azs direction, which are emitted from the surface of the sample to be measured.
He has the intuition to speed up to 111. Also, the primary electron 1ili1
Since the secondary electrons 22 emitted from the vicinity of the irradiation point 21 are forcibly accelerated in the detection aZS direction, it also has the function of improving the detection efficiency and the 8N ratio of the total secondary electron signal. Note that although some electrons are generated due to field emission, since the contribution of these electrons to the measured value is constant, there is no problem in voltage measurement. The secondary electrons 22 that are accelerated in the direction of the electrode grid 12 and pass through the n electrode grid 12 are now transferred to the second electrode grid 13 (f).
is affected by the electric field created by

電極格子13にはO〜数〔v〕の低電圧が印加さnてお
り第1の電極格子12と第2の電極格子13との間に形
成される電界の電位勾配は負となる。従って、第1の電
極格子12で加速され強制集束さnた2次電子22はこ
こで減速さnる。検出器15の先端には正電正金印加し
た偏向電極I4があり、この偏向電場で2次電子22が
検出器面に集束される。2次電子22は既に電極格子I
Jで減速されているため、偏向電極電圧は100〔v〕
前後の低電圧でも充分となり、従って1次電子1II2
1の経路を曲げたり、デフォーカス店せたりする虞れは
ない。かくして、試料11の電圧が正確に測定さnるこ
とになる。
A low voltage of 0 to several [V] is applied to the electrode grid 13, and the potential gradient of the electric field formed between the first electrode grid 12 and the second electrode grid 13 becomes negative. Therefore, the secondary electrons 22 that have been accelerated and forcibly focused by the first electrode grid 12 are decelerated here. At the tip of the detector 15 there is a deflection electrode I4 to which a positive charge is applied, and the secondary electrons 22 are focused on the detector surface by this deflection electric field. The secondary electrons 22 are already on the electrode grid I
Since it is decelerated by J, the deflection electrode voltage is 100 [V]
Low voltages before and after are sufficient, so primary electrons 1II2
There is no risk of bending or defocusing the route of No. 1. In this way, the voltage of the sample 11 can be accurately measured.

なお1本発明は上述した実施例に限定さnるものではな
く、その要旨を逸脱しない範囲で、檀々変形して実施す
ることができる0例えば、d記第1および第2の電極格
子12 e 1 jは必ずしも平板状である必要はなく
、第3図に示す如く半球状1/)4bのであってもよい
、また、前記電子検出器としては、シンチノータ・ライ
トガイド9・7オトマルの系でもよく、或いはエネルギ
分析a倉用いた糸でもよい。さらに、第1、第2の電極
格子および偏向電極への各印加電圧は、仕様に応じて遣
宣定めればよい。
Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without departing from the gist thereof.For example, the first and second electrode gratings 12 of e 1 j does not necessarily have to be a flat plate, but may be a hemispherical 1/4b as shown in FIG. Alternatively, it may be a yarn using energy analysis. Furthermore, the voltages applied to the first and second electrode grids and the deflection electrodes may be determined according to specifications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電圧測定装置を示す概略構成図、第2図
は本発明の一実施例を示す概略構成図、I@3図は変形
例を示す概略構成図である。 11・・・試料、12・・・第1の電極格子、13・・
・第2の電極格子、14・・・偏向電極、16・・・電
子検出4.16.17.18・・・電源、21・・・1
次電子1−122・・・2次電子。
FIG. 1 is a schematic configuration diagram showing a conventional voltage measuring device, FIG. 2 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. I@3 is a schematic configuration diagram showing a modified example. DESCRIPTION OF SYMBOLS 11... Sample, 12... First electrode grid, 13...
- Second electrode grid, 14... Deflection electrode, 16... Electron detection 4.16.17.18... Power supply, 21... 1
Secondary electron 1-122... Secondary electron.

Claims (3)

【特許請求の範囲】[Claims] (1)  被測定試料に電子−を照射し、該試料から放
出さnる2次電子を電子検出器により検出して上記試料
の一圧tS定する電子線を用いた電圧測定装置において
、前記試料の電子線入射側に配置され萌紀2次電子を加
速する第1の電極格子と、この第1の電極格子と前記電
子検出−との間に配置され上記加速された2次電子を減
速する1g2の電極格子とを具備してなること′に4黴
とする電子線を用いた電圧測定装置。
(1) In a voltage measuring device using an electron beam, the voltage tS of the sample is determined by irradiating the sample to be measured with electrons and detecting the secondary electrons emitted from the sample with an electron detector. A first electrode grid arranged on the electron beam incident side of the sample to accelerate the secondary electrons; and a first electrode grid arranged between the first electrode grid and the electron detector to decelerate the accelerated secondary electrons. A voltage measuring device using an electron beam with 1g2 electrode grid.
(2)前記第1の電極格子は数10〜数100(V)の
正゛亀圧を印加さn1前記@2の電極格子は0〜数〔v
〕の正電圧を印加されたものであることを特徴とする特
許請求の範囲第1項記載の電子線金柑いた電圧測定装置
(2) The first electrode grid applies a positive pressure of several 10 to several 100 (V), and the electrode grid @2 applies a positive pressure of several tens to several hundreds (V).
2. The electron beam voltage measuring device according to claim 1, wherein a positive voltage is applied.
(3)  前記電子検出器は、シンチV−タ或いは分光
器の先端に数100〜数i o o o (v)の正電
圧を印加し九集束電極を配設してなるものであることを
特徴とする特許請求の範囲第1項記載の電子at用いた
電圧測定装置。 )
(3) The electron detector is constructed by applying a positive voltage of several hundred to several io o o (v) to the tip of a scintillator or spectrometer and disposing nine focusing electrodes. A voltage measuring device using an electronic AT according to claim 1. )
JP57015065A 1982-02-02 1982-02-02 Measuring device for voltage wherein electron beam is used Pending JPS58132671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57015065A JPS58132671A (en) 1982-02-02 1982-02-02 Measuring device for voltage wherein electron beam is used

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57015065A JPS58132671A (en) 1982-02-02 1982-02-02 Measuring device for voltage wherein electron beam is used

Publications (1)

Publication Number Publication Date
JPS58132671A true JPS58132671A (en) 1983-08-08

Family

ID=11878435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57015065A Pending JPS58132671A (en) 1982-02-02 1982-02-02 Measuring device for voltage wherein electron beam is used

Country Status (1)

Country Link
JP (1) JPS58132671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260569A (en) * 2001-02-27 2002-09-13 Shimadzu Corp Ez FILTER SPECTROSCOPY AND DEVICE THEREOF
JP2015028851A (en) * 2013-07-30 2015-02-12 株式会社日立ハイテクノロジーズ Charged particle beam device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260569A (en) * 2001-02-27 2002-09-13 Shimadzu Corp Ez FILTER SPECTROSCOPY AND DEVICE THEREOF
JP4491977B2 (en) * 2001-02-27 2010-06-30 株式会社島津製作所 Ez filter spectroscopy method and apparatus
JP2015028851A (en) * 2013-07-30 2015-02-12 株式会社日立ハイテクノロジーズ Charged particle beam device

Similar Documents

Publication Publication Date Title
Williams The structure of the large cosmic-ray air showers
US3626184A (en) Detector system for a scanning electron microscope
EP0180780B1 (en) Noncontact dynamic tester for integrated circuits
CN108873053B (en) Neutron and gamma ray combined detector
US3714424A (en) Apparatus for improving the signal information in the examination of samples by scanning electron microscopy or electron probe microanalysis
Staib et al. Recent developments on an improved retarding-field analyser
JPH05251029A (en) Ion radiation device and method
JPH0135304B2 (en)
US4514682A (en) Secondary electron spectrometer for measuring voltages on a sample utilizing an electron probe
GB2183898A (en) Checking voltages in integrated circuit by means of an electron detector
GB1304344A (en)
JP6692108B2 (en) Analysis device and analysis system
US3631238A (en) Method of measuring electric potential on an object surface using auger electron spectroscopy
JPS58132671A (en) Measuring device for voltage wherein electron beam is used
Alton et al. The emittances and brightnesses of high-intensity negative ion sources
JP2678059B2 (en) Electron beam equipment
US2767324A (en) Apparatus for neutron detection
Fessenden The Astron On‐Line Beam Energy Analyzer
JP4130904B2 (en) Parallel magnetic field type Rutherford backscattering analyzer
JP2590417B2 (en) Auger electron spectrometer
JP2685722B2 (en) X-ray analysis method
JP2622575B2 (en) Electron beam equipment
JPS62150642A (en) Potential measuring device applying charged beam
US7307432B2 (en) Electron beam generating apparatus and optical sampling apparatus using the same
SU1155967A1 (en) Device for testing specimen for electrostatic charging