JPS58131740A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58131740A
JPS58131740A JP1368882A JP1368882A JPS58131740A JP S58131740 A JPS58131740 A JP S58131740A JP 1368882 A JP1368882 A JP 1368882A JP 1368882 A JP1368882 A JP 1368882A JP S58131740 A JPS58131740 A JP S58131740A
Authority
JP
Japan
Prior art keywords
resin
semiconductor element
substrate
semiconductor
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1368882A
Other languages
Japanese (ja)
Inventor
Fujio Kitamura
北村 富士夫
Kazuo Iko
伊香 和夫
Hideto Suzuki
秀人 鈴木
Haruo Tabata
田畑 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP1368882A priority Critical patent/JPS58131740A/en
Publication of JPS58131740A publication Critical patent/JPS58131740A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83856Pre-cured adhesive, i.e. B-stage adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor

Abstract

PURPOSE:To die bond a semiconductor element on a substrate by a method wherein semihardened thermosetting resin is provided on the back side of the semiconductor element, the semiconductor element is thermo-press welded on the semiconductor substrate such as a substrate or a lead frame through the intermediary of said resin. CONSTITUTION:After the thermosetting resin has been applied to the reverse side of the semiconductor element, a heat treatment is performed at the proper temperature at which the resin will not be hardened completely, at 80-150 deg.C of polyinide resin for example, for 3-60min. The film thickness of the resin is ordinarily 5-100mum, but the desirable thickness is 10-20mum. After the above thermopsetting of semihardened type has been provided, the semiconductor element is thermo-press welded to the substrate, and a die bonding is performed after the resin has been hardened completely. The condition of thermo-press welding, when polyimide resin is used, is 200-400 deg.C, 1-20kg/ cm<2> and 2-60sec in general. As the die-bonded semiconductor element has strong adhesive strength with the substrate and also has excellent heat-resisting property of bonded layer, there generates no troubles such as coming off of an element and the like in the process subsequently performed such as wire bonding and the like.

Description

【発明の詳細な説明】 この発明は半導体装置の製造方法、詳しくは半導体素子
のダイボンディングの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improvement in die bonding of semiconductor elements.

ダイボンディングとは基板又はリードフレームの如き半
導体基体に半導体素子を接着固定することであり、従来
この接着固定のためのダイボンディング用材料として、
Au−5i共晶あるいはエポキシ系樹脂にAg粉を混入
した導電性銀ペーストが用いられている。
Die bonding is the process of adhesively fixing a semiconductor element to a semiconductor substrate such as a substrate or lead frame. Conventionally, die bonding materials used for this adhesive fixation include:
A conductive silver paste made by mixing Au-5i eutectic or epoxy resin with Ag powder is used.

半導体工業における最近の発展は目ざましく、新しいI
C、LS Iの開発、量産化が計られ、半導体製品の開
発が盛んであると同時に、半導体製品の価格競争はきび
しいものがある。特に数年来の貴金属高騰ブームを契機
として、半導体工業において使用量の多いAu 、 A
g等の貴金属の代替材料への転換が進められている。
Recent developments in the semiconductor industry are remarkable, and new I
At the same time as the development and mass production of C, LSI and the development of semiconductor products are flourishing, price competition for semiconductor products is becoming fierce. In particular, with the boom in the price of precious metals over the past few years, Au and A are used in large quantities in the semiconductor industry.
The transition to alternative materials for precious metals such as g is progressing.

このような背景において、この発明はダイボンディング
工程において従来から用いられているM−5i 共晶あ
るいはAg ペーストを用いない新規なダイボンディン
グ方法を提供するものである。
In this context, the present invention provides a novel die bonding method that does not use M-5i eutectic or Ag paste, which have been conventionally used in the die bonding process.

特にこの発明は、半導体素子の中でもMOS  IC。This invention is particularly applicable to MOS ICs among semiconductor devices.

LSI、CCD、バイポーラIC,SO5等のように、
サブ電極を半導体素子上のポンディングパッドより引出
すことができ、半導体素子の裏面のメタライゼーション
が不要な半導体素子に適用しようとするものである。
Like LSI, CCD, bipolar IC, SO5, etc.
The sub-electrode can be drawn out from the bonding pad on the semiconductor element, and it is intended to be applied to a semiconductor element that does not require metallization on the back surface of the semiconductor element.

即ち、この発明の半導体装置の製造方法は、半導体素子
のダイボンディング工程において、半導体素子の裏面に
半硬化状態の熱硬化性樹脂を設け、この樹脂を介して上
記半導体素子を基板又はリードフレームの如き半導体基
体に熱圧着することにより、半導体素子を上記基体にダ
イボンディングすることを特徴としたものである。
That is, in the semiconductor device manufacturing method of the present invention, a semi-hardened thermosetting resin is provided on the back surface of the semiconductor element in the die bonding process of the semiconductor element, and the semiconductor element is bonded to the substrate or lead frame through this resin. This method is characterized in that the semiconductor element is die-bonded to the semiconductor substrate by thermocompression bonding to the semiconductor substrate.

上記の目的を達成するためのダイボンディング用材料に
は、十分な機械的強度や後工程のワイヤボンディング時
の温度(通常の熱圧着ボンディングでは35 CFC)
に耐える耐熱性を有していること、またハロゲンやアル
カリ金属等の不純物の含有量が少ないことあるいはワイ
ヤボンディング等の熱処理工程においてワイヤボンディ
ング表面に凝着するようなガスが発生しないこと等の特
性が要求される。このような特性を満足するダイボンデ
ィング用材料としてはポリイミド系樹脂、エポキシ樹脂
あるいはシリコーン樹脂等の熱硬化性樹脂が挙げられる
が、その中でも耐熱性のもつとも優れかつ上記他の特性
にも優れているポリイミド系樹脂がとくに好ましく用い
られる。
To achieve the above purpose, die bonding materials must have sufficient mechanical strength and a temperature during wire bonding in the post-process (35 CFC for normal thermocompression bonding).
Characteristics include having heat resistance that can withstand high temperatures, low content of impurities such as halogens and alkali metals, and no generation of gases that can adhere to the wire bonding surface during heat treatment processes such as wire bonding. is required. Materials for die bonding that satisfy these characteristics include thermosetting resins such as polyimide resins, epoxy resins, and silicone resins, among which thermosetting resins have excellent heat resistance and other properties listed above. Polyimide resins are particularly preferably used.

この発明で用いられるポリイミド系樹脂としては、ポリ
イミド、ポリ(イミド・インインドロキナゾリンジオン
イミド〕、ポリアミドイミドなど゛が例として挙げられ
るが、これらに限定されない。
Examples of the polyimide resin used in the present invention include, but are not limited to, polyimide, poly(imide indolindoquinazoline dioneimide), and polyamideimide.

ポリイミド系樹脂は通常これらの樹脂の前駆体の溶液と
して調製し、この溶液を塗布し、ついで適度な温度で熱
処理して半硬化(半イミド化〕状態とし、さらに高温下
で加熱処理することによって得られる。
Polyimide resins are usually prepared as a solution of precursors of these resins, coated with this solution, then heat-treated at an appropriate temperature to semi-cure (semi-imidized) state, and then heat-treated at a high temperature to form a semi-cured state. can get.

ポリイミド系樹脂の前駆体の溶液はN−メチルピロリド
ン、N、N−ジメチルアセトアミドなどの極性溶媒中で
芳香族テトラカルボン酸二無水物と芳香族ジアミンある
いはこの組成にさらに芳香族ジアミノモノアミド、トリ
メリット酸無水物などの成分を添加して反応させること
により得られる。
A solution of a polyimide resin precursor is prepared by adding an aromatic tetracarboxylic dianhydride and an aromatic diamine, or to this composition, an aromatic diaminomonoamide, trimellitate, etc. in a polar solvent such as N-methylpyrrolidone or N,N-dimethylacetamide. It is obtained by adding and reacting components such as acid anhydrides.

芳香族テトラカルボン酸二無水物としては、ピロメリッ
ト酸二無水物、ベンゾフェノンテトラカルポン酸二無水
物、・ビフェニルテトラカルボン酸二無水物、ナフタリ
ンテトラカルボン酸二無水物などが好ましく用いられる
As the aromatic tetracarboxylic dianhydride, pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, and the like are preferably used.

芳香族ジアミンとしては、ジアミノジフェニルエーテル
、ジアミノジフェニルメタン、ジアミノジフェニルスル
ホン、ジアミノジフェニルスルフィド、フェニレンジア
ミンなどが好ましく用いられる。芳香族ジアミノモノア
ミドとしては、4・4′−ジアミノジフェニルエーテル
−3−カルボンアミドが好ましく用いられる。
As the aromatic diamine, diaminodiphenyl ether, diaminodiphenylmethane, diaminodiphenylsulfone, diaminodiphenyl sulfide, phenylenediamine, etc. are preferably used. As the aromatic diamino monoamide, 4,4'-diaminodiphenyl ether-3-carbonamide is preferably used.

また、上記のテトラカルボン酸成分およびジミン成分は
いずれも芳香族系のものであって耐熱性の向上に寄与す
るものであるが、これら芳香族系のものと併用してまた
場合により単独で脂肪族系のテトラカルボン酸成分やジ
アミン成分を使用することも可能である。さらに、上記
のポリイミド系樹脂として市販品をそのまま適用するこ
ともでき、その例としては、デュポン社製の商品名Py
r eML、東し社製の商品名トレニース、日立化成工
業社製の商品名PIQなどを挙げることができる。
In addition, both the above-mentioned tetracarboxylic acid component and dimine component are aromatic and contribute to improving heat resistance. It is also possible to use a tetracarboxylic acid component or a diamine component of the group type. Furthermore, commercially available products can be used as the above-mentioned polyimide resin, such as Py, a product manufactured by DuPont.
Examples include r eML, Toshisha Co., Ltd. (trade name) TRENICE, Hitachi Chemical Co., Ltd. (trade name PIQ), and the like.

この発明においては、このようなポリイミド系樹脂を代
表例とする熱硬化性樹脂を、まず半導体素子の裏面に半
硬化状態に設ける。この方法としては、一般に上記樹脂
を半導体素子の裏面に塗布したのち適当なつまり完全に
硬化しない温度、たとえばポリイミド系樹脂では80〜
150’Cで3〜60分間の条件で熱処理する方法が採
用される。
In this invention, a thermosetting resin, typically a polyimide resin, is first provided in a semi-cured state on the back surface of a semiconductor element. In this method, the resin is generally coated on the back surface of the semiconductor element and then heated at an appropriate temperature, i.e., at a temperature that does not completely cure the resin, for example, 80 to 80°C for polyimide resin.
A method of heat treatment at 150'C for 3 to 60 minutes is employed.

上記樹脂の膜厚は通常5〜100μm、好適には10〜
20μmとするのがよく、この膜厚が薄すぎるとダイボ
ンディングという所期の目的を達しえず、また厚くなり
すぎると膜中に気泡が発生するなどの欠点が生じてくる
から好ましくない。
The film thickness of the above resin is usually 5 to 100 μm, preferably 10 to 100 μm.
The thickness is preferably 20 μm; if the film thickness is too thin, the desired purpose of die bonding cannot be achieved, and if it is too thick, defects such as bubbles will occur in the film, which is not preferable.

なお、上記方法で熱硬化性樹脂を半硬化状態とする理由
は、未硬化状態では膜形成しにくくそのどの作業性に劣
り、また熱圧着時に急激に硬化させると膜にクラックや
その他の損傷が生じるおそれがあり強固なダイボンディ
ングに支障をきたすためである。
The reason why the thermosetting resin is semi-cured in the above method is that it is difficult to form a film in the uncured state, which is poor in workability, and rapid hardening during thermocompression bonding may cause cracks or other damage to the film. This is because there is a risk of this occurring, which may impede strong die bonding.

この発明では、上述の如き半硬化状態の熱硬化性樹脂を
設けたのち、この樹脂が半導体基体に当接するように半
導体素子を上記基体上に熱圧着し、この熱圧着で上記樹
脂を完全に硬化させてダイボンディングする。たとえば
ポリイミド系樹脂の場合の熱圧着条件は一般に200〜
400°c、1〜20)g/a#、2〜60秒間である
。ダイボンディングされた半導体素子は基体に対して強
固゛な接着力を有するものであり、接着層の耐熱性にも
すぐれているため、ワイヤボンディングなどの後工程で
素子の脱落などの不都合を生じることはない。
In this invention, after providing a thermosetting resin in a semi-cured state as described above, a semiconductor element is thermocompression bonded onto the semiconductor substrate so that the resin comes into contact with the semiconductor substrate, and this thermocompression bonding completely removes the resin. Harden and die bond. For example, in the case of polyimide resin, the thermocompression bonding conditions are generally 200~
400°C, 1-20)g/a#, 2-60 seconds. Die-bonded semiconductor elements have strong adhesion to the substrate, and the adhesive layer has excellent heat resistance, so there is no risk of inconveniences such as the element falling off during post-processes such as wire bonding. There isn't.

このように、この発明においては、半導体装置のナカで
も半導体素子の裏面をメタライゼーションする必要のな
いもの、つまり半導体素子をリードフレームや基板上に
電気的に接続する必要がないものがあることに着目して
、従来ではAu−8i共晶や銀ペーストが普通に用いら
れていたのに対し、前述の如く熱硬化性樹脂を単独で使
用しこれを半硬化状態に設けたのち熱圧着させるという
方法で強固なダイボンディングを達成できたものであり
、このようにして得られる半導体装置は従来のダイボン
ディング用材料に劣ることのない半導体としての機能を
充分に発揮させうるものであることが見い出された。
In this way, in this invention, there are semiconductor devices that do not require metallization on the back side of the semiconductor element even inside the semiconductor device, that is, there is no need to electrically connect the semiconductor element to the lead frame or substrate. Focusing on this, unlike conventionally Au-8i eutectic and silver paste, which were commonly used, we decided to use a thermosetting resin alone, set it in a semi-cured state, and then bond it by thermocompression. It was discovered that strong die bonding could be achieved by this method, and that the semiconductor device obtained in this way could fully demonstrate the function as a semiconductor that was comparable to conventional die bonding materials. It was.

したがって、この発明によれば、半導体装置のコスト低
減に大きく寄与できるものであり、半導体工業の発展に
貢献するところきわめて大であるといえる。
Therefore, according to the present invention, it can be said that it can greatly contribute to the cost reduction of semiconductor devices, and it can be said that it greatly contributes to the development of the semiconductor industry.

の裏面をシランカップリング剤、有機チタン化合物、有
機アルミニウム化合物、有機ジルコニウム化合物などで
処理して上記樹脂と半導体素子との密着性を改善するな
どの変更を加えてもよい。とくにポリイミド系樹脂を用
いる場合、上記処理は非常に有効な手段であり、ポリイ
ミド系樹脂の特徴をより発揮させつる利点がある。
Changes may be made such as treating the back side of the resin with a silane coupling agent, an organic titanium compound, an organic aluminum compound, an organic zirconium compound, etc. to improve the adhesion between the resin and the semiconductor element. In particular, when polyimide resin is used, the above treatment is a very effective means and has the advantage of bringing out the characteristics of the polyimide resin even more.

以下に、この発明の実施例を記載してより具体的に説明
する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例1 ジアミノジフェニルエーテル40yをN−メチルピロリ
ドン400vに溶解し、この溶液にピロメリット酸二無
水物43.6 ’fをN−メチルピロリドン100グに
溶解した溶液を添加し、30°Cで6時間撹拌すること
により、固形分濃度143重量%、粘度約15ポイズ(
25°C)のポリイミド前駆体溶液(I)を得た。
Example 1 40y of diaminodiphenyl ether was dissolved in 400v of N-methylpyrrolidone, and to this solution was added a solution of 43.6'f of pyromellitic dianhydride dissolved in 100g of N-methylpyrrolidone. By stirring for hours, the solid content concentration was 143% by weight, and the viscosity was approximately 15 poise (
A polyimide precursor solution (I) was obtained at a temperature of 25°C.

つぎに、ポリイミド前駆体溶液(りを半導体素子の裏面
に膜厚が10μmになるように半硬化状態のポリイミド
樹脂皮膜を形成した。この皮膜形成はスピンコーティン
グ法によりウェーハ上に塗布し、120°Cで30分間
の熱処理を加えて半硬化させる方法で行なった。
Next, a polyimide resin film in a semi-cured state was formed on the back surface of the semiconductor element with a polyimide precursor solution to a film thickness of 10 μm. This film was formed by applying it onto the wafer using a spin coating method, and This was done by applying heat treatment at C for 30 minutes to semi-cure.

つぎに、半硬化状態のポリイミド樹脂皮膜を裏面に形成
した半導体素子を、上記裏面側から3500C,3Kg
/cJの条件で30秒間コバール製のリードフレームの
ダイボンディングプレートに熱圧着することにより、半
導体素子のダイボンディングを行った。
Next, the semiconductor element with the semi-cured polyimide resin film formed on the back side was heated to 3500C and 3Kg from the back side.
Die bonding of the semiconductor element was performed by thermocompression bonding to a die bonding plate of a lead frame made of Kovar for 30 seconds under the condition of /cJ.

このようにして接着固定した半導体素子は、後工程の熱
圧着(350’C)によるワイヤボンディング性も良好
であり、優れた半導体装置を得ることができた。
The semiconductor element adhesively fixed in this way had good wire bonding properties in the post-process thermocompression bonding (350'C), and an excellent semiconductor device could be obtained.

実施例2 ジアミノジフェニルエーテル40 ElヲN −N −
ジメチルホルムアミド4002に溶解し、この溶液にベ
ンゾフェノンテトラカルボン酸二無水物64.4F!を
N、N−ジメチルホルムアミド1002に溶解した溶液
を添加し、30’Cで3時間撹拌することにより、固形
分濃度17゜3重量%、粘度約100ポイズ(25°C
〕のポリイミド前駆体溶液(n)を得た。
Example 2 Diaminodiphenyl ether 40 Elwon -N -
Dissolve in dimethylformamide 4002 and add benzophenonetetracarboxylic dianhydride 64.4F! to this solution. was dissolved in N,N-dimethylformamide 1002 and stirred at 30'C for 3 hours to obtain a solid concentration of 17.3% by weight and a viscosity of about 100 poise (at 25°C
] A polyimide precursor solution (n) was obtained.

つぎに、素子を形成したウェーハの裏面をステンレス製
の印刷用200メツシユスクリーンで覆い、その上から
ポリイミド前駆体溶液(II)をローラコートしたのち
、120°Cで30分間熱処理を行い膜厚12μmの半
硬化状態のポリイミド樹脂皮膜を形成した。
Next, the back side of the wafer on which the elements were formed was covered with a stainless steel 200 mesh screen for printing, and the polyimide precursor solution (II) was roller coated on top of it, and then heat treated at 120°C for 30 minutes to thicken the film. A semi-cured polyimide resin film of 12 μm was formed.

ついで、実施例1と同様の方法で半導体素子のダイボン
ディングを行った。このようにして接着固定した半導体
素子は、実施例1と同様に後工程の熱圧着〔3506C
〕によるワイヤボンディング性も良好であり、優れた半
導体装置を得ることができた。
Then, die bonding of the semiconductor element was performed in the same manner as in Example 1. The semiconductor element adhesively fixed in this manner was subjected to post-process thermocompression bonding [3506C
] The wire bonding property was also good, and an excellent semiconductor device could be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子のダイボンディングに当たり、上記素
子の裏面に半硬化状態の熱硬化性樹脂を設け、この樹脂
を介して上記素子を半導体基体上に熱圧着して上記素子
を上記基体にダイボンディングすることを特徴とする半
導体装置の製造方法。 烈
(1) For die bonding of a semiconductor element, a semi-hardened thermosetting resin is provided on the back surface of the element, and the element is thermocompression bonded onto the semiconductor substrate via this resin, thereby die bonding the element to the substrate. A method for manufacturing a semiconductor device, characterized in that: Retsu
(2)熱硬化性樹脂がポリイミド系樹脂である特許請求
の範囲第(1)項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim (1), wherein the thermosetting resin is a polyimide resin.
JP1368882A 1982-01-30 1982-01-30 Manufacture of semiconductor device Pending JPS58131740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1368882A JPS58131740A (en) 1982-01-30 1982-01-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1368882A JPS58131740A (en) 1982-01-30 1982-01-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58131740A true JPS58131740A (en) 1983-08-05

Family

ID=11840123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1368882A Pending JPS58131740A (en) 1982-01-30 1982-01-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58131740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072236A (en) * 1983-09-28 1985-04-24 Toshiba Corp Semiconductor device
JPS61237436A (en) * 1985-04-15 1986-10-22 Toshiba Chem Corp Manufacture of semiconductor element
JPH02256251A (en) * 1988-09-27 1990-10-17 Matsushita Electron Corp Semiconductor device and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072236A (en) * 1983-09-28 1985-04-24 Toshiba Corp Semiconductor device
JPS61237436A (en) * 1985-04-15 1986-10-22 Toshiba Chem Corp Manufacture of semiconductor element
JPH02256251A (en) * 1988-09-27 1990-10-17 Matsushita Electron Corp Semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
JP2000109709A (en) Material for thermosetting resin and its production
WO1998054267A1 (en) Heat-resistant adhesives and semiconductor devices produced therewith
JPS5844712B2 (en) adhesive composition
JP4839505B2 (en) Adhesive film, manufacturing method thereof, and semiconductor device with adhesive film
JPH06264035A (en) Adhesive film, its production, and method for adhesion
JPH0967559A (en) Adhesive tape for electronic part and liquid adhesive
JP3055388B2 (en) Adhesive film
JP3482946B2 (en) Adhesive film and semiconductor device
JPS58131740A (en) Manufacture of semiconductor device
JPH03188180A (en) Conductive film adhesive, method for adhesion, semiconductor device, and preparation of semiconductor device
JP3048300B2 (en) Adhesive insulating tape and semiconductor device using the same
JPH02252786A (en) Heat-resistant adhesive
JP4013092B2 (en) Adhesive film
JPH11140386A (en) Adhesive film, production thereof, support member with adhesive film, and semiconductor device
JP3978628B2 (en) Adhesive film
JPH06236899A (en) Resin sealed type semiconductor device
JPS63161014A (en) Electrically conductive resin paste
JPS62574B2 (en)
JPH06349987A (en) Semiconductor device with heat sink, manufacture thereof and heat sink for the same device
JPS61237436A (en) Manufacture of semiconductor element
JPH07252459A (en) Heat-resistant adhesive
JP4161205B2 (en) Support member with semiconductor element
JP2002161250A (en) Adhesive film, method for producing the same, method for bonding semiconductor element to supporting member, supporting member provided with adhesive film and semiconductor device
JPH10182822A (en) Polyester-amide-imide resin, its precursor and their production
JPH01153767A (en) Electrically conductive resin paste