JPS58130202A - Production of sintered body - Google Patents

Production of sintered body

Info

Publication number
JPS58130202A
JPS58130202A JP1278982A JP1278982A JPS58130202A JP S58130202 A JPS58130202 A JP S58130202A JP 1278982 A JP1278982 A JP 1278982A JP 1278982 A JP1278982 A JP 1278982A JP S58130202 A JPS58130202 A JP S58130202A
Authority
JP
Japan
Prior art keywords
throat
powder
molding
long
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1278982A
Other languages
Japanese (ja)
Inventor
Hideo Ishihara
石原 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP1278982A priority Critical patent/JPS58130202A/en
Publication of JPS58130202A publication Critical patent/JPS58130202A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent failue of powder moldings during handling in the stage of producing sintered bodies of long-sized green compacts of W and Mo by pressurizing and extrusion molding powders of W and Mo to a continuous powder molding with a throat, and conducting electricity thereto with two pieces of electrodes thereby sintering the molding. CONSTITUTION:In the stage of producing long-sized sintered bodies of high m.p. metallic powders of W, Mo, etc., the above-mentioned metallic powders are supplied through a supply port 2 into a throat 1. The screw 4 in the throat 1 is rotated to compress the metallic powder which is then removed as a long-sized molding continuously through a delivery port 3. The preceding end part of the throat 1 is enclosed with a chamber 6, and the inside thereof is put in a reducing atmosphere of gaseous hydrogen or the like. Eelectricity is conducted to the molding with two pieces of electrodes 5, 5 disposed in the preceding end part of the throat whereby the molding is sintered and the powder sintered body 8 of W and Mo is produced in a long size state. Since there are no stages for handling the molding prior to the sintering by manual labor, the long-sized sintered body free from fracture during handling is produced easily.

Description

【発明の詳細な説明】 不発明は通電焼結法を用いた焼結体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a sintered body using an electric current sintering method.

〔発明の技術的背景〕[Technical background of the invention]

一般にフィラメントなどに用いられるタングステン幌、
モリブデン(Mo)などの高融点金属からなる焼結体を
製造するためには、金ki4!IJ末をプレスによシ加
圧して棒状の粉末成形体を成形し、この粉末成形体の両
端部に電極を接続して成形体に通電することにより焼結
する一 通電焼結法一方法が行表われている。
Tungsten hoods, commonly used for filaments, etc.
In order to produce a sintered body made of a high melting point metal such as molybdenum (Mo), gold ki4! The IJ powder is pressurized with a press to form a rod-shaped powder compact, and electrodes are connected to both ends of the powder compact and the compact is sintered by applying electricity.One method is the current sintering method. rows are displayed.

〔背景技術の問題点〕[Problems with background technology]

しかして、この製造方法においては次のような問題点が
ある。粉末成形体は生産効率の点からいえば出来るだけ
長尺のものであることか好ましいが、実際にはプレス装
置の製造舵力および設備規模の点で成形する粉末成形体
の長さに制限があり長尺物の成形は困難である。もし、
長尺の粉末成形体を加圧成形しようとすれは、洟大な規
模のプレス装置が必要となり、設4A規模および経済性
の点から実際には無理である。
However, this manufacturing method has the following problems. From the point of view of production efficiency, it is preferable for the powder compact to be as long as possible, but in reality, there is a limit to the length of the powder compact to be compacted due to the production steering force of the press equipment and the scale of the equipment. It is difficult to mold long objects. if,
Pressure molding of a long powder compact requires a press apparatus of a very large scale, which is practically impossible in terms of the scale of the equipment and economic efficiency.

同様に通電焼結を行なう場合にも、焼結装置の規模の点
において焼結する粉末成形体の長さに制限があシ、長尺
の粉末成形体の通電焼結は無理である。
Similarly, when carrying out electrical sintering, there is a limit to the length of the powder compact to be sintered due to the size of the sintering apparatus, and it is impossible to conduct electrical sintering of a long powder compact.

また、粉末成形体は焼結体と異なシ強度が小さいもので
あるが、その形状が棒状である場合には形状の点から一
層破損し易く、歩留シが恐いとともに、成形体を焼結装
置へ運搬するなどの堆扱いの面で大変手数を要している
。%に高一点金属の粉末成形体は硬いと脆いために破損
し易い。
In addition, unlike sintered bodies, powder compacts have low mechanical strength, but if they are rod-shaped, they are more likely to break due to their shape, resulting in a risk of yield loss. It takes a lot of effort to handle the compost, such as transporting it to the equipment. % high single-point metal powder compacts are hard and brittle, so they are easily damaged.

〔発明の目的〕[Purpose of the invention]

本発明は長尺物の粉末成形体の製造が可能であり、粉末
成形体の取扱いの困難さを解決した焼結体の製造方法を
提供するものである。
The present invention provides a method for manufacturing a sintered body that is capable of producing a long powder compact and solves the difficulty of handling the powder compact.

〔発明の砒歎〕[Disclaimer of invention]

本発明の焼結体の製造方法は、スロートに供給された粉
末を加圧してスロートから◆≠寺1、     連続的
に押出すことによシ、長尺の粉末成形体を成形し、さら
に粉末成形体を押出しながら電極の間を通して通電焼結
することにより、粉末成形体の取扱いを不振にしたもの
である。
The method for producing a sintered body of the present invention involves pressurizing the powder supplied to the throat and continuously extruding it from the throat to form a long powder compact. By sintering the powder compact by passing it through the electrodes while extruding it, the handling of the powder compact is made difficult.

〔発明の実施例〕[Embodiments of the invention]

図面は本発明の製造方法の一実施例を示している。 The drawings show an embodiment of the manufacturing method of the present invention.

本発明の製造方法においては、−例とL−て図面で示す
装置を用意する。図中1はスロートで、その一方の端部
にはタングステン又はモリブデンの粉末供給口2が形成
され、他方の;smには先細シのテーパをもった例えd
角形(必匁に応じて丸形などにしても良い、)の筒状を
なす粉末成形体の送出口3が設けられている。スロート
1の内部には図示しない電動th!/cよう一〇回転駆
動されるスクリュ4が軸方向に沿って=nられている。
In the manufacturing method of the present invention, an apparatus shown in the drawings as an example is prepared. In the figure, 1 is a throat, at one end of which a tungsten or molybdenum powder supply port 2 is formed, and at the other end;
A powder compact delivery port 3 is provided in the form of a rectangular (or round, depending on the momme) cylindrical shape. Inside the throat 1 is an electric th! The screw 4, which is driven 10 rotations as /c, is rotated along the axial direction.

スロート1における送出口3の先端前方の両側部には図
示しない電源に接続された一対の電極5.5が配設され
、この11極5,5の内面は粉末の焼結収縮に合わせた
テーパをなしている。スロート1の送出口3と電極5.
5を包囲して室6が設けられ、この室6の内Sは水素ガ
スなどによって還元雰囲気とされている。
A pair of electrodes 5.5 connected to a power source (not shown) are arranged on both sides of the front end of the outlet 3 in the throat 1, and the inner surfaces of the 11 electrodes 5, 5 are tapered to match the sintering shrinkage of the powder. is doing. The outlet port 3 of the throat 1 and the electrode 5.
A chamber 6 is provided surrounding the chamber 5, and the inside S of the chamber 6 is made into a reducing atmosphere by hydrogen gas or the like.

これは金属のなかでもタングステン、モリブデンは高温
での酸化消耗が大きいため、酸化現象を防ぐためである
This is to prevent oxidation, as tungsten and molybdenum, among metals, are subject to high oxidation consumption at high temperatures.

4兄明の製造方法を実施する場合について述べる。金輌
粉末7を供給口2からスロート1の内部に供給する。電
動機によりスクリュ4を回転させることにより、スロー
ト1内に供給された粉末7を送出口2に向けて前方へ移
動させる。
A case will be described in which the manufacturing method of the fourth brother is implemented. The gold powder 7 is supplied into the throat 1 from the supply port 2. By rotating the screw 4 with an electric motor, the powder 7 supplied into the throat 1 is moved forward toward the delivery port 2.

粉末7はこの過程でスクリュ4によって加圧される。ス
クリュ4によって送出口3へ加圧され送られた粉末7は
、テーパ状をなす送出口3を通り、送出口3の一先端開
口から加圧された棒状をなす粉末成形体番として順次外
方へ向けて連続的に押出される。このようにスクリュ4
の回転により粉末7を加圧して棒状をなす粉末成形体と
して連続して押出す。すなわち、長尺をなす粉末成形体
を加圧成形する。
The powder 7 is pressurized by the screw 4 during this process. The powder 7 pressurized and sent to the delivery port 3 by the screw 4 passes through the tapered delivery port 3 and is sequentially released outward as a pressurized rod-shaped powder compact from the opening at one end of the delivery port 3. It is continuously extruded towards. Screw 4 like this
The powder 7 is pressurized by the rotation of and continuously extruded as a rod-shaped powder compact. That is, a long powder compact is pressure-molded.

次いで、スロート1の送出口3から押出されてくる粉末
成形体は、送出口3の前方に設けられた電極5,5の間
を順次連続して通過する。
Next, the powder compact extruded from the outlet 3 of the throat 1 successively passes between electrodes 5, 5 provided in front of the outlet 3.

*憔5.5を結ぶ電源回路を閉成しておけd1電極5と
電極50間にこれら電極5,5間を通過する粉末成形体
を通って流れる。このため、粉末成形体は電極5.5の
間を通過する時に通電されて焼結され、電極5.5の間
を通過した後には焼結体8となる。なお、この通*m紹
は焼結時の酸化消耗を防ぐため室6の内部VCおける還
元雰囲中にて行なわれムこのようにしてスロート1から
連続的に押出された棒状の粉末成形体は、押出された後
に直ちに電極s、si&llを順次通過して通電焼結さ
れ、さらに焼結体8か連続して形成されて室6から送用
される。従って、粉末成形体を加圧成形した後にそのま
ま連続して通電焼結を行なえるので、破損し易い粉末成
形体を作業者が取扱う工程が全く不振でおる。また、粉
末成形体を移通させて1[極5,5間を通過させるので
、長尺をなす粉末成形体の通電焼結を行なえる。
*The power supply circuit connecting the electrodes 5 and 5 is closed, and the power flows between the d1 electrode 5 and the electrode 50 through the powder compact passing between these electrodes 5 and 5. For this reason, the powder compact is sintered by being energized when passing between the electrodes 5.5, and becomes a sintered compact 8 after passing between the electrodes 5.5. Note that this process is carried out in a reducing atmosphere in the internal VC of chamber 6 in order to prevent oxidative consumption during sintering. Immediately after being extruded, the material passes through electrodes s, si&ll sequentially and is sintered with electricity, and then a sintered body 8 is continuously formed and sent from the chamber 6. Therefore, since the powder compact can be subjected to energization sintering directly after being press-molded, the process in which workers handle the powder compact, which is easily damaged, is completely sluggish. Furthermore, since the powder compact is transferred and passed between the first poles 5, 5, a long powder compact can be electrically sintered.

なお、スロート1から粉末成形体を押出す速度紘、粉末
1の加圧条件および粉末成形体80通電焼結の条件を考
慮して決める。
The speed of extrusion of the powder compact from the throat 1, the pressure conditions for the powder 1, and the conditions for electrically sintering the powder compact 80 are determined.

焼結体8の密度は電極5,5に流す電流の大きさによっ
て規定できる0例えば、溶融電流の  420%程度の
大きさの電流で、焼結体密度は理論密度50〜55%の
大きさとなり、30%根度の犬−さの電流で約60−の
密度となる。具体的にはモリブデンからなる2簡角の棒
状をなす粉末成形体にIOV、60Aの電流を通ずると
約6.597cm”の焼結密度が得られる。
The density of the sintered body 8 can be determined by the magnitude of the current flowing through the electrodes 5, 5. For example, at a current of about 420% of the melting current, the density of the sintered body is 50 to 55% of the theoretical density. Therefore, with a current of 30% density, the density is about 60. Specifically, when a current of IOV and 60 A is passed through a powder molded body made of molybdenum in the shape of a rectangular rod, a sintered density of approximately 6.597 cm'' is obtained.

スロート1内部にて粉末を加圧して押出す手段は、スク
リュに限定されず、プレスのパンチを用いるなどの他の
方法を用いることができる。
The means for pressurizing and extruding the powder inside the throat 1 is not limited to the screw, and other methods such as using a press punch can be used.

〔発明の効果〕〔Effect of the invention〕

不発明の焼結体の製造方法は、スロート内の粉末を加圧
してスロートより tすで連続的に押出すので、長尺をなす粉末成形体の成
形が可能でIhLスロートから弁用された粉末成形体を
そのまま電極間に連続して通して通電焼結するので、壊
れ易い粉末成形体を作業者が取扱う必畳がなく成形体の
破損を防止できるとともに、長尺をなす粉末成形体の焼
結が可能である。
The uninvented method for producing a sintered body pressurizes the powder in the throat and continuously extrudes it from the throat, making it possible to form a long powder compact and allowing it to be used from the IHL throat. Since the powder compact is continuously passed between the electrodes and sintered by energization, there is no need for workers to handle fragile powder compacts, which prevents breakage of the compact. Sintering is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の製造方法の一実施例を示す飲明図である
The drawing is a diagram showing an embodiment of the manufacturing method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)金属粉末をスロートの内部に供給し、この金属粉
末を加圧して前記スロートの送出口よシ連続的に押出し
、押出された粉末成形体を電極の間に通しながら通電し
て焼結することを特徴とする焼結体の製造方法。
(1) Supply metal powder into the throat, pressurize the metal powder, continuously extrude it through the outlet of the throat, and sinter the extruded powder compact by passing it between electrodes while applying electricity. A method for producing a sintered body, characterized by:
(2)焼結は還元性雰囲気中で行なう%杵請求の範囲第
1項に記載の焼結体の製造方法。
(2) The method for producing a sintered body according to claim 1, wherein the sintering is performed in a reducing atmosphere.
(3)  金属粉末は、タングステン又はモリブデンで
ある特許請求の範囲第2項に記載の焼結体の製造方法。
(3) The method for producing a sintered body according to claim 2, wherein the metal powder is tungsten or molybdenum.
JP1278982A 1982-01-29 1982-01-29 Production of sintered body Pending JPS58130202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1278982A JPS58130202A (en) 1982-01-29 1982-01-29 Production of sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278982A JPS58130202A (en) 1982-01-29 1982-01-29 Production of sintered body

Publications (1)

Publication Number Publication Date
JPS58130202A true JPS58130202A (en) 1983-08-03

Family

ID=11815160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278982A Pending JPS58130202A (en) 1982-01-29 1982-01-29 Production of sintered body

Country Status (1)

Country Link
JP (1) JPS58130202A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588655A (en) * 2015-01-13 2015-05-06 马鞍山市兴隆铸造有限公司 Preparation technology for high-strength high-conductivity copper alloy guide lines
CN106964778A (en) * 2016-01-14 2017-07-21 罗伯特·博世有限公司 The method and apparatus for producing heat distortion magnet
RU174974U1 (en) * 2016-12-20 2017-11-14 Андрей Борисович Бондарев PRESS FOR EXTRUSION OF AN ELECTRODE FROM A TITANIUM SPONGE, ALLOYING COMPONENTS, WASTE OF TITANIUM ALLOYS
RU2671521C2 (en) * 2016-12-20 2018-11-01 Андрей Борисович Бондарев Method of manufacturing an electrode of titanium sponge, alloying components, wastes of titanium alloys

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588655A (en) * 2015-01-13 2015-05-06 马鞍山市兴隆铸造有限公司 Preparation technology for high-strength high-conductivity copper alloy guide lines
CN106964778A (en) * 2016-01-14 2017-07-21 罗伯特·博世有限公司 The method and apparatus for producing heat distortion magnet
RU174974U1 (en) * 2016-12-20 2017-11-14 Андрей Борисович Бондарев PRESS FOR EXTRUSION OF AN ELECTRODE FROM A TITANIUM SPONGE, ALLOYING COMPONENTS, WASTE OF TITANIUM ALLOYS
RU2671521C2 (en) * 2016-12-20 2018-11-01 Андрей Борисович Бондарев Method of manufacturing an electrode of titanium sponge, alloying components, wastes of titanium alloys

Similar Documents

Publication Publication Date Title
CN108558398B (en) Method for pulse discharge room temperature flash sintering nano ceramic material
CN202571280U (en) Mould for discharge plasma sintering equipment
JP2015199982A (en) Carbon nanotube composite material and production method thereof
US3538550A (en) Partitioned mold die
JPS58130202A (en) Production of sintered body
JPH03501665A (en) Method for producing wire or band made of high-temperature superconductor and capsules used therein
RU2682512C1 (en) Device for obtaining articles from composite powders with spark plasma sinter
CN108620592B (en) A method of preparing tungsten copper capillary
US20230211411A1 (en) Current assisted sintering method and current assisted sintering apparatus
US1026429A (en) Refractory conductor.
JP3067402B2 (en) Manufacturing method of metal ring
JP2006249462A (en) Method for producing electrode, and electrode
JP2663190B2 (en) Manufacturing method of decorative plastics mold
US936403A (en) Process of making filaments for electric incandescent lamps.
CN106834783A (en) A kind of Ti2AlN CNT composite strengthening silver-based electric contact materials and preparation method thereof
JPH0892605A (en) Core for injection-molding sintered article and production of sintered article using the core
KR100904646B1 (en) The manufacturing method of a Tungsten Heavy Alloy
DE923469C (en) Extrusion process for metal powder
JP7490852B2 (en) Chamber
CN102280206A (en) Method for manufacturing tungsten-copper alloy wire rod
JP2691440B2 (en) Method of manufacturing sintered metal powder
JP3106605B2 (en) Manufacturing method of electrode material
JP6858374B2 (en) Manufacturing method of high-strength silver sintered body
EP0565363A1 (en) Method for producing anisotropic rare earth magnet
US20040105775A1 (en) Method of manufacturing dispersion strengthened copper and/or hyper-nucleated metal matrix composite resistance welding electrodes