JP2691440B2 - Method of manufacturing sintered metal powder - Google Patents

Method of manufacturing sintered metal powder

Info

Publication number
JP2691440B2
JP2691440B2 JP1873889A JP1873889A JP2691440B2 JP 2691440 B2 JP2691440 B2 JP 2691440B2 JP 1873889 A JP1873889 A JP 1873889A JP 1873889 A JP1873889 A JP 1873889A JP 2691440 B2 JP2691440 B2 JP 2691440B2
Authority
JP
Japan
Prior art keywords
powder
degreasing
molded body
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1873889A
Other languages
Japanese (ja)
Other versions
JPH02200703A (en
Inventor
彰 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1873889A priority Critical patent/JP2691440B2/en
Publication of JPH02200703A publication Critical patent/JPH02200703A/en
Application granted granted Critical
Publication of JP2691440B2 publication Critical patent/JP2691440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 イ.発明の目的 〔産業上の利用分野〕 本発明は、金属、又は合金から成る金属粉末をプレ
ス、焼結して焼結体を形成するのにプレス成形体を射出
成形、又は押出成形を利用して成形し、成形体の脱脂お
よび焼結方法に高周波誘導加熱を用いた金属粉末焼結体
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION OBJECT OF THE INVENTION [Industrial field of use] The present invention utilizes injection molding or extrusion molding of a press-molded body to form a sintered body by pressing and sintering a metal powder composed of a metal or an alloy. The present invention relates to a method for producing a metal powder sintered body, which is formed by molding and uses high-frequency induction heating as a degreasing and sintering method for the molded body.

〔従来の技術〕[Conventional technology]

一般に金属、又は合金から成る金属粉末を用い、焼結
体を製造する方法においては、焼結前の成形体は粉末を
圧縮成形することにより圧粉体を得ている。圧粉体を形
成する際は通常金型を用い、上下方向からパンチにより
加圧する方法であるため、得られる成形体の形状として
は円柱、又は円筒のような比較的単純な形状のものに限
られ、より複雑な形状の製品を得るには焼結上がりの焼
結体に切削、研削等の加工を施し製品とする必要があっ
た。
Generally, in a method for producing a sintered body by using a metal powder made of a metal or an alloy, a green body before sintering obtains a green compact by compression molding the powder. When forming a green compact, a die is usually used and pressure is applied by a punch from the top and bottom, so the shape of the resulting compact is limited to a cylinder or a relatively simple shape such as a cylinder. Therefore, in order to obtain a product having a more complicated shape, it is necessary to perform processing such as cutting and grinding on the sintered body just after sintering to obtain a product.

近年、アトマイズ法に代表されるように金属粉末の製
造技術の発展には著しいものがあり、金属焼結体の製造
方法において、金属、又は合金粉末に適当量の有機バイ
ンダーを混合し、混練、粉砕した後、射出成形、又は押
出成形により複雑な形状の成形体を得、脱脂、焼結工程
を経て製品とする方法が用いられ始め注目されている。
In recent years, there have been significant developments in the production technology for metal powders, as represented by the atomization method, in the method for producing a metal sintered body, a metal or alloy powder is mixed with an appropriate amount of an organic binder, and kneaded, After crushing, a method of obtaining a molded product having a complicated shape by injection molding or extrusion molding, and performing a degreasing and a sintering process to obtain a product has started to be used and has been drawing attention.

射出成形方法、押出成形方法は、従来プラスチック材
料の成形に適用されてきた方法であるが、複雑な形状の
ものを、精度良く、大量に生産出来るため、金属、又は
合金粉末に有機バインダーを添加し成形後、脱脂、焼結
して形成した焼結体は、従来の方法では不可能であった
形状のものを低コストで市場に提供することが出来る。
The injection molding method and the extrusion molding method have been conventionally applied to the molding of plastic materials, but since complex shapes can be mass-produced accurately and in large quantities, an organic binder is added to the metal or alloy powder. The sintered body formed by degreasing and sintering after shaping can be provided to the market at a low cost with a shape that cannot be obtained by the conventional method.

そしてこのような製造方法によって焼結製品を製造す
る上での最大の技術的な問題は、射出成形、又は押出成
形による成形体は、金属、又は合金粉末に大量の有機バ
インダーを加えてあることから、これを如何にして除去
するかということになる。有機バインダーの除去は、従
来、抵抗加熱等により成形体の周囲からの加熱によって
有機バインダーを分解、揮発飛散させる方法が一般的で
ある。しかし、従来の成形体の周囲を加熱しながらキャ
リアガスを流し、抵抗加熱により成形体を熱してバイン
ダーを除く方法は、薄肉形状、又は小さい形状の物で
は、加熱時、成形体の温度分布にそれほどの差を生ぜず
均質な焼結体が得られるが、厚肉形状、又は大きい形状
の成形体の脱バインダーの際には温度分布の変化が大き
く、試料の内部と表面とに温度差を生じ、それにより脱
脂過程においてバインダーの抜け方に違いを生じる。そ
のため、不均一な脱脂となり、試料の場所により脱脂率
に差が発生し、又、その後の工程の焼結においても反
り、割れ等の変化が生じ、歩留り良く製品を製造するこ
とが難しいという問題があった。
And the biggest technical problem in manufacturing a sintered product by such a manufacturing method is that a molded product by injection molding or extrusion molding has a large amount of organic binder added to metal or alloy powder. So, how to remove this? The removal of the organic binder has heretofore been a general method in which the organic binder is decomposed and volatilized and scattered by heating from the periphery of the molded body by resistance heating or the like. However, the conventional method of flowing the carrier gas while heating the periphery of the molded body, and heating the molded body by resistance heating to remove the binder is to reduce the temperature distribution of the molded body at the time of heating in the case of a thin shape or a small shape. Although a uniform sintered body can be obtained without making such a difference, the temperature distribution changes greatly when debinding the thick-walled or large-shaped compact, and there is a difference in temperature between the inside and the surface of the sample. This causes a difference in how the binder is removed during the degreasing process. Therefore, the degreasing becomes non-uniform, the degreasing rate varies depending on the location of the sample, and warpage and cracks also occur in the sintering in the subsequent process, which makes it difficult to manufacture products with high yield. was there.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明はこれらの問題を除去するため、加熱脱脂の
際、誘導加熱法を用いることで、金属粉末が95ないし86
重量%で残部が有機ポリマーを主成分とする射出成形、
又は押出成形により成形を行った成形体において、成形
体を黒鉛ボートに設置し、炭素粉末、又は黒鉛粉末の中
に成形体を埋没し、高周波誘導加熱により金属粉末成形
体、及び黒鉛ボートと炭素粉末を加熱して発熱源とし、
有機バインダーを熱分解させることで、厚肉形状、又は
大きい形状のものでも内部まで均一に脱脂でき、又、そ
の後の焼結工程においても均一な焼結体を得ることを目
的とする。
In order to eliminate these problems, the present invention uses an induction heating method during degreasing by heating, so that metal powders of 95 to 86 can be obtained.
Injection molding with the balance being organic polymer as the main component in weight%,
Alternatively, in a molded product formed by extrusion molding, the molded product is placed in a graphite boat, and the molded product is embedded in carbon powder or graphite powder, and the molded product is a metal powder molded product by high frequency induction heating, and a graphite boat and carbon. Heating the powder to a heat source,
By thermally decomposing the organic binder, it is possible to uniformly degrease even thick-walled or large-shaped ones to the inside, and to obtain a uniform sintered body in the subsequent sintering step.

ロ.発明の構成 〔課題を解決するための手段〕 本発明は、射出成形、又は押出成形した金属、又は合
金粉末と有機バインダーとから成る成形体を150℃以上6
00℃で行う脱脂、又、その後の焼結の際に誘導加熱によ
る方法を用いるもので、金属、又は合金粉末の金属粉末
が添加するバインダーに95ないし86重量%で残部が有機
ポリマーを主成分とするバインダーから成る成形体を形
成し、成形体を炭素粉末中に埋没させ、100KHZないし数
百KHZの高周波誘導加熱による電磁誘導により成形体の
中の金属粉末、炭素粉末、又は黒鉛粉末と黒鉛ボートの
中に中に渦電流を発生ことにより成形体にジュール熱を
発生させ、それを熱源としてバインダーを熱分解させ、
脱バインダーを行い、肉の厚い、しかも複雑な形状の成
形体においても均一な脱脂を行うことができ、又、その
後、焼結を行うことにより、均一な焼結体を得るにあ
る。
B. Structure of the Invention [Means for Solving the Problems] The present invention provides a molded body made of injection-molded or extrusion-molded metal or alloy powder and an organic binder at 150 ° C. or higher.
Degreasing performed at 00 ° C, and the method by induction heating at the time of subsequent sintering are used. The binder added by the metal powder of metal or alloy powder is 95 to 86% by weight, and the balance is mainly composed of organic polymer. Forming a molded body composed of a binder, and burying the molded body in carbon powder, and by electromagnetic induction by high frequency induction heating of 100 KHZ to several hundred KHZ, metal powder, carbon powder, or graphite powder and graphite in the molded body By generating an eddy current in the boat, Joule heat is generated in the molded body, which is used as a heat source to thermally decompose the binder,
Debinding is performed to enable uniform degreasing even in a molded body having a thick wall and a complicated shape. Further, sintering is performed to obtain a uniform sintered body.

即ち本発明は、金属粉末が95ないし86重量%で残部が
有機ポリマーを主成分とするバインダーから成る射出成
形体、又は押出成形体を黒鉛ボートに設置し、該成形体
周囲を炭素粉末、又は黒鉛粉末により覆い高周波誘導加
熱により非酸化性雰囲気中で150℃以上600℃の温度で加
熱脱脂した後、還元性雰囲気中で1000℃以上1300℃の温
度で焼結することを特徴とする金属粉末焼結体の製造方
法である。
That is, the present invention, the metal powder is 95 to 86% by weight, the remainder is an injection molded body consisting of a binder containing an organic polymer as a main component, or an extrusion molded body is installed in a graphite boat, carbon powder around the molded body, or Metal powder characterized by being covered with graphite powder, degreased by heating at a temperature of 150 ° C to 600 ° C in a non-oxidizing atmosphere by high frequency induction heating, and then sintered at a temperature of 1000 ° C to 1300 ° C in a reducing atmosphere. It is a method for manufacturing a sintered body.

〔作用〕[Action]

本発明は、複雑な形状をした金属焼結体を得るのに複
雑な機械加工を必要とせずに、金属、又は合金の金属粉
末にパラフィンワックス、ポリエチレン、ジオクチルフ
タレートから成る有機ポリマーバインダーを添加し、混
練、解砕し射出成形、又は押出成形して成形体を作り、
脱脂を行った後、焼結を行って複雑な形状をした金属焼
結体を得るのに150℃以上600℃で行う脱脂およびその後
の焼結に、高周波誘導加熱を用いたものである。
The present invention adds an organic polymer binder consisting of paraffin wax, polyethylene, dioctyl phthalate to metal powder of metal or alloy without requiring complicated machining to obtain a metal sintered body having a complicated shape. , Kneading, crushing and injection molding or extrusion molding to make a molded body,
After degreasing, sintering is performed to obtain a metal sintered body having a complicated shape. Degreasing is performed at 150 ° C to 600 ° C and subsequent sintering is performed by using high frequency induction heating.

従来、脱脂は、抵抗加熱を行っていたが肉厚の試料で
は厚さ方向中心部と表面の脱バインダーが一様でないた
め焼結体に反り、曲がりを生じ、又厚さ中央部にふくれ
等のため中高を生じる等の不具合があった。
Conventionally, degreasing was performed by resistance heating, but in thick samples, the binder is not uniform between the center and the surface in the thickness direction, causing warpage and bending of the sintered body, and swelling in the center of the thickness. Therefore, there were problems such as middle and high school.

本発明は、有機ポリマーと金属粉末との成形体を黒鉛
ボートに設置し、成形体を炭素粉末、又は黒鉛粉末で覆
い、高周波誘導加熱により成形体全体を均一に加熱し、
脱脂を行い、又、その後、同様に焼結を行うものであ
る。
The present invention, a molded body of an organic polymer and a metal powder is installed in a graphite boat, the molded body is covered with carbon powder, or graphite powder, the entire molded body is uniformly heated by high frequency induction heating,
Degreasing is performed, and thereafter, sintering is similarly performed.

本発明において、バインダーの有機ポリマーと金属粉
末との混合比は金属粉末の比重比で95重量%ないし86重
量%が好ましい。この場合の金属粉末の混合比が95重量
%以上の時は、射出成形が困難となり、86重量%以下の
時は脱脂後の形状に欠陥が生じる頻度が多くなり、実用
出来なくなるため、金属粉末の混合比は95重量%ないし
86重量%とする。高周波誘導加熱を行う時は、本発明の
実施例の直径30mmφ、厚さ20mmの試料では、出力5KW、
励振周波数100KHZの高周波誘導加熱用発信機を用いた
が、励振周波数は50KHZないし数百KHZの範囲で選択し、
実用出来る。又、脱脂は毎時10℃程のゆっくりした温度
上昇により行う。有機バインダーの熱分解を600℃付近
でほぼ完了するため、600℃に限定した。又、脱脂の開
始温度はほぼ150℃付近からであり、脱脂焼結時の下限
温度は150℃とした。焼結は本発明の実施例では高純度
水素ガス雰囲気中1250℃で実施したが、真空焼結でも良
く、要求する磁気特性、機械強度によっては焼結温度は
異なるが1000℃以上の温度であればよく、最高温度は13
00℃あれば充分である。しかし、焼結温度は金属粉末の
焼結温度により異なり、融点の低い温度の金属粉末を焼
結する場合は、本発明の実施例に比べて低い焼結温度条
件でよいことは当然である。
In the present invention, the mixing ratio of the organic polymer of the binder and the metal powder is preferably 95% by weight to 86% by weight in terms of the specific gravity ratio of the metal powder. In this case, when the mixing ratio of the metal powder is 95% by weight or more, injection molding becomes difficult, and when it is 86% by weight or less, the shape after degreasing often has defects, which makes it unpractical. The mixing ratio of 95% by weight or
86% by weight. When performing high-frequency induction heating, the diameter of 30 mmφ of the embodiment of the present invention, the output of 5 KW for the sample with a thickness of 20 mm,
I used a transmitter for high frequency induction heating with an excitation frequency of 100 KHZ, but I chose the excitation frequency in the range of 50 KHZ to several hundred KHZ.
Can be put to practical use. Degreasing is performed by a slow temperature rise of about 10 ° C / hour. Since the thermal decomposition of the organic binder is almost completed at around 600 ℃, it was limited to 600 ℃. The degreasing start temperature was around 150 ° C, and the lower limit temperature during degreasing sintering was 150 ° C. Sintering was carried out at 1250 ° C. in a high-purity hydrogen gas atmosphere in the examples of the present invention, but vacuum sintering may also be used, and depending on the required magnetic properties and mechanical strength, the sintering temperature may be 1000 ° C. or higher. Good, maximum temperature is 13
00 ° C is enough. However, the sintering temperature varies depending on the sintering temperature of the metal powder, and when sintering the metal powder having a low melting point, it is natural that the sintering temperature is lower than that of the embodiments of the present invention.

〔実施例〕〔Example〕

水アトマイズ法により作製された平均粒径10μmのFe
50重量%、Co50重量%から成る組成の合金粉末を第1表
に示す組成に混合、混練粉砕し、射出成形用の原料を得
た。
Fe with an average particle size of 10 μm produced by the water atomization method
An alloy powder having a composition of 50% by weight and 50% by weight of Co was mixed with the composition shown in Table 1, kneaded and pulverized to obtain a raw material for injection molding.

次にこの原料を用い温度160℃で射出成形を行い、外
径30mmで厚みが2mm、10mm、20mmの円柱状成形体を作製
した。これらの試料を第1図に示す高周波誘導加熱装置
により試料7を厚さが10mmの黒鉛ボート8の上に置き、
そのまわりを活性の炭素粉末9により覆い、キャリアガ
ス流入口2より、アルゴンガスを2リットル/分の速度
でキャリアガス流出口3へ流し、出力が5KWで励振周波
数が100KHZの高周波誘導加熱装置を用い、室温から毎時
10℃の昇温速度になるよう、温度観測窓5を通し、光温
度計4より温度を感知しながら温度制御を行い、600℃
まで昇温加熱し、600℃で2時間保持した後、室温まで
冷却し、脱バインダー試料を作った。なお、比較のた
め、抵抗加熱を用いて同一条件で脱バインダーを行った
試料を作成した。次いで、誘導加熱法、及び抵抗加熱法
を用い作成した各々の試料は高純度水素ガス中で室温か
ら毎時100℃の昇温速度で1250℃まで昇温し、10時間保
持して焼結を行い炉冷した。
Next, using this raw material, injection molding was performed at a temperature of 160 ° C. to produce cylindrical molded bodies having an outer diameter of 30 mm and thicknesses of 2 mm, 10 mm, and 20 mm. These samples were placed on the graphite boat 8 having a thickness of 10 mm by the high frequency induction heating device shown in FIG.
The surrounding area is covered with activated carbon powder 9, and argon gas is caused to flow from the carrier gas inlet port 2 to the carrier gas outlet port 3 at a rate of 2 liters / minute, and a high frequency induction heating device with an output of 5 KW and an excitation frequency of 100 KHZ is installed. Use from room temperature to every hour
The temperature is controlled through the temperature observation window 5 while sensing the temperature from the optical thermometer 4 so that the temperature rise rate is 10 ° C.
The temperature was raised to 600 ° C., the temperature was maintained at 600 ° C. for 2 hours, and then cooled to room temperature to prepare a binder-free sample. For comparison, a sample was prepared by debinding under the same conditions using resistance heating. Then, each sample prepared using the induction heating method and the resistance heating method was heated in a high-purity hydrogen gas from room temperature to 1250 ° C. at a heating rate of 100 ° C./hour and sintered for 10 hours. The furnace was cooled.

夫々の成形体寸法の違いによる脱脂後の不純物分析の
結果を第2表に示す。
Table 2 shows the result of the impurity analysis after degreasing due to the difference in the size of each molded body.

これを見ると、本発明による誘導加熱法を用いて脱脂
した試料に関しては厚みの違いによる不純物含有量に、
差は見られないが、比較例の抵抗加熱法を用いた場合に
は、明らかに厚みが厚くなるに従い不純物の含有量が多
くなっていることがわかる。又、第2図に30mmφ×20mm
厚さの成形体を高周波誘導加熱と抵抗加熱による夫々の
脱脂方法で脱脂し、その試料を厚さ方向に3分割し、不
純物分析を行った結果を示した。これによると、誘導加
熱法を用いた場合には、部分的な不純物含有量の違いを
示さなかったが、従来法による抵抗加熱法を用いた場合
には明らかに試料中心部の方が抜けが悪いことが示され
ている。
Looking at this, regarding the sample degreased using the induction heating method according to the present invention, in the impurity content due to the difference in thickness,
Although no difference is observed, it can be seen that when the resistance heating method of the comparative example is used, the content of impurities increases as the thickness obviously increases. Also, as shown in Fig. 2, 30 mmφ x 20 mm
The thickness of the molded body was degreased by the degreasing method using high frequency induction heating and resistance heating, and the sample was divided into three parts in the thickness direction, and the results of impurity analysis were shown. According to this, when the induction heating method was used, a partial difference in the impurity content was not shown, but when the resistance heating method by the conventional method was used, the central portion of the sample was clearly removed. It has been shown to be bad.

第3表は、1250℃の水素ガス中の焼結後の相対密度を
示した。
Table 3 shows the relative density after sintering in hydrogen gas at 1250 ° C.

第3表において、本発明の例は誘導加熱による脱脂、
焼結をしたもの、比較例は抵抗加熱により脱脂、焼結を
行ったものである。試料が厚くなるに伴い、相対密度が
やや小さくなる傾向があるが、本発明と比較例を比べた
場合、比較例の方が厚み依存性が高くなっており、又、
相対密度も2ないし3%低くなった。又、焼結体の外観
においても、第3表に示すように本発明によれば、焼結
体は変形割れ等は見られなかったが、比較例において
は、試料中央部が中高となるそり等の変形が見られ、肉
厚になるほど変形の度合いが大きくなった。よって、誘
導加熱法を脱脂に用いることで、成形体そのものを構成
する金属、又は合金粉末が熱源となり均一に脱脂出来、
それにより焼結体は相対密度が上がり、変形のほとんど
ない良好なものが得られたものと考えられる。尚、本発
明において、金属粉末、合金粉末に添加される有機ポリ
マーバインダーの重量比は有機ポリマーバインダーが5
重量%以下では射出成形、又は押出成形が困難であり、
14重量%を越える時は脱脂時に成形した形状が崩れ、正
常な脱脂体が得られず、有機ポリマーを主成分とするバ
インダーの添加量は重量比で5ないし14重量%とする。
又、高周波誘導加熱装置の周波数は数10KHZないし数百K
HZの間の周波数の間で選択すればよく、実施例では出力
5KW、励振周波数100KHZの高周波発振器を用いた。
In Table 3, examples of the invention are degreasing by induction heating,
The sintered product and the comparative example were degreased and sintered by resistance heating. As the sample becomes thicker, the relative density tends to be slightly smaller, but when the present invention and the comparative example are compared, the comparative example has a higher thickness dependency, and
The relative density was also reduced by 2-3%. Also, in the appearance of the sintered body, according to the present invention, as shown in Table 3, no deformation cracks were found in the sintered body, but in the comparative example, the center portion of the sample had a moderately high warp. Deformation was observed, and the thicker the wall, the greater the degree of deformation. Therefore, by using the induction heating method for degreasing, the metal or alloy powder constituting the molded body itself serves as a heat source and can be uniformly degreased,
It is considered that, as a result, the relative density of the sintered body increased and a good sintered body with almost no deformation was obtained. In the present invention, the weight ratio of the organic polymer binder added to the metal powder and the alloy powder is 5 times the organic polymer binder.
If it is less than 10% by weight, injection molding or extrusion molding is difficult,
If the amount exceeds 14% by weight, the shape formed during degreasing will collapse and a normal degreased product will not be obtained, and the amount of the binder containing an organic polymer as a main component is 5 to 14% by weight.
Moreover, the frequency of the high frequency induction heating device is several tens of KHZ or several hundreds of K.
It suffices to select between frequencies between HZ and output in the embodiment.
A high-frequency oscillator with 5KW and an excitation frequency of 100KHZ was used.

ハ.発明の効果 以上述べたごとく、本発明によれば、加熱脱脂に高周
波誘導加熱法を用いることで成形体を埋設した黒鉛ボー
ト、黒鉛粉末、炭素粉末中心を加熱し、又、成形体の金
属、又は合金粉末そのものが熱源となるような脱バイン
ダーを行うため、均一に脱脂が行われる。その後、同様
に脱脂体を1250℃で水素ガス中で焼結した場合、焼結密
度が向上し、又、反り、変形等をほとんど無くすことが
出来る。よって、焼結密度が高く、変形のない焼結体の
提供が可能となった。
C. Effects of the Invention As described above, according to the present invention, the graphite boat in which the compact is embedded by using the high-frequency induction heating method for heating and degreasing, the graphite powder, the carbon powder center is heated, and the metal of the compact, Alternatively, debinding is performed so that the alloy powder itself serves as a heat source, so that degreasing is performed uniformly. After that, when the degreased body is similarly sintered at 1250 ° C. in hydrogen gas, the sintered density is improved, and warpage and deformation can be almost eliminated. Therefore, it is possible to provide a sintered body having a high sintering density and no deformation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明による誘導加熱による脱脂焼結炉の構
成を示す図である。 第2図は、試料形状30mmφ×20mm厚さの厚さ方向位置に
おけるガス分析値を示す図。 1……パワーコントローラ付き高周波発振機、2……キ
ャリアガス流入口、3……キャリアガス流出口、4……
光温度計、5……温度観測窓、6……炉本体、7……試
料、8……黒鉛ボート、9……炭素粉末、又は黒鉛粉
末。
FIG. 1 is a diagram showing a configuration of a degreasing and sintering furnace by induction heating according to the present invention. FIG. 2 is a diagram showing gas analysis values at a position in the thickness direction of a sample shape of 30 mmφ × 20 mm thickness. 1 ... High-frequency oscillator with power controller, 2 ... Carrier gas inlet, 3 ... Carrier gas outlet, 4 ...
Light thermometer, 5 ... Temperature observation window, 6 ... Furnace body, 7 ... Sample, 8 ... Graphite boat, 9 ... Carbon powder or graphite powder.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属粉末が95ないし86重量%が残部で有機
ポリマーを主成分とするバインダーから成る射出成形
体、又は押出成形体を黒鉛ボートに設置し、該成形体周
囲を炭素粉末、又は黒鉛粉末により覆い、高周波誘導加
熱により非酸化性雰囲気中で150℃以上600℃以下の温度
で加熱脱脂した後、還元性雰囲気中で1000℃以上1300℃
の温度で焼結することを特徴とする金属粉末焼結体の製
造方法。
1. An injection-molded body or an extrusion-molded body comprising 95% to 86% by weight of metal powder with the balance being a binder containing an organic polymer as a main component is placed in a graphite boat, and the periphery of the molded body is carbon powder, or After covering with graphite powder and degreasing by heating at a temperature of 150 ℃ to 600 ℃ in a non-oxidizing atmosphere by high frequency induction heating, 1000 ℃ to 1300 ℃ in a reducing atmosphere.
A method for producing a metal powder sintered body, which comprises sintering at a temperature of.
JP1873889A 1989-01-27 1989-01-27 Method of manufacturing sintered metal powder Expired - Fee Related JP2691440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1873889A JP2691440B2 (en) 1989-01-27 1989-01-27 Method of manufacturing sintered metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1873889A JP2691440B2 (en) 1989-01-27 1989-01-27 Method of manufacturing sintered metal powder

Publications (2)

Publication Number Publication Date
JPH02200703A JPH02200703A (en) 1990-08-09
JP2691440B2 true JP2691440B2 (en) 1997-12-17

Family

ID=11980011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1873889A Expired - Fee Related JP2691440B2 (en) 1989-01-27 1989-01-27 Method of manufacturing sintered metal powder

Country Status (1)

Country Link
JP (1) JP2691440B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415681B2 (en) * 2004-01-21 2010-02-17 Tdk株式会社 Rare earth sintered magnet and manufacturing method thereof
JP2014189871A (en) * 2013-03-28 2014-10-06 Susumu Yoshida Method of producing sintered body of metal and/or alloy
US20220176448A1 (en) * 2019-04-24 2022-06-09 Sumitomo Electric Sintered Alloy, Ltd. Manufacturing system and manufacturing method of sintered product

Also Published As

Publication number Publication date
JPH02200703A (en) 1990-08-09

Similar Documents

Publication Publication Date Title
CN110845237B (en) High-entropy ceramic powder, preparation method thereof and high-entropy ceramic block
CN108439986A (en) (HfTaZrTiNb) preparation method of C high entropys ceramic powder and high entropy ceramic powder and high entropy ceramic block
EP1083239B1 (en) Non-magnetic, high density tungsten alloy
EP1107842A1 (en) Powder metal injection molding process for forming an article from the nickel-based superalloy "hastelloy x"
CN104308157A (en) Process method for powder metallurgy
Yamanoglu Pressureless spark plasma sintering: A perspective from conventional sintering to accelerated sintering without pressure
Liu et al. Microstructure evolution of 316L stainless steel micro components prepared by micro powder injection molding
CN108941537A (en) A kind of method of electron beam 3D printing Special high-temperature alloy
Park et al. Effects of particle sizes on sintering behavior of 316L stainless steel powder
JP2691440B2 (en) Method of manufacturing sintered metal powder
CN113500205A (en) 3D printing method of bimetallic material
US20040146424A1 (en) Production of component parts by metal injection moulding (mim)
JP2663190B2 (en) Manufacturing method of decorative plastics mold
KR101222476B1 (en) A sinter
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPH02107703A (en) Composition for injection molding
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
KR100563770B1 (en) Manufacturing method of sintered diamond tool by metal powder injection molding process
JPS60246270A (en) Ceramic simultaneously synthesizing and sintering process
Kislyi et al. Sintering kinetics of tantalum carbide
JPH05140613A (en) Production of tungsten sintered body
JP2001122665A (en) Method for manufacturing boron carbide atmospheric sintered compact
Yussoff Metal injection moulding of aluminium alloy swarf using palm stearin as a standalone binder
RU2314276C2 (en) Molding method of powder articles
RU2030254C1 (en) Method of manufacturing articles from solid alloys on basis of transition metal carbides

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees