JP2001122665A - Method for manufacturing boron carbide atmospheric sintered compact - Google Patents

Method for manufacturing boron carbide atmospheric sintered compact

Info

Publication number
JP2001122665A
JP2001122665A JP30487199A JP30487199A JP2001122665A JP 2001122665 A JP2001122665 A JP 2001122665A JP 30487199 A JP30487199 A JP 30487199A JP 30487199 A JP30487199 A JP 30487199A JP 2001122665 A JP2001122665 A JP 2001122665A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
boron carbide
temperature
sintering
sintered compact
atmospheric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30487199A
Other languages
Japanese (ja)
Inventor
Taku Kawasaki
Mikitoshi Sato
Masaaki Umiga
幹敏 佐藤
卓 川崎
正晃 海賀
Original Assignee
Denki Kagaku Kogyo Kk
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a boron carbide atmospheric sintered compact which is highly dense, has high bending strength and dies not allow sintering assistant components to remain. SOLUTION: This method for manufacturing the boron carbide atmospheric sintered compact consists in heating up the preform of boron carbide powder at a heating up temperature of 5 to l00 deg.C/hr from 2,150 to 2,200 deg.C in atmospheric sintering of the preform in a nonoxidizing atmosphere, and then raising the temperature up to the final sintering temperature exceeding 2,200 deg.C.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、高緻密かつ高曲げ強度の炭化ほう素常圧焼結体の製造方法に関する。 The present invention relates to a method for producing a boron carbide Mototsune sintered body of high dense and high flexural strength.

【0002】 [0002]

【従来の技術】炭化ほう素焼結体は高硬度かつ軽量であり、またその優れた耐摩耗性の特長を活かして、ブラストノズル、ブラッシング材(砥石ならし)、耐摩耗機工部品等に使用されている。 BACKGROUND ART boron carbide sintered body has a high hardness and light weight, also taking advantage of its excellent wear resistance features, (to if grindstone) blast nozzle, brushing material, are used in wear Kiko parts, etc. ing.

【0003】従来、炭化ほう素焼結体を製造するには、 [0003] Conventionally, in order to produce the boron carbide sintered body,
ホットプレス法でが広く用いられているが、大型形状品ないしは複雑形状品の製造や、連続製造には不向きであるので、今日では常圧焼結法が検討されている。 Although hot pressing is widely used, manufacturing and large shape products or complex shape product, it is not suitable for continuous production, it has been studied atmospheric pressure sintering today. その一例を示せば、特開平8−12434号公報、特開平11 One example thereof, Japanese Patent 8-12434, JP-A No. 11
−157935号公報である。 -157,935 issue a publication. しかしながら、これらの常圧焼結法では、アルミニウム等の焼結助剤を用いているので、その混合作業の煩雑さや、得られた常圧焼結体には焼結助剤成分が残留し、また曲げ強度の均質性にも劣るという問題があった。 However, these atmospheric pressure sintering, because of the use of sintering aids such as aluminum, complexity and the mixing operation, the resulting Sintered bodies were residual sintering aid component, also there is a problem that bending inferior in homogeneity of the intensity.

【0004】更には、上記先行技術の実施例に従って炭化ほう素常圧焼結体を製造してみると、比較的良好な緻密化品が製造されたが、外皮(外周部)が先行して緻密化するので内部気孔が抜けきれず、十分に高い緻密化品は得られなかった。 [0004] Furthermore, and try to produce a boron carbide Mototsune sintered body in accordance with an embodiment of the prior art, relatively good but densification product is manufactured, dense preceded the outer skin (outer peripheral portion) not completely missing internal pores because of sufficiently high densified article was not obtained.

【0005】 [0005]

【発明が解決しようとする課題】本発明は、上記に鑑みてなされたものであり、その目的は、焼結助剤を用いなくても、高緻密かつ高曲げ強度の炭化ほう素焼結体を常圧焼結によって製造することである。 [SUMMARY OF THE INVENTION The present invention has been made in view of the above, the object, without using a sintering aid, a boron carbide sintered body having a high dense and high flexural strength it is to produce by pressureless sintering.

【0006】 [0006]

【課題を解決するための手段】すなわち、本発明は、炭化ほう素粉末の予備成形体を非酸化性雰囲気中で常圧焼結するにあたり、温度2150℃から2200℃の間の昇温速度を5〜100℃/hrとして昇温した後、更に2200℃をこえる最終焼結温度までに温度を高めることを特徴とする炭化ほう素常圧焼結体の製造方法である。 That SUMMARY OF THE INVENTION The present invention, upon pressureless sintering the preform boron carbide powder in a non-oxidizing atmosphere, the heating rate between 2200 ° C. the temperature 2150 ° C. after heating as 5 to 100 ° C. / hr, a method for manufacturing a boron carbide Mototsune sintered body, characterized by further increasing the temperature to the final sintering temperature exceeding 2200 ° C..

【0007】 [0007]

【発明の実施の形態】以下、更に詳しく本発明について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be explained in more detail the present invention.

【0008】本発明で使用される炭化ほう素粉末は、市販品で十分であるが、中でも平均粒径0.5〜2μm、 [0008] boron carbide powder used in the present invention is sufficient in commercially available, among them the average particle diameter of 0.5 to 2 [mu] m,
特に1.0μm以下であり、しかも比表面積5m 2 /g Especially at 1.0μm or less, yet a specific surface area of 5m 2 / g
以上、特に15m 2 /g以上の微粉末であることが好ましい。 Or more, and particularly preferably a fine powder of more than 15 m 2 / g. その市販品としては、シュタルク社(H.C.S As the commercially available products, Stark, Inc. (H.C.S
tarck社)製「HSグレード」がある。 There is tarck Co.) Ltd., "HS grade".

【0009】炭化ほう素粉末の予備成形体は、炭化ほう素粉末を金型にて一次成形した後、CIP(冷間静水プレス)成形されたものが好適である。 [0009] preform boron carbide powder, after the boron carbide powder was molded primary in the mold, it is preferable that the CIP (cold hydrostatic press) molding. 一次成形は保形できる程度の圧力で行われ、通常は4〜10MPaである。 Primary molding is carried out at a pressure enough to maintain its shape, which is usually a 4~10MPa. また、CIP成形は高圧であることが好ましく、一例は150〜300MPaである。 Further, it is preferable that CIP molding is high, an example is 150~300MPa. あれば十分である。 It is sufficient.

【0010】焼結は、アルゴン、ヘリウム等の希ガス、 [0010] sintering, argon, rare gases such as helium,
一酸化炭素、水素等の非酸化性雰囲気中で行われる。 Carbon monoxide, is carried out in a non-oxidizing atmosphere such as hydrogen. これらの中でも、アルゴン雰囲気は、取扱性、安全性の点から好適である。 Among them, argon is preferred from the handleability, safety points.

【0011】本発明においては、非酸化性雰囲気中、2 [0011] In the present invention, in a non-oxidizing atmosphere, 2
200℃をこえる最終焼結温度で焼結されるが、重要なことは、雰囲気温度が2150℃から2200℃の間においては、昇温速度を5〜100℃/hr、好ましくは10〜75℃/hrとすることである。 Although sintered at a final sintering temperature exceeding 200 ° C., importantly, as between ambient temperature is 2200 ° C. from 2150 ° C., the heating rate 5 to 100 ° C. / hr, preferably from 10 to 75 ° C. is that it / hr. 昇温速度が5℃ Heating rate 5 ° C.
/hr未満では、十分に高い緻密化品を製造するのに時間がかかりすぎ、また100℃/hr超では、上記の外皮先行焼結が顕著となって、十分に高い緻密化品を製造することができなくなる。 It is less than / hr, takes too much time to produce a sufficiently high densification products, also in the 100 ° C. / hr greater than the above-mentioned outer skin prior sintering becomes remarkable, to produce a sufficiently high densification products it can not be. 温度2150℃から2200 Temperature 2150 ℃ from 2200
℃の間における昇温は、等速で行うことが特に好ましい。 Heating between ℃ is particularly preferably carried out at a constant speed.

【0012】本発明においては、温度2150℃に達するまでの昇温速度と、温度2200℃をこえる最終焼結温度にするまでの昇温速度については、特に制約はない。 In the present invention, the heating rate to reach a temperature of 2150 ° C., the heating rate up to a final sintering temperature exceeding the temperature 2200 ° C. is not particularly limited. 例えば、前者については400〜1200℃/h For example, the former 400 to 1200 ° C. / h
r、後者については5〜100℃/hrの速度で昇温することができる。 r, the latter can be heated at a rate of 5 to 100 ° C. / hr.

【0013】本発明における最終焼結温度としては、2 [0013] As a final sintering temperature in the present invention, 2
200℃をこえ2300℃までの任意の温度であることが好ましく、特に2220〜2250℃が好適である。 Is preferably any temperature up to 2300 ° C. exceed 200 ° C., in particular from 2,220 to 2,250 ° C. are preferred.
最終焼結温度が2300℃をこえると異常な粒成長が起こりやすく、強度低下を招く恐れがある。 Final sintering temperature is likely to occur abnormal grain growth exceeds 2300 ° C., which may cause reduction in strength.

【0014】 [0014]

【実施例】以下、実施例、比較例をあげて更に具体的に本発明を説明する。 EXAMPLES The following examples will be described in more detail with the present invention by way of comparative examples.

【0015】実施例1〜3 比較例1〜3 炭化ほう素粉末(H.C.Starck社「HSグレード」)60gを、直径52mm円筒に入れ、シリンダーにて4.9MPaでプレス加圧して一次成形体を製造した。 [0015] Example 1-3 Comparative Example 1-3 boron carbide powder (H.C.Starck Inc. "HS grade") 60 g, placed in diameter 52mm cylindrical, primary by applying press-in 4.9MPa at a cylinder to produce a molded body. 次いで、これをCIP(冷間静水圧プレス)により面圧265MPaをかけ、円柱状の予備成形体を成形した。 This was then subjected to surface pressure 265MPa by CIP (cold isostatic press), it was molded a cylindrical preform. これを黒鉛るつぼ内に入れ、常圧のアルゴン雰囲気下、焼結炉(富士電波社製:FVS−R−80/80 The mixture was placed in a graphite crucible under an argon atmosphere at normal pressure, sintering furnace (Fuji Telecommunications Corporation: FVS-R-80/80
FRET−20)にて表1に示す条件で焼結を行った。 The sintering was carried out under the conditions shown in Table 1 in FRET-20).
なお、最終焼結温度に達した後は、温度調節電源を切り、アルゴン雰囲気下で自然冷却をした。 Incidentally, after reaching the final sintering temperature, turn off the temperature control power, and the natural cooling under an argon atmosphere.

【0016】得られた常圧焼結体について、アルキメデス法による密度、及び焼結体内部から3×4×36mm [0016] For the obtained Sintered body density by Archimedes method, and 3 × 4 × 36 mm from the inside the sintered body
の試片を切り出し、JISR1601に準拠して3点曲げ強度を測定した。 Cut out the coupons was measured three-point bending strength in compliance with JISR1601. それらの結果を表1に示す。 The results are shown in Table 1.

【0017】 [0017]

【表1】 [Table 1]

【0018】 [0018]

【発明の効果】本発明によれば、高緻密かつ高曲げ強度であり、しかも焼結助剤成分の残留のない炭化ほう素常圧焼結体を得ることができる。 According to the present invention, higher density and a high flexural strength, it is possible to obtain a residual free boron carbide Mototsune sintered body of the sintering auxiliary component.

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 炭化ほう素粉末の予備成形体を非酸化性雰囲気中で常圧焼結するにあたり、温度2150℃から2200℃の間の昇温速度を5〜100℃/hrとして昇温した後、更に2200℃をこえる最終焼結温度までに温度を高めることを特徴とする炭化ほう素常圧焼結体の製造方法。 Upon 1. A to pressureless sintering the preform boron carbide powder in a non-oxidizing atmosphere, the temperature was raised heating rate between 2200 ° C. the temperature 2150 ° C. as 5 to 100 ° C. / hr after, the method for manufacturing the boron Mototsune sintered body further characterized by increasing the temperature to the final sintering temperature exceeding 2200 ° C..
JP30487199A 1999-10-27 1999-10-27 Method for manufacturing boron carbide atmospheric sintered compact Pending JP2001122665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30487199A JP2001122665A (en) 1999-10-27 1999-10-27 Method for manufacturing boron carbide atmospheric sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30487199A JP2001122665A (en) 1999-10-27 1999-10-27 Method for manufacturing boron carbide atmospheric sintered compact

Publications (1)

Publication Number Publication Date
JP2001122665A true true JP2001122665A (en) 2001-05-08

Family

ID=17938290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30487199A Pending JP2001122665A (en) 1999-10-27 1999-10-27 Method for manufacturing boron carbide atmospheric sintered compact

Country Status (1)

Country Link
JP (1) JP2001122665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524108A (en) * 2004-12-20 2008-07-10 ジョージア・テック・リサーチ・コーポレーション Through the pressureless sintering and post hip, it has been improved density and hardness b4c
JP2008535769A (en) * 2005-04-11 2008-09-04 ジョージア・テック・リサーチ・コーポレーションGeorgia Tech Research Corporation Boron carbide construction material and manufacturing method thereof
US7517491B2 (en) 2003-06-12 2009-04-14 Georgia Tech Research Corporation Processes and methods of making boron carbide
KR101166723B1 (en) * 2010-03-26 2012-07-19 한국세라믹기술원 Manufacturing method of high density boroncarbide sintered body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517491B2 (en) 2003-06-12 2009-04-14 Georgia Tech Research Corporation Processes and methods of making boron carbide
US7592279B1 (en) 2003-06-12 2009-09-22 Georgia Tech Research Corporation Boron carbide and boron carbide components
JP2008524108A (en) * 2004-12-20 2008-07-10 ジョージア・テック・リサーチ・コーポレーション Through the pressureless sintering and post hip, it has been improved density and hardness b4c
US8377369B2 (en) 2004-12-20 2013-02-19 Georgia Tech Research Corporation Density and hardness pressureless sintered and post-HIPed B4C
JP2008535769A (en) * 2005-04-11 2008-09-04 ジョージア・テック・リサーチ・コーポレーションGeorgia Tech Research Corporation Boron carbide construction material and manufacturing method thereof
KR101166723B1 (en) * 2010-03-26 2012-07-19 한국세라믹기술원 Manufacturing method of high density boroncarbide sintered body

Similar Documents

Publication Publication Date Title
US4595663A (en) Sintered ceramic shaped article wholly or predominantly of eutectic microstructure constituents
US5122317A (en) Method of superplastically deforming zirconia materials
US5720910A (en) Process for the production of dense boron carbide and transition metal carbides
US4528120A (en) Refractory, electrically conductive, mixed materials containing boron nitride and process for their manufacture
US5139720A (en) Method of producing sintered ceramic material
JPH0930866A (en) Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
US5152940A (en) Method of producing a light-transmitting spinel sintered body
EP0107919A1 (en) Silicon nitride ceramic bodies
US4983340A (en) Method for forming a high density metal boride composite
US4560668A (en) Substantially pore-free shaped articles of polycrystalline silicon carbide, and a process for their manufacture by isostatic hot-pressing
US4719078A (en) Method of sintering compacts
US5607630A (en) Process for the production of fine-grained ceramic bodies molded containing Al2 O3
US4781874A (en) Process for making silicon nitride articles
EP0430654A1 (en) Orthodontic bracket and process for its production
JPH09268072A (en) Production of silicon nitride sintered compact
US5187129A (en) Process for making silicon nitride and powders and articles made therefrom
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
US5541143A (en) Sintered composite of silicon carbide and silicon nitride
JPH07172921A (en) Aluminum nitride sintered material and its production
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
JPH0633112A (en) Production of porous mold material
US7566415B2 (en) Method for manufacturing fully dense metal sheets and layered composites from reactive alloy powders
CN1856379A (en) Method for the manufacturing of sintered metal parts having a densified surface
JPH11139874A (en) Silicon nitride-base ceramics and its production
JPH10338576A (en) Silicon nitride sintered compact and its production