JP6858374B2 - Manufacturing method of high-strength silver sintered body - Google Patents

Manufacturing method of high-strength silver sintered body Download PDF

Info

Publication number
JP6858374B2
JP6858374B2 JP2017235568A JP2017235568A JP6858374B2 JP 6858374 B2 JP6858374 B2 JP 6858374B2 JP 2017235568 A JP2017235568 A JP 2017235568A JP 2017235568 A JP2017235568 A JP 2017235568A JP 6858374 B2 JP6858374 B2 JP 6858374B2
Authority
JP
Japan
Prior art keywords
sintered body
sintering
silver
strength
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017235568A
Other languages
Japanese (ja)
Other versions
JP2019094555A (en
Inventor
佐藤 裕之
裕之 佐藤
上手 康弘
康弘 上手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Original Assignee
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC filed Critical Hirosaki University NUC
Priority to JP2017235568A priority Critical patent/JP6858374B2/en
Publication of JP2019094555A publication Critical patent/JP2019094555A/en
Application granted granted Critical
Publication of JP6858374B2 publication Critical patent/JP6858374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、室温強度の高い高強度銀焼結体の製造方法に関するものである。 The present invention relates to a method for producing a high-strength silver sintered body having high room temperature strength.

近年環境負荷の低減、リサイクル性の向上のため、金属材料においては合金元素の低減が重要視されており、高強度化に当たっても化学組成を従来のものと大きく変えることなく特性を向上させることが求められている。例えば、歯科用材料として用いられる銀インジウム合金においては、インジウムは希少金属でもあって、使用の低減が望まれている。 In recent years, in order to reduce the environmental load and improve recyclability, the reduction of alloying elements has been regarded as important in metal materials, and even when the strength is increased, it is possible to improve the characteristics without significantly changing the chemical composition from the conventional one. It has been demanded. For example, in silver-indium alloys used as dental materials, indium is also a rare metal, and its use is desired to be reduced.

結晶粒を微細化させることによって機械的性質が改善されることはよく知られている。室温における強度と粒径の間には、以下のホールペッチの関係があり、粒径が小さいほど室温強度は高くなる。
[式(1)]

Figure 0006858374
ここで、dは粒径、σは降伏応力、kは定数、σは粒界をもたない単結晶の場合の降伏応力である。It is well known that the mechanical properties are improved by refining the crystal grains. There is the following hole petch relationship between the strength at room temperature and the particle size, and the smaller the particle size, the higher the room temperature strength.
[Equation (1)]
Figure 0006858374
Here, d is the particle size, σ Y is the yield stress, k is a constant, and σ 0 is the yield stress in the case of a single crystal having no grain boundary.

従来の焼結体として、特許文献1−3に開示されたものがある。特許文献1のものは、フェライト相を主体とする粉末とオーステナイト相を主体とする粉末とを所定比率で混合した混合粉末を成形、焼結して製造したステンレス鋼焼結体であるが、粉末を水噴霧法により製造しているために粒径が大きく、このため焼結体のビッカース硬さHvは230程度と、鋼焼結体としては低強度のものである。 As a conventional sintered body, there is one disclosed in Patent Documents 1-3. Patent Document 1 is a stainless steel sintered body produced by molding and sintering a mixed powder obtained by mixing a powder mainly composed of a ferrite phase and a powder mainly composed of an austenite phase in a predetermined ratio. The particle size is large because it is manufactured by the water spray method. Therefore, the Vickers hardness Hv of the sintered body is about 230, which is low strength as a steel sintered body.

特許文献2のものは、フェライト系合金粉末に、平均粒径10μm以下のNi粉末を添加した原料粉末とバインダーからなる組成物を射出成形して、脱バインダー後の成形体を焼結して製造したオーステナイト系ステンレス鋼焼結体であるが、原料粉末の粒径が1μm超と大きいため室温強度が低い。 Patent Document 2 is produced by injection molding a composition consisting of a raw material powder obtained by adding Ni powder having an average particle size of 10 μm or less to a ferrite alloy powder and sintering the molded product after debinding. Although it is an austenite-based stainless steel sintered body, the room temperature strength is low because the particle size of the raw material powder is as large as over 1 μm.

特許文献3のものは、銅等を含む銀粉末にバインダー等を加えて混錬することで得られた銀粘土を、造形したのちに焼成して銀焼結体を製造することが開示されている。このような銀焼結体は、宝飾品や美術工芸品には適するものの、多成分が混合されているので医療用部材としては安全性に懸念が残る。 Patent Document 3 discloses that silver clay obtained by adding a binder or the like to silver powder containing copper or the like and kneading it is molded and then fired to produce a silver sintered body. There is. Although such a silver sintered body is suitable for jewelry and arts and crafts, there remains a concern about its safety as a medical member because it contains a large number of components.

特開平7−109540号公報Japanese Unexamined Patent Publication No. 7-109540 特開2000−129309号公報Japanese Unexamined Patent Publication No. 2000-129309 特許第3274960号公報Japanese Patent No. 3274960

以上のような従来技術の問題に鑑み、本発明は、合金元素やバインダーの添加がなく室温強度が高い高強度銀焼結体の製造方法を提供するためになされたものである。In view of the above problems of the prior art, the present invention has been made to provide a method for producing a high-strength silver sintered body having high room temperature strength without the addition of alloying elements or binders.

上記の課題を解決するためになされた本発明の高強度銀焼結体の製造方法は、水素ガス含有雰囲気中で銀にアーク放電するアークプラズマ強制蒸発法によって平均粒径10〜300nmの超微細銀粉末を製造する第1工程と、
前記超微細銀粉末を加圧しつつ放電プラズマにより200〜500℃に加熱して、焼結後の平均結晶粒径が40〜500nmで室温におけるビッカース硬さが50以上である焼結体を製造する第2工程と、からなることを特徴とするものである。
The method for producing a high-strength silver sintered body of the present invention, which has been made to solve the above problems, is an ultrafine powder having an average particle size of 10 to 300 nm by an arc plasma forced evaporation method in which arc discharge is performed on silver in a hydrogen gas-containing atmosphere. The first step of producing silver powder and
The ultrafine silver powder is heated to 200 to 500 ° C. by discharge plasma while being pressurized to produce a sintered body having an average crystal grain size of 40 to 500 nm after sintering and a Vickers hardness of 50 or more at room temperature. It is characterized by consisting of a second step.

削除Delete

本発明に係る高強度銀焼結体の製造方法は、焼結原料である銀粉末を、水素ガス含有雰囲気中で銀にアーク放電するアークプラズマ強制蒸発法によって製造するので、平均粒径10〜300nmの超微細銀粉末を製造することができる。Method of producing a high strength silver sintered body according to the present invention, silver powder as a sintering material, so prepared by arc plasma forced evaporation of arcing silver in a hydrogen gas-containing atmosphere, an average particle diameter of 10 to An ultrafine silver powder having a diameter of 300 nm can be produced.

また、本発明に係る高強度銀焼結体の製造方法は、前記超微細銀粉末を加圧しつつ放電プラズマにより200〜500℃に加熱するので、焼結後の平均結晶粒径が40〜500nmで室温におけるビッカース硬さが50以上である焼結体を製造することができる。したがって、インジウム、亜鉛、スズなどの合金元素やバインダーを用いることなく、高強度の銀焼結体を製造することができる。Further, in the method for producing a high-strength silver sintered body according to the present invention, the ultrafine silver powder is heated to 200 to 500 ° C. by discharge plasma while being pressurized, so that the average crystal grain size after sintering is 40 to 500 nm. A sintered body having a Vickers hardness of 50 or more at room temperature can be produced. Therefore, a high-strength silver sintered body can be produced without using alloying elements such as indium, zinc, and tin, or a binder.

削除Delete

アークプラズマ強制蒸発法を実施するための超微細銀粉末製造装置の概略構成図である。It is a schematic block diagram of the ultrafine silver powder production apparatus for carrying out the arc plasma forced evaporation method. 放電プラズマ焼結装置の概略構成図である。It is a schematic block diagram of the discharge plasma sintering apparatus. 超微細銀粉末の平均粒径の冷却水温度依存性を示すグラフである。It is a graph which shows the cooling water temperature dependence of the average particle diameter of the ultrafine silver powder. 焼結体のZ軸変位量の焼結保持時間依存性を示すグラフである。It is a graph which shows the sintering holding time dependence of the Z-axis displacement amount of a sintered body. 焼結体の結晶粒度の焼結温度依存性を示すグラフである。It is a graph which shows the sintering temperature dependence of the crystal grain size of a sintered body. 327℃焼結体の各焼結保持時間での結晶粒を示すSEM画像である。6 is an SEM image showing crystal grains at each sintering holding time of a 327 ° C. sintered body. 焼結体のビッカース硬度の焼結保持時間依存性を示すグラフである。It is a graph which shows the Dependence of the Vickers hardness of a sintered body for the sintering holding time. ビッカース硬さと粒径の関係を示す相関図である。It is a correlation diagram which shows the relationship between Vickers hardness and particle size. 焼結保持時間1分での各温度焼結体の引張試験結果を示す図である。It is a figure which shows the tensile test result of each temperature sintered body with a sintering holding time of 1 minute. 各焼結保持時間での327℃焼結体の引張試験結果を示す図である。It is a figure which shows the tensile test result of the 327 ° C. sintered body at each sintering holding time.

以下に、本発明の高強度銀焼結体の製造方法を詳細に説明する。 The method for producing the high-strength silver sintered body of the present invention will be described in detail below.

本発明の高強度銀焼結体用の超微細銀粉末の製造方法は、第1工程において、水素ガス含有雰囲気中で銀にアーク放電するアークプラズマ強制蒸発法によって平均粒径10〜300nmの超微細銀粉末を製造する。The method for producing ultrafine silver powder for a high-strength silver sintered body of the present invention is a method for producing an ultrafine silver powder for a high-strength silver sintered body, in which, in the first step, an arc plasma forced evaporation method in which arc discharge is performed on silver in a hydrogen gas-containing atmosphere causes an average particle size of more than 10 to 300 nm. Manufacture fine silver powder.

図1はアークプラズマ強制蒸発法を実施するための超微細銀粉末製造装置の概略構成図である。図において、ナノ粒子発生室1内には、陽極である水冷銅ハース2とプラズマ電極3が配設されており、両者は電源4を介して接続されている。ナノ粒子発生室1には排気用のロータリーポンプ5と、図示していないArボンベ及び水素ボンベが接続されている。また、ナノ粒子発生室1にはナノ粒子捕集室6が連接されており、ナノ粒子の捕集室6の上部に設けたフィルター7とダイヤフラムポンプ8を介して、ナノ粒子発生室1とナノ粒子捕集室6が接続されて、ガスの循環経路が形成されている。この装置全体は、冷却水により冷却されている。 FIG. 1 is a schematic configuration diagram of an ultrafine silver powder manufacturing apparatus for carrying out the arc plasma forced evaporation method. In the figure, a water-cooled copper hearth 2 and a plasma electrode 3 which are anodes are arranged in the nanoparticle generation chamber 1, and both are connected via a power source 4. An exhaust rotary pump 5 and an Ar cylinder and a hydrogen cylinder (not shown) are connected to the nanoparticle generation chamber 1. Further, a nanoparticle collection chamber 6 is connected to the nanoparticle generation chamber 1, and the nanoparticle generation chamber 1 and the nano are via a filter 7 and a diaphragm pump 8 provided above the nanoparticle collection chamber 6. The particle collection chamber 6 is connected to form a gas circulation path. The entire device is cooled by cooling water.

銀を水冷銅ハース2上に載置して水素ガス含有雰囲気中でアーク放電を行うと、銀は高温に加熱されて、水素イオンが銀中に溶解し再結合して放出されるので、蒸気イオンが放出されてナノ粒子が発生する。この際に放電電流値として、40〜100Aを用いることができる。40A未満では出力が小さく、100Aまでで目的を達することができる
ダイヤフラムポンプ8により吸引されたナノ粒子である超微細銀粉末はフィルター7に捕捉されて回収される。なお、銀として、市販の銀、高純度銀などを用いることができる。また、水素ガス含有雰囲気として、例えばアルゴンガス50%、水素ガス50%の混合ガスを用いることができる。
When silver is placed on a water-cooled copper hearth 2 and an arc discharge is performed in an atmosphere containing hydrogen gas, the silver is heated to a high temperature, and hydrogen ions are dissolved in the silver and recombined and released. Ions are released to generate nanoparticles. At this time, 40 to 100 A can be used as the discharge current value. The output is small below 40 A, and the ultrafine silver powder, which is nanoparticles sucked by the diaphragm pump 8 capable of achieving the target up to 100 A, is captured by the filter 7 and recovered. As the silver, commercially available silver, high-purity silver and the like can be used. Further, as the hydrogen gas-containing atmosphere, for example, a mixed gas of 50% argon gas and 50% hydrogen gas can be used.

アークプラズマ強制蒸発法によって平均粒径が10〜300nmの超微細銀粉末を製造する。粒径が10nm未満とする必要はなく10nm以上で焼結後においても微細な結晶を得ることができるからである。また、300nm以下とするのは、これを超えると焼結後において微細な結晶粒を得ることが困難となって、室温強度の低下をもたらすからである。An ultrafine silver powder having an average particle size of 10 to 300 nm is produced by an arc plasma forced evaporation method. This is because the particle size does not have to be less than 10 nm, and fine crystals can be obtained even after sintering at 10 nm or more. Further, the reason why the nm is set to 300 nm or less is that if it exceeds this, it becomes difficult to obtain fine crystal grains after sintering, which causes a decrease in room temperature strength.

本発明の高強度銀焼結体の製造方法は、第2工程において、前記したようにして取得した超微細銀粉末を加圧しつつ放電プラズマにより200〜500℃に加熱して、焼結後の平均結晶粒径が40〜500nmで室温におけるビッカース硬さが50以上である焼結体を製造する。In the method for producing a high-strength silver sintered body of the present invention, in the second step, the ultrafine silver powder obtained as described above is heated to 200 to 500 ° C. by discharge plasma while being pressurized, and after sintering. A sintered body having an average crystal grain size of 40 to 500 nm and a Vickers hardness of 50 or more at room temperature is produced.

すなわち、超微細銀粉末を、図2に示す放電プラズマ焼結装置を用いて焼結する。当該装置は、真空チャンバー内に円筒状のグラファイトダイを備えている。ダイの内部に前記超微細銀粉末を装入して上下からグラファイトパンチにて加圧しつつパルス電流を流して加熱して超微細銀粉末を焼結する。放電プラズマ焼結装置においては、超微細銀粉末の粒子表面のみの自己発熱による急速昇温が可能なため、粉末の粒成長を抑制して焼結を行うことができるという利点がある。 That is, the ultrafine silver powder is sintered using the discharge plasma sintering apparatus shown in FIG. The device includes a cylindrical graphite die in a vacuum chamber. The ultrafine silver powder is charged into the inside of the die, and the ultrafine silver powder is sintered by heating by passing a pulse current while pressurizing from above and below with a graphite punch. In the discharge plasma sintering apparatus, since it is possible to rapidly raise the temperature of the ultrafine silver powder by self-heating only on the particle surface, there is an advantage that the grain growth of the powder can be suppressed and sintering can be performed.

焼結温度は、200℃〜500℃とする。200℃未満では、焼結強度が弱く密着性の高い焼結体を得ることが困難となるからであり、一方、500℃を超えると結晶粒が粗大化して硬さの低下を招くからである。 The sintering temperature is 200 ° C to 500 ° C. This is because if the temperature is lower than 200 ° C, it becomes difficult to obtain a sintered body having weak sintering strength and high adhesion, while if the temperature exceeds 500 ° C, the crystal grains become coarse and the hardness is lowered. ..

焼結後の平均結晶粒径は、40nm〜500nmとする。40nm未満では、密度の高い焼結体を得ることができないからであり、500nm超では、室温強度の低下が大きくなるからである。また、銀焼結体のビッカース硬さは50未満では、目的を達成することができないので、ビッカース硬さは50以上とする。 The average crystal grain size after sintering is 40 nm to 500 nm. This is because if it is less than 40 nm, a high-density sintered body cannot be obtained, and if it is more than 500 nm, the room temperature strength is significantly reduced. Further, if the Vickers hardness of the silver sintered body is less than 50, the object cannot be achieved, so the Vickers hardness is set to 50 or more.

以下に本発明の実施例について説明する。 Examples of the present invention will be described below.

アークプラズマ強制蒸発法によって、アーク放電電流40〜100A、冷却水温度15℃にて超微細銀粉末を製造した。SEM画像から約300個の球状粒子を選定し、その直径をノギスで測定した。その結果、平均粒径は、アーク放電電流40Aで14.75nm、50Aで12.06nm、80Aで89.1nm、100Aで144.7nmであり、80Aのものが最小であった。また、標準偏差も80Aのものが31.25と最小であり、粒子群は41〜80nmに集中していた。 An ultrafine silver powder was produced by an arc plasma forced evaporation method at an arc discharge current of 40 to 100 A and a cooling water temperature of 15 ° C. About 300 spherical particles were selected from the SEM image, and their diameters were measured with calipers. As a result, the average particle size was 14.75 nm at an arc discharge current of 40 A, 12.06 nm at 50 A, 89.1 nm at 80 A, and 144.7 nm at 100 A, and the one at 80 A was the smallest. In addition, the standard deviation of 80 A was the smallest at 31.25, and the particle groups were concentrated in 41 to 80 nm.

図3には、冷却水温度と平均粒径の関係を示す。冷却水温度10℃で製造したものが平均粒径78.5nmと最も小さいものであった。FIG. 3 shows the relationship between the cooling water temperature and the average particle size. The one produced at a cooling water temperature of 10 ° C. had the smallest average particle size of 78.5 nm.

以上のようにして製造した超微細銀粉末を、図2に示した放電プラズマ焼結装置を用いて焼結した。図4には、圧縮応力60MPaにおける被焼結体の圧縮量、即ちZ軸変位量の焼結温度依存性を示すが、127℃では緻密化進行途中で焼結が終了している。227℃、327℃、427℃、527℃では緻密化が完了し、見かけ上記録された変位は膨張方向への変化を介して約1mmに達していた。 The ultrafine silver powder produced as described above was sintered using the discharge plasma sintering apparatus shown in FIG. FIG. 4 shows the compression amount of the object to be sintered at a compressive stress of 60 MPa, that is, the Z-axis displacement amount depending on the sintering temperature. At 127 ° C., sintering is completed in the middle of densification. At 227 ° C., 327 ° C., 427 ° C., and 527 ° C., densification was completed, and the apparently recorded displacement reached about 1 mm through the change in the expansion direction.

図5には、焼結体の結晶粒径の焼結時間依存性を示す。結晶粒の大きさは、焼結温度227℃、焼結時間1分では最小の結晶粒径243.7nmとなり、焼結温度527℃、焼結時間15分で最大の結晶粒径8.5μmとなった。なお、出発材料である工業用銀の平均結晶粒径は41.6μmであり、結晶粒の大きさを1/17倍にすることができた。図6には、327℃焼結材の各保持時間でのSEM画像を参考として示す。 FIG. 5 shows the dependence of the crystal grain size of the sintered body on the sintering time. The size of the crystal grains is the minimum crystal grain size of 243.7 nm at a sintering temperature of 227 ° C. and a sintering time of 1 minute, and the maximum crystal grain size of 8.5 μm at a sintering temperature of 527 ° C. and a sintering time of 15 minutes. became. The average crystal grain size of industrial silver, which is the starting material, was 41.6 μm, and the size of the crystal grains could be increased 1/17 times. FIG. 6 shows an SEM image at each holding time of the 327 ° C. sintered material for reference.

図7には各温度での焼結体のビッカース硬さを、図8にはビッカース硬さと結晶粒径の関係を示す。焼結温度227℃、保持時間5分で120.7MPaの最高硬さとなり、焼結温127℃、保持時間1分で67.15MPaの最低硬さを示した。最高硬さは、出発材料の硬さ32.37MPaと比較して約3.7倍の硬さを示した。全体として焼結時間が増加すると硬さが減少し、結晶粒径の大きさに関係なくビッカース硬さ70〜80MPa程度で停滞する傾向にあった。 FIG. 7 shows the Vickers hardness of the sintered body at each temperature, and FIG. 8 shows the relationship between the Vickers hardness and the crystal grain size. The maximum hardness was 120.7 MPa at a sintering temperature of 227 ° C. and a holding time of 5 minutes, and the minimum hardness was 67.15 MPa at a sintering temperature of 127 ° C. and a holding time of 1 minute. The maximum hardness was about 3.7 times higher than the hardness of the starting material, 32.37 MPa. As a whole, as the sintering time increased, the hardness decreased, and the Vickers hardness tended to stagnate at about 70 to 80 MPa regardless of the size of the crystal grain size.

図9には、焼結時間1分での各温度焼結材の室温引張試験結果を示す。327℃以下での焼結体は、1%程度の歪みで破断した。427℃焼結体では、引張強さ249MPa,破断伸び16%に達した。527℃焼結体では、引張強さ227MPa,破断伸び19%であった。 FIG. 9 shows the results of a room temperature tensile test of each temperature sintered material at a sintering time of 1 minute. The sintered body at 327 ° C. or lower broke with a strain of about 1%. In the 427 ° C. sintered body, the tensile strength reached 249 MPa and the breaking elongation reached 16%. In the 527 ° C. sintered body, the tensile strength was 227 MPa and the breaking elongation was 19%.

図10には、327℃での各保持時間焼結体の室温引張試験結果を示す。焼結時間が長くなるほど延性の向上が観察され、焼結時間30分で伸びは9.3%となった。引張強度は、焼結時間5分で最高の332MPa、焼結時間30分で最低の290MPaであった。 FIG. 10 shows the results of a room temperature tensile test of each holding time sintered body at 327 ° C. An improvement in ductility was observed as the sintering time increased, and the elongation was 9.3% at a sintering time of 30 minutes. The tensile strength was 332 MPa, which was the highest when the sintering time was 5 minutes, and 290 MPa, which was the lowest when the sintering time was 30 minutes.

引張強度332MPaはアルミニウム1050Aの引張強度65〜95MPaと比較しても約4.1倍である。以上のように、本発明に係る高強度銀焼結材は、合金元素を含有しない高強度高延性な金属材料として、特に歯科用材料などの分野において工業的価値大なるものである。 The tensile strength of 332 MPa is about 4.1 times that of the tensile strength of aluminum 1050 A of 65 to 95 MPa. As described above, the high-strength silver sintered material according to the present invention has great industrial value as a high-strength and high-ductility metal material containing no alloying elements, especially in the field of dental materials and the like.

1 ナノ粒子発生室
2 水冷銅ハース
3 プラズマ電極
4 電源
5 ロータリーポンプ
6 ナノ粒子捕集室
7 フィルター
8 ダイヤフラムポンプ
1 Nanoparticle generation chamber 2 Water-cooled copper hearth 3 Plasma electrode 4 Power supply 5 Rotary pump 6 Nanoparticle collection chamber 7 Filter 8 Diaphragm pump

Claims (1)

水素ガス含有雰囲気中で銀にアーク放電するアークプラズマ強制蒸発法によって平均粒径10〜300nmの超微細銀粉末を製造する第1工程と、
前記超微細銀粉末を加圧しつつ放電プラズマにより200〜500℃に加熱して、焼結後の平均結晶粒径が40〜500nmで室温におけるビッカース硬さが50以上である焼結体を製造する第2工程と、からなることを特徴とする高強度銀焼結体の製造方法。
The first step of producing ultrafine silver powder having an average particle size of 10 to 300 nm by the arc plasma forced evaporation method in which silver is arc-discharged in a hydrogen gas-containing atmosphere.
The ultrafine silver powder is heated to 200 to 500 ° C. by discharge plasma while being pressurized to produce a sintered body having an average crystal grain size of 40 to 500 nm after sintering and a Vickers hardness of 50 or more at room temperature. A method for producing a high-strength silver sintered body, which comprises a second step.
JP2017235568A 2017-11-20 2017-11-20 Manufacturing method of high-strength silver sintered body Active JP6858374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017235568A JP6858374B2 (en) 2017-11-20 2017-11-20 Manufacturing method of high-strength silver sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017235568A JP6858374B2 (en) 2017-11-20 2017-11-20 Manufacturing method of high-strength silver sintered body

Publications (2)

Publication Number Publication Date
JP2019094555A JP2019094555A (en) 2019-06-20
JP6858374B2 true JP6858374B2 (en) 2021-04-14

Family

ID=66971044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017235568A Active JP6858374B2 (en) 2017-11-20 2017-11-20 Manufacturing method of high-strength silver sintered body

Country Status (1)

Country Link
JP (1) JP6858374B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156209A (en) * 1984-08-27 1986-03-20 Natl Res Inst For Metals Production of ultrafine noble metal particle
JP2843900B2 (en) * 1995-07-07 1999-01-06 工業技術院長 Method for producing oxide-particle-dispersed metal-based composite material
JP4963586B2 (en) * 2005-10-17 2012-06-27 株式会社日清製粉グループ本社 Method for producing ultrafine particles
JP2015098624A (en) * 2013-11-19 2015-05-28 国立大学法人弘前大学 Method for producing ultrafine al alloy powder and high-strength al alloy molded product and ultrafine al alloy powder and high-strength al alloy molded product

Also Published As

Publication number Publication date
JP2019094555A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
CN104372230B (en) High-strength high-toughness ultrafine-grained high-entropy alloy and preparation method thereof
CN107427913B (en) Polycrystalline tungsten and tungsten alloy sintered body and method for producing same
CN109023013B (en) Preparation method of corrosion-resistant high-strength AlCoCrFeNi-Cu high-entropy alloy
Ota et al. Application of high pressure gas jet mill process to fabricate high performance harmonic structure designed pure titanium
JPH0925526A (en) Production of oxide grain dispersed metal matrix composite
JP5550013B2 (en) Magnetic nanocomposite and method for producing the same
JP2005314806A (en) Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof
JP7250374B2 (en) Spherical niobium alloy powder, product containing same, and method for producing same
Shon et al. Effects of various sintering methods on microstructure and mechanical properties of CP-Ti powder consolidations
CN105838911A (en) Method for preparing alumina dispersion strengthened copper
KR102373916B1 (en) Polycrystalline tungsten sintered compact, polycrystalline tungsten alloy sintered compact, and method for manufacturing same
CN103990792B (en) A kind of method of preparing particle strengthening metal-base nanometer composite material
Ružić et al. Synthesis and characterization of Cu-ZrB2 alloy produced by PM techniques
JP2014169471A (en) Ni-BASED INTERMETALLIC COMPOUND SINTERED BODY, AND PRODUCING METHOD THEREFOR
JP6858374B2 (en) Manufacturing method of high-strength silver sintered body
Kang et al. Properties and rapid low-temperature consolidation of nanocrystalline Fe-ZrO 2 composite by pulsed current activated sintering
JP2019123638A (en) Sintering mold and its production method
JP6089186B2 (en) Ultra-fine powder, high-strength steel sintered body, and production method thereof
Yavuzer et al. The effect of milling time on microstructure and wear behaviours of AISI 304 stainless steel produced by powder metallurgy
JP2008007793A (en) Sintered high-strength magnesium alloy, and its manufacturing method
JP2019019026A (en) Sintering mold, and method for manufacturing the same
Jakubowcz et al. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering
JP2020186420A (en) Manufacturing method of electrode, and electrode
Nagae et al. Microstructure and mechanical properties of gas atomized aluminum alloy powder compact densified by pulsed current pressure sintering process
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210316

R150 Certificate of patent or registration of utility model

Ref document number: 6858374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250