JPS58129355A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS58129355A
JPS58129355A JP57011639A JP1163982A JPS58129355A JP S58129355 A JPS58129355 A JP S58129355A JP 57011639 A JP57011639 A JP 57011639A JP 1163982 A JP1163982 A JP 1163982A JP S58129355 A JPS58129355 A JP S58129355A
Authority
JP
Japan
Prior art keywords
pulse
contact
sample
signal
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57011639A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishikawa
潔 石川
Hiroshi Kanda
浩 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57011639A priority Critical patent/JPS58129355A/en
Publication of JPS58129355A publication Critical patent/JPS58129355A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a clear picture through removal of trailing produced thanks to a reflecting signal from a lens interface, by applying a compensating pulse to a contact making contact with a sample electrode. CONSTITUTION:A piezo-electric film 2, which is a sample and positioned between the nip formed by electrodes 3, is located on a spherical lens 1 of an ultrasonic microscope. A tip of a contact 16 attached to a ring 15 formed of an insulating material makes contact with the electrode 3, and a RF pulse signal 5 is applied through the contact 16. A terminal 17, piercing the ring 15 through a side surface, makes contact with the contact 16, and a compensating pulse 18 is applied to the terminal 17. The compensating pulse 18 is synthetized with the RF pulse 5 which removes trailing of a pulse waveform produced by reflection from a lens interface.

Description

【発明の詳細な説明】 本発明は超音波顕微値、特に観察試料に応力を加えるこ
とのできる超音波顕微端に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ultrasonic microscopic values, particularly to an ultrasonic microscopic end capable of applying stress to an observation sample.

近年IGHzに及ぶ超高周波の音波の発生検出が可能と
なり几ので、水中で約1μmの青波長が実現できること
になり、その結果、高い分解能の音波撮償装置が得られ
るようになった。即ち、凹面レンズを用いて集束音波ビ
ームを作り、1μmに及ぶ高い分解能を実現するのであ
る。
In recent years, it has become possible to generate and detect ultra-high frequency sound waves up to IGHz, making it possible to realize a blue wavelength of approximately 1 μm underwater, and as a result, it has become possible to obtain a high-resolution sound wave imaging device. That is, a concave lens is used to create a focused sound wave beam, achieving a high resolution of 1 μm.

上記ビーム中に試料をそう人し、試料による反射超音波
を検出して試料の微細領域の弾性的性質を解明したり、
或は試料を機械的に2次元に走査しながら、この信号の
強WILfニブラウン管の輝度信号として表示すれば、
試料の微細構造を拡大してみることができる。
By placing a sample in the beam and detecting the ultrasonic waves reflected by the sample, we can elucidate the elastic properties of minute regions of the sample.
Alternatively, if the sample is mechanically scanned in two dimensions and the intensity of this signal is displayed as a brightness signal of a CRT,
You can zoom in on the fine structure of the sample.

第1図は、その超音波顕微−の主要構成部を示す図であ
る。超音波の集束及び送受は球面レンズ1により行って
いるが、その構造は円柱状の熔融石英等をもちいた物質
の一面を光学研磨し、その上に圧電薄膜(Zr1012
1−上下電極3によリハさむ、このようにサンドウィッ
チ構造になっている圧電薄膜2に、パルス発振器4から
発生された)5ルス5を印加して、超音波6を発生させ
る。また、他端部は口径0.1■φ〜1.0■−程度の
凹面状の半球穴が形成されており、この半球穴と試料と
の間には、超音波6を試料7に伝播させるための媒質(
例えば水)8が満されている。
FIG. 1 is a diagram showing the main components of the ultrasonic microscope. The focusing, transmission and reception of ultrasonic waves is performed by a spherical lens 1, whose structure consists of optically polishing one side of a material made of cylindrical fused silica, etc., and then placing a piezoelectric thin film (Zr1012) on top of it.
1-A pulse 5 (generated from a pulse oscillator 4) is applied to the piezoelectric thin film 2 having a sandwich structure, which is recirculated by the upper and lower electrodes 3, to generate an ultrasonic wave 6. In addition, a concave hemispherical hole with a diameter of about 0.1 mm to 1.0 mm is formed at the other end, and between this hemispherical hole and the sample, the ultrasonic waves 6 are transmitted to the sample 7. medium for making (
For example, water) 8 is filled.

圧電薄膜2によって発生した超音波6は円柱の中を平面
波となって伝播する。この平面波が半球穴に達すると石
英(音速6000m/s)と水(音速1500m/lり
との音速の差により屈折作用が生じ。
Ultrasonic waves 6 generated by the piezoelectric thin film 2 propagate in the cylinder as plane waves. When this plane wave reaches the hemispherical hole, refraction occurs due to the difference in sound speed between quartz (sound speed 6000 m/s) and water (sound speed 1500 m/l).

試料7面上に集束した超音波6を照射することができる
。逆に試料7から反射されてくる超音波は球面レンズに
より集音整相され、平面波となって圧電薄膜2に達し、
ここでRF信号9に変換される。このRF信号’l受信
器10で受信し、ζこでダイオード検波してビデオ信号
11に変換し、CRTディスプレイ120入力信号とし
て用いている。
Focused ultrasonic waves 6 can be irradiated onto the surface of the sample 7. Conversely, the ultrasound reflected from the sample 7 is collected and phased by a spherical lens, becomes a plane wave, and reaches the piezoelectric thin film 2.
Here, it is converted into an RF signal 9. This RF signal is received by a receiver 10, detected by a diode and converted into a video signal 11, which is used as an input signal to a CRT display 120.

この様に構成され友装置において、試料7が試料台駆動
電源13によりx −y平面内で2次元に走査している
と試料の走査にともなう試料面からの反射の強弱が2次
元的に081面12に表示される。
In the companion device configured in this way, when the sample 7 is two-dimensionally scanned within the x-y plane by the sample stage drive power supply 13, the intensity of reflection from the sample surface as the sample is scanned is two-dimensionally 081. displayed on screen 12.

第2図(a)ilt、この様な従来構成で、ある繰り返
し周期11のRFパルス信号を印加し次ときのビデオ領
域での検出信号を示したものである。ここで横軸は時間
軸を、たて軸は信号強度を示している。Aは印加しt几
Fパルスを示し、Bflレンズ界面からの反射信号を、
またch試料からの反射信号を示している。
FIG. 2(a) ilt shows the detection signal in the video area when an RF pulse signal with a certain repetition period of 11 is applied in such a conventional configuration. Here, the horizontal axis represents the time axis, and the vertical axis represents the signal strength. A shows the applied tF pulse, and the reflected signal from the Bfl lens interface is
It also shows the reflected signal from the ch sample.

従来の撮偉装置では、この所望の反射信号CをBと弁別
する友めに印加パルスの継続時間tdy出来るだけ短か
くし、B及びC信号が重らないように設定し、C信号の
みをタイムゲート(図2(c)参照で堆り出す構成を採
用しているう しかしながら、印加パルスの継続時間tdt短かくする
よう努めてもパルス発振器4から球面レンズ!の上面に
設けられ次圧電薄膜2までの間の回路中に存在する静電
容量C+誘導インダクタンスLなどにより、パルス波形
が影響をうけ、圧電薄膜に印加されるパルス波形は第3
図(荀に示すような尾側のあるもの罠なってしまうため
に、第3図(b)に示す如く、レンズ界面からの反射信
号Bと試料からの反射信号Cとは重なり合ってしまうた
めにC信号のみをダイムグートで取り出そうとしても、
B信号が含まれてしまう結果、鮮明な画儂を得ることは
むづかしい。
In conventional imaging equipment, in order to distinguish this desired reflected signal C from B, the duration of the applied pulse tdy is set as short as possible, the B and C signals do not overlap, and only the C signal is timed. However, even if efforts are made to shorten the duration time tdt of the applied pulse, the pulse oscillator 4 is provided on the top surface of the spherical lens!The next piezoelectric thin film 2 The pulse waveform is affected by the capacitance C + inductive inductance L that exists in the circuit between
Because something on the tail side as shown in Figure 3(b) becomes a trap, the reflected signal B from the lens interface and the reflected signal C from the sample overlap, as shown in Figure 3(b). Even if you try to extract only the C signal with a dimegut,
As a result of the B signal being included, it is difficult to obtain a clear image.

本発F!Aハ、この問題点を解決するtめになされたも
ので、印加パルスの波形の尾側を取りのぞくことを可能
にし次ものである。
Original F! A. This was developed to solve this problem, and makes it possible to remove the tail of the waveform of the applied pulse.

第3図に本発明の原理を示す。(→に示すような波形を
もつRFパルス波形A波に対して、(b)に示すような
R,F信号波形A、を印加すると、(C)に示すような
RF信号波形になることは周知の通りである。
FIG. 3 shows the principle of the present invention. (If you apply the R, F signal waveform A shown in (b) to the RF pulse waveform A wave with the waveform shown in →, the RF signal waveform will become as shown in (C). As is well known.

し友がって、このような操作を、回路系内に存在する静
電容量CやインダクタンスLの影響の最も少ない圧電薄
[2の近傍で行うことにより、RFパルス波形の尾側は
除去できる。
Therefore, the tail side of the RF pulse waveform can be removed by performing this operation near the piezoelectric thin film [2] where the influence of the capacitance C and inductance L existing in the circuit system is minimal. .

なお、第3図では搬送たるf’LP波形は省略しである
In addition, in FIG. 3, the f'LP waveform serving as a carrier is omitted.

第4図は、上述のパルス波形の尾側を除去する機能を設
けた球面レンズ近傍の詳細構造を示した図である。
FIG. 4 is a diagram showing the detailed structure in the vicinity of the spherical lens provided with the function of removing the tail side of the pulse waveform described above.

球面し/ズlの上面には圧電薄膜2が、電極3によりサ
ンドウィッチ構造になっている。超音波送受信部がある
。これには絶縁物で成形されたり/グ15に取りつけら
れ几接触子16が取りつけてあり、その先端部は電極3
に接触してあり、こ0M!触子16を通じて電極3にパ
ルス信号5が印加されるようになってiる。
A piezoelectric thin film 2 is formed on the upper surface of the spherical groove 1 with an electrode 3 forming a sandwich structure. There is an ultrasonic transmitter and receiver. A contactor 16 is attached to the contactor 16, which is molded from an insulator and attached to a wire 15, the tip of which is connected to the electrode 3.
I have been in contact with this and it is 0M! A pulse signal 5 is applied to the electrode 3 through the probe 16.

また、接触子16には側面より端子17がリング15を
貫通して接触している構造になっている。
Further, the contactor 16 has a structure in which a terminal 17 penetrates through the ring 15 and comes into contact with the contactor 16 from the side.

この端子17にはパルス信号5の尾側を除去するための
信号18を印加されている。
A signal 18 for removing the tail side of the pulse signal 5 is applied to this terminal 17.

このような構成から、電極3の極〈近傍において、信号
5と18とは、合成される九めに、電極3には尾側が完
全に除去された波形の信号が印加されるようになり、短
パルス化が実現できる。
With this configuration, in the vicinity of the pole of electrode 3, signals 5 and 18 are combined, and a waveform signal with the caudal side completely removed is applied to electrode 3. Shorter pulses can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波顕微値の概略構成を示す図、第2図は信
号堆込みのタイミングを示した図、第3図は本発明の詳
細な説明する図、第4図は本発明fJ 3 図 %4  図
Fig. 1 is a diagram showing the schematic configuration of ultrasonic microscopic values, Fig. 2 is a diagram showing the timing of signal accumulation, Fig. 3 is a diagram explaining the details of the present invention, and Fig. 4 is a diagram showing the fJ 3 of the present invention. Figure%4 Figure

Claims (1)

【特許請求の範囲】[Claims] 音波伝搬体と、この伝搬体の端部に形成され、かつ所定
焦点を有する音波レンズとからなり、上記焦点近傍に設
けられた所定試料からのじよう電音波により、上記試料
を撮影する超音波顕微端において、圧電薄膜励振パルス
に補償パルスを合成して印加する手段を具備したことを
特徴とする超音波顕微値。
Ultrasonic waves consist of a sound wave propagation body and a sound wave lens formed at the end of this propagation body and having a predetermined focus, and image the sample using electric waves emitted from a predetermined sample provided near the focus. An ultrasonic microscopic value characterized by comprising means for combining and applying a compensation pulse to a piezoelectric thin film excitation pulse at a microscopic end.
JP57011639A 1982-01-29 1982-01-29 Ultrasonic microscope Pending JPS58129355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011639A JPS58129355A (en) 1982-01-29 1982-01-29 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011639A JPS58129355A (en) 1982-01-29 1982-01-29 Ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS58129355A true JPS58129355A (en) 1983-08-02

Family

ID=11783508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011639A Pending JPS58129355A (en) 1982-01-29 1982-01-29 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS58129355A (en)

Similar Documents

Publication Publication Date Title
EP0084174B1 (en) Ultrasonic microscope
GB1361999A (en) Ultrasonic examination apparatus
JPS58129355A (en) Ultrasonic microscope
JPS6070350A (en) Focal distance confirming method and apparatus therefor
JPS634142B2 (en)
SU832449A1 (en) Scanning acoustic microscope
JPH0158458B2 (en)
JPS585646A (en) Ultrasonic microscope
JPS59188551A (en) Ultrasonic microscope
JPS61120962A (en) Acoustic lens for ultrasonic microscope
JPH0419500Y2 (en)
JPH07146279A (en) Release detection method and ultrasonic microscope applying the method
JPS5831200Y2 (en) ultrasonic focusing lens
JPH0155408B2 (en)
JPS58118958A (en) Ultrasonic microscope
CN109374739A (en) A kind of ultrasonic microscope and method based on annular surface battle array
JPH0323864B2 (en)
JPH0232579B2 (en)
JPS59163561A (en) Acoustic wave probe of ultrasonic microscope
JPH0339265B2 (en)
JPS58132655A (en) Ultrasonic microscope
JPS6162857A (en) High frequency ultrasonic probe
JPS585648A (en) Ultrasonic microscope
JPH0235937B2 (en)
JPH0457975B2 (en)