JPH0232579B2 - - Google Patents

Info

Publication number
JPH0232579B2
JPH0232579B2 JP56170031A JP17003181A JPH0232579B2 JP H0232579 B2 JPH0232579 B2 JP H0232579B2 JP 56170031 A JP56170031 A JP 56170031A JP 17003181 A JP17003181 A JP 17003181A JP H0232579 B2 JPH0232579 B2 JP H0232579B2
Authority
JP
Japan
Prior art keywords
signal
sample
reflected
lens
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56170031A
Other languages
Japanese (ja)
Other versions
JPS5871455A (en
Inventor
Hiroshi Kanda
Kyoshi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP56170031A priority Critical patent/JPS5871455A/en
Publication of JPS5871455A publication Critical patent/JPS5871455A/en
Publication of JPH0232579B2 publication Critical patent/JPH0232579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Description

【発明の詳細な説明】 本発明は、超音波エネルギを用いた撮像装置、
特に超音波顕微鏡に関わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an imaging device using ultrasonic energy;
Particularly related to ultrasound microscopy.

近年1GHzに及び超高周波の音波の発生検出が
可能となつたので、水中の約1μmの音波長が実
現出来る事になり、その結果、分解能1μmに及
ぶ高い分解能の音波撮像装置が得られるようにな
つた(R.A.レモン氏とC.F.クウエーツ氏のA
Scanning Aconstic Microscopeと題するIEEE
cat.No.73CH14829SU PP423−426、1973年所載
の文献)。即ち凹面レンズを用いて約1μm径に絞
つた超音波ビームを試料にあて、試料の微視的な
弾性的性質で定まる反射波を同一レンズで検出す
るのである。試料を機械的に2次元に走査しなが
ら、この反射強度を機械走査に同期してブラウン
管の輝度信号として表示すれば、試料の微視的領
域を拡大してみる事が出来る。
In recent years, it has become possible to generate and detect ultra-high frequency sound waves of up to 1 GHz, making it possible to realize sound wavelengths of approximately 1 μm underwater, and as a result, it has become possible to obtain high-resolution sonic imaging devices with a resolution of 1 μm. Natsuta (A of Mr. RA Lemon and Mr. CF Kuwait)
IEEE entitled Scanning Aconstic Microscope
cat.No.73CH14829SU PP423−426, literature published in 1973). That is, an ultrasonic beam focused to a diameter of about 1 μm is applied to the sample using a concave lens, and the reflected waves determined by the microscopic elastic properties of the sample are detected using the same lens. By mechanically scanning the sample in two dimensions and displaying the reflected intensity as a brightness signal on a cathode ray tube in synchronization with the mechanical scanning, it is possible to enlarge the microscopic area of the sample.

ところで、この様な装置の分解能には、超音波
の伝播方向の深度分解能Δρと超音波の伝播方向
と垂直な面内の方位分解能Δγとがあり、いずれ
も使用した超音波の波長λとレンズの明るさを表
わすFナンバによつて定り、 Δγ=λ・F (1) Δρ=2λ・F2 (2) で与えられる。
By the way, the resolution of such a device includes depth resolution Δρ in the ultrasound propagation direction and azimuth resolution Δγ in a plane perpendicular to the ultrasound propagation direction, both of which are dependent on the wavelength λ of the ultrasound used and the lens. It is determined by the F number representing the brightness of , and is given by Δγ=λ・F (1) Δρ=2λ・F 2 (2).

作成可能なレンズのFナンバは0.7程度である
から、1GHzの超音波を用いると水中(1500m/
s)でΔγ〜1μm、Δρ〜1.5μmとなる。
The F number of the lens that can be made is about 0.7, so if you use 1GHz ultrasonic waves, you can make it underwater (1500m/
s), Δγ ~ 1 μm and Δρ ~ 1.5 μm.

ところで、超音波顕微鏡の最大の撮像対象であ
るICやLSIでは、更に秀れた深度分解能が要求さ
れる。周知の様に、ICではその平面的なパター
ンより深さ方向のパターンの方が細かい事が多い
からである。実際、代表的なICは1μm〜3μmの
多層構造になつているが、焦点の位置をICの表
面より内部にあわせ、これ等の層を各々独立に非
破壊で観察する事は、上述の水中で2μmといつ
た深度分解能ではとうてい不可能である。という
のは、ICの材料であるシリコンやアルミニウム
等の金属はその音速は水より大きいので1GHzの
超音波を用いても深度分解能は4〜10μmにすぎ
ないからである。この様な事情に鑑み、深度分解
能の大巾に改善する方法として干渉法が提案され
ている(特願昭55−58707(特開昭56−155847)超
音波撮像装置)。即ち、光学顕微鏡と同一の原理
で、試料の種類や機械走査によつて変動しない参
照音波を音響的に又は電気的に発生させ、これと
試料からの反射音波を干渉させるのである。かく
すれば深度分解能は Δρ≒λ/5 (3) となり前述の方式(通常振巾法と呼ばれている)
より5倍改善される。
By the way, even better depth resolution is required for ICs and LSIs, which are the most important imaging targets for ultrasound microscopes. This is because, as is well known, in ICs, the pattern in the depth direction is often finer than the planar pattern. In fact, typical ICs have a multilayer structure of 1 μm to 3 μm, but it is difficult to focus on the inside of the IC from the surface and observe each of these layers independently and non-destructively. This would be impossible with a depth resolution of 2 μm. This is because the sound speed of metals such as silicon and aluminum, which are IC materials, is higher than that of water, so even if 1 GHz ultrasonic waves are used, the depth resolution is only 4 to 10 μm. In view of these circumstances, an interferometry method has been proposed as a method for greatly improving the depth resolution (Japanese Patent Application No. 58707-1983 (Japanese Patent Application Laid-Open No. 56-155847) Ultrasonic Imaging Apparatus). That is, using the same principle as an optical microscope, a reference sound wave that does not vary depending on the type of sample or mechanical scanning is generated acoustically or electrically, and this is caused to interfere with the sound waves reflected from the sample. In this way, the depth resolution becomes Δρ≒λ/5 (3) and the method described above (usually called the amplitude method)
This is a 5x improvement.

1GHzの超音波を用いると、従来は、水の中で
約1.5μm、シリコン(8400m/s)中で8.4μmの
深度分解能しかなかつたものを、本発明によると
水中で0.3μmシリコン中で1.7μmという高い深度
分解能に改善する事が出来、ICの多層構造の深
度別観察が初めて可能になるのである。
Using 1 GHz ultrasound, conventional depth resolution was only about 1.5 μm in water and 8.4 μm in silicon (8400 m/s), but according to the present invention, the depth resolution is 0.3 μm underwater and 1.7 μm in silicon (8400 m/s). The depth resolution can be improved to a high depth resolution of μm, making it possible for the first time to observe the multilayer structure of an IC at different depths.

本発明はこの干渉法の有する能力を更に検討し
た結果、使用する超音波周波数を或るfを中心に
Δfだけ変移させる事によつて干渉法の能力が一
層効果的になる事を見出したのである。以下干渉
法について説明しその能力と問題点について述べ
る。
The present invention further investigated the ability of this interferometry and found that the ability of the interferometry becomes even more effective by shifting the ultrasonic frequency used by Δf around a certain f. be. The interferometry method will be explained below, and its capabilities and problems will be discussed.

第1図は、試料からの反射信号を得る為の探触
子系の従来法による概略構成を示す図である。音
波レンズ20(例えばサフアイア、石英ガラス等
の円柱状結晶)はその一端面21は光学研磨され
た平面であり、他端面は凹面状の半球穴30が形
成されている。端面21に蒸着された圧電薄膜1
0に印加されたRFパルス電気信号によりレンズ
20内に平面波のRFパルス音波が放射される。
この平面音波は上記半球穴30と媒質40(一般
に水)との界面で形成された正の音響レンズによ
り所定焦点におかれた試料50上に集束される。
FIG. 1 is a diagram showing a schematic configuration of a probe system according to a conventional method for obtaining a reflected signal from a sample. One end surface 21 of the acoustic lens 20 (for example, a cylindrical crystal such as sapphire or quartz glass) is an optically polished flat surface, and the other end surface has a concave hemispherical hole 30 formed therein. Piezoelectric thin film 1 deposited on end face 21
An RF pulsed sound wave of a plane wave is radiated into the lens 20 by the RF pulsed electrical signal applied to the lens 20 .
This plane sound wave is focused onto a sample 50 at a predetermined focus by a positive acoustic lens formed at the interface between the hemispherical hole 30 and a medium 40 (generally water).

試料50によつて反射、散乱された超音波は、
同じレンズによつて集音され平面波に変換されて
レンズ20を伝播し、最終的に圧電薄膜10によ
りRF電気信号に変換される。このRF電気信号を
ダイオード検波してビデオ信号に変換し、上記の
ブラウン管の入力信号として用いるのである。
The ultrasonic waves reflected and scattered by the sample 50 are
Sound is collected by the same lens, converted into a plane wave, propagated through the lens 20, and finally converted into an RF electric signal by the piezoelectric thin film 10. This RF electrical signal is detected by a diode and converted into a video signal, which is then used as the input signal for the cathode ray tube.

第2図aは、この様な従来構成で、ある繰り返
し周期tRのRFパルス電気信号を印加した時のビ
デオ領域での検出信号を示したものである。ここ
で横軸は時間軸をたて軸は信号強度を示してい
る。Aは印加したRFパルスを示し、Bはレンズ
界面からの反射信号を又はCは試料からの反射信
号を示している。
FIG. 2a shows a detection signal in the video region when an RF pulse electric signal with a certain repetition period t R is applied in such a conventional configuration. Here, the horizontal axis represents the time axis and the axis represents the signal strength. A shows the applied RF pulse, B shows the reflected signal from the lens interface, or C shows the reflected signal from the sample.

従来の撮像装置では、この所望の反射信号Cを
Bと弁別する為に印加パルスの継続時間tdを出来
るだけ短かくして、C及びB信号が重ならない様
に設定し、C信号のみをタイムゲート(図2c)
で取り出し標本化する構成を採用している。
In conventional imaging devices, in order to distinguish this desired reflected signal C from B, the duration time td of the applied pulse is set as short as possible so that the C and B signals do not overlap, and only the C signal is time gated. (Figure 2c)
A configuration is adopted in which samples are taken out and sampled.

第2図dは、干渉法の一実施例を示したもので
試料からの反射超音波信号Cとレンズと水の界面
での反射超音波信号Bを干渉させるのにRFパル
スの継続時間tdを従来例とは逆に長くする事によ
つて実現している。
Figure 2d shows an example of the interferometry method, in which the duration of the RF pulse t d is required to cause the reflected ultrasound signal C from the sample to interfere with the reflected ultrasound signal B from the lens-water interface . This is achieved by making it longer than in the conventional example.

詳しく説明すると、試料からの反射超音波信号
Cはレンズと水との界面からの反射信号Bより、
レンズと試料間の水の中を往復伝播する時間ts
2Z/Vw(ここでZはレンズの試料間の距離、Vw
は水中の音速)だけ遅れて戻つてくるから、PF
パルスの継続時間tdを td>2Z/Vw (3) と長くすると、2つの反射信号は重なりあう事に
なる。この重なりあう時間領域の信号をタイムゲ
ートでとり出すことにより、2つの反射信号の干
渉を検出する事が出来る。
To explain in detail, the reflected ultrasonic signal C from the sample is greater than the reflected signal B from the interface between the lens and water.
Time for round trip propagation in water between lens and sample t s =
2Z/V w (where Z is the distance between the lens and the sample, V w
is the speed of sound in water), so the PF
If the pulse duration t d is increased to t d >2Z/V w (3), the two reflected signals will overlap. By extracting these overlapping time domain signals using a time gate, interference between the two reflected signals can be detected.

レンズと水の界面からの反射信号Bを VB(t)=Asin2πft t0<t<t0+td (4) ここで fは使用超音波周波数 t0=2L/VL、Lはレンズの長さ、VLはレンズ材
中の音速 とおくと、試料からの反射超音波信号Cは Vc(t)=Bsin2πf(t +2Z/Vw) t0<ts<t<t0+ts+td (5) で表わされるから、上記(3)式の条件下では2つの
信号は重なりあい t0+ts<t<t0+td (6) でV(t)=Asin2πf+Bsin2πf(t+2Z/Vw)と
表わされ(第2図dの破線領域)、ダイオード2
乗検波すると、ビデオ領域で V(t)=A2+B2+2ABcos(2πf2Z/Vw) (7) となる。(6)式の時間域の信号を利用すると、 2πf・2Z/Vw=2πZ/(λ/2) (8) より、レンズと試料間の距離Zをかえるとλ/2
周期で検出信号が変調される。2つの反射波が最
も干渉する変調度50%、即ち、2つの反射波の振
巾AおよびBが等しい状態を仮定すると(7)式は、 V(t)=2A2(1+cosθ) …(7′) ただしθ=2πZ/(λ/2) となる。これをV(t)の値が上限値が1、下限
値が0になるように規格化すると V(t)=(1+cosθ)/2 …(7″) となる。極大値より−3dBの振巾減をもつて深度
分解能とする(Rayleigh基準)と、 (1+cosθ0)/2=1/√2 であるから、 cosθ0=√2−1 であつて、これを解くとθ0=65.5°=0.36πrad.で
ある、即ち、 2πZ/(λ/2)=0.36π より、Z=0.091λ≒λ/10が得られる。−3dB巾
の深度分解能は、極大値の点よりプラス側−3dB
の所からマイナス側−3dBの所までの巾であるか
ら前記の値の2倍、即ち0.182λ≒λ/5になる。
The reflected signal B from the interface between the lens and water is V B (t) = Asin2πft t 0 < t < t 0 + t d (4) where f is the ultrasonic frequency used t 0 =2L/V L , and L is the ultrasonic frequency of the lens. Assuming that the length and V L are the sound speed in the lens material, the reflected ultrasonic signal C from the sample is Vc (t) = Bsin2πf (t +2Z/V w ) t 0 <t s <t<t 0 +t s +t d (5) Therefore , under the condition of equation ( 3 ) above , the two signals overlap. ) (dashed line area in Figure 2d), and the diode 2
When multiplicative detection is performed, V(t)=A 2 +B 2 +2ABcos(2πf2Z/V w ) (7) in the video domain. Using the time domain signal in equation (6), 2πf・2Z/V w = 2πZ/(λ/2) (8) From (8), if the distance Z between the lens and the sample is changed, λ/2
The detection signal is modulated with the period. Assuming a modulation degree of 50% at which the two reflected waves interfere most, that is, a state in which the amplitudes A and B of the two reflected waves are equal, equation (7) is: V(t) = 2A 2 (1 + cos θ) ... (7 ') However, θ=2πZ/(λ/2). If we normalize this so that the upper limit value of V(t) is 1 and the lower limit value is 0, we get V(t) = (1 + cosθ)/2...(7'').The amplitude is -3 dB from the maximum value. If the depth resolution is expressed by the width reduction (Rayleigh standard), then (1+cosθ 0 )/2=1/√2, so cosθ 0 =√2−1, and solving this gives θ 0 = 65.5°. = 0.36πrad. That is, 2πZ/(λ/2) = 0.36π, so Z = 0.091λ≒λ/10 is obtained.The -3dB width depth resolution is -3dB on the plus side from the maximum point.
Since the width is from the point to -3 dB on the negative side, it is twice the above value, that is, 0.182λ≈λ/5.

換言すれば試料の凹凸や内部の層構造のパター
ンを、約λ/5(変調度50%)で検出する事が可
能になる。このλ/5が従来法で深度分解能λ
(F=0.7のとき)に対応するもので干渉法によつ
て、5倍改善される事になるわけである。
In other words, it becomes possible to detect the unevenness of the sample and the pattern of the internal layer structure at approximately λ/5 (modulation depth of 50%). This λ/5 is the depth resolution λ in the conventional method.
(when F = 0.7), and by using interferometry, it can be improved by a factor of five.

ところで、振巾法であるFナンバのレンズ系を
用いて、試料からの反射信号Cの強度を試料とレ
ンズ間の距離Z(焦点で0、焦点距離より近い時
は負とする)を変えて測定してみると、第3図a
の様になる。周期的な変化を生じピーク値に対し
−3dBに当る図中Δρと記した巾が深度分解能を
定義している。同じ測定を干渉法で行なうと、第
3図bの様になる。λ/2周期のパターンに変化
し、その包絡線は振巾法の場合と同一となる。こ
の様な干渉法による秀れた深度分解能は、試料を
深度別にスライスする能力を提供する。実際、第
3図cの様に、焦点に反射体aがあり、丁度反射
強度が0になるR点に反射体bがある様な試料の
場合、全反射強度は2つの反射体からの反射波の
和であるが図の様に反射体bには音圧は照射され
ていないからaだけbと分離して観察する事が出
来る。逆に反射体bに焦点を合わせるとaからの
反射波はなくなりbのみを分離して観察する事が
出来る。ところで、この様に巧く分離出来たのは
反射体a,b間の距離が丁度上記干渉パターンの
ピーク位置とバレイ位置との間の距離(以下スラ
イス距離と呼ぶ)に一致している為である。この
距離はλ/4であるが、試料によつてはいつもこ
の条件が成立するとは限らないのである。従つ
て、このスライス距離を対象とする試料に応じて
可変にする手段を付加すれば、干渉法の有するス
ライス能力を一層効果的にすることが出来ると期
待される。
By the way, using an F-number lens system that is the amplitude method, the intensity of the reflected signal C from the sample can be changed by changing the distance Z between the sample and the lens (0 at the focal point, negative when it is closer than the focal length). When I measured it, I found that Figure 3a
It will look like this. The width marked as Δρ in the figure, which causes periodic changes and corresponds to −3 dB with respect to the peak value, defines the depth resolution. If the same measurement is performed by interferometry, the result will be as shown in Fig. 3b. The pattern changes to a λ/2 period pattern, and its envelope is the same as in the amplitude method. The excellent depth resolution provided by such interferometry provides the ability to slice the sample at different depths. In fact, in the case of a sample where there is reflector a at the focal point and reflector b is at point R where the reflection intensity is exactly 0, as shown in Figure 3c, the total reflection intensity is the reflection from the two reflectors. Although it is the sum of waves, as shown in the figure, since the sound pressure is not irradiated to reflector b, only a can be observed separately from b. Conversely, when focusing on reflector b, the reflected wave from a disappears and only b can be observed separately. By the way, the reason why we were able to separate them so well is because the distance between the reflectors a and b exactly matches the distance between the peak position and valley position of the interference pattern (hereinafter referred to as the slice distance). be. Although this distance is λ/4, this condition does not always hold depending on the sample. Therefore, it is expected that the slicing ability of interferometry can be made even more effective by adding a means to vary the slicing distance depending on the target sample.

本発明は以上の点を鑑みてなされたもので、干
渉法の有するスライス能力を飛躍的に高める手段
を提供することにある。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a means for dramatically increasing the slicing ability of interferometry.

即ち、前述の検討結果から、スライス距離は使
用超音波fの波長λに比例しているから、任意の
深度差の2つの層を分離するのに、その深度差と
スライス距離が一致する様に使用周波数をfより
Δfだけ動かす方法である。第3図dの様にスラ
イス距離dよりもΔdだけ離れた2つの反射層を
分離する場合、周波数をΔfだけ減少させればよ
い。ΔfとΔdの関係は従つて λ/4=Vs/4(f0+Δf)=d+Δd より、Δf≪f0なら 1/4Vs/f0(1−Δf/f0)=d+Δd d=1/4Vs/f0=λ0/4 を用いて Δd=−λ0/4・Δf/f0 (9) となる。この周波数の変化は、観察者が反射層a
に焦点を合わせておいて、観察画面から反射層b
が消える様に操作しても良いし、ICの様にあら
かじめ構造が解つているものでは観察前に設定す
る事が出来る。以下図面を用いて本発明の実施例
について説明する。
In other words, from the above study results, since the slice distance is proportional to the wavelength λ of the ultrasonic wave f used, in order to separate two layers with an arbitrary depth difference, it is necessary to make sure that the depth difference and the slice distance match. This is a method of moving the frequency used by Δf from f. When separating two reflective layers separated by Δd from the slice distance d as shown in FIG. 3d, it is sufficient to reduce the frequency by Δf. The relationship between Δf and Δd is therefore: λ/4=Vs/4(f 0 +Δf)=d+Δd If Δf≪f 0 , then 1/4Vs/f 0 (1−Δf/f 0 )=d+Δd d=1/4Vs /f 00 /4 is used, Δd=−λ 0 /4·Δf/f 0 (9). This change in frequency is caused by the fact that the observer
Focus on the reflective layer b from the observation screen.
You can manipulate it so that it disappears, or if the structure is known in advance like an IC, you can set it before observation. Embodiments of the present invention will be described below with reference to the drawings.

第4図は本発明を具体化する回路構成の一実施
例を示す図で、RFの連続波発振器100で発生
させたRF連続信号(例えば1GHz)をアナログ・
スイツチ110で継続時間tdのRFパルス信号に
かえ、方向性結合器120を介して探触子系12
5に印加する。この探触子系125は第1図に示
すレンズ20、圧電薄膜10より構成されてい
る。反射検出信号を方向性結合器120を介して
受信アンプ130で増巾後、ダイオード検波器1
40でビデオ信号(帯域〜10MHz)に変換し、タ
イムゲート150により所望の信号である試料か
ら反射信号を標本化して撮像用信号とする。本実
施例では、アナログスイツチ110をON、OFF
するゲート発生器160を用いる。即ち、ゲート
発生器160はスイツチ170によつてアナログ
スイツチ110用のゲート信号を条件td>2Z/
Vw、又は条件td<2Z/Vwとなる様切り換える回
路である。
FIG. 4 is a diagram showing an example of a circuit configuration embodying the present invention, in which an RF continuous signal (for example, 1 GHz) generated by an RF continuous wave oscillator 100 is converted into an analog signal.
The switch 110 converts the signal into an RF pulse signal of duration t d , which is then sent to the probe system 12 via the directional coupler 120.
5. This probe system 125 is composed of a lens 20 and a piezoelectric thin film 10 shown in FIG. After the reflected detection signal is amplified by the receiving amplifier 130 via the directional coupler 120, the diode detector 1
40, it is converted into a video signal (bandwidth ~10 MHz), and a time gate 150 samples the signal reflected from the sample, which is a desired signal, and uses it as an imaging signal. In this embodiment, the analog switch 110 is turned on and off.
A gate generator 160 is used. That is, the gate generator 160 uses the switch 170 to generate the gate signal for the analog switch 110 under the condition t d >2Z/
This is a circuit that switches so that V w or the condition t d <2Z/V w .

第5図にその構成の1例を示す。 FIG. 5 shows an example of its configuration.

即ち、パルス発振器161より繰り返し周期tR
のパルスを発生させ、そのパルスの立ち上り、マ
ルチバイブレータ162a,162b,164で
それぞれΔt1、Δt2、Δt3なる時間巾のパルスを作
る。ここで、Δt1<2Z/Vw、Δt2>2Z/Vw、Δt3
=2Z/Vw+tsと選ぶのである。マルチバイブレ
ータ162a,162bの出力波形(各々、第2
図b,eに示す)をマルチプレキサ163で、ス
イツチ170のHigh、Low状態によつて選択し、
アナログスイツチ110のコントロール信号と
し、又、マルチバイブレータ164の出力を再び
マルチバイブレータ165にいれる事によりΔt3
だけ遅延したパルスを作成し、これをタイムゲー
ト150のゲート信号とするわけである(第2
e,fに示す)。この様な回路はTTL
(Transistor Transistor Logic)で容易に実現
出来る。第2図a,b,c及びd,e,fにtd
2Z/Vw、td>2Z/Vw従つて従来法と本干渉法で
のコントロール信号とゲート信号のタイムチヤー
トを示す。
That is, the repetition period t R from the pulse oscillator 161
At the rising edge of the pulse, multivibrators 162a, 162b, and 164 generate pulses with time widths of Δt 1 , Δt 2 , and Δt 3 , respectively. Here, Δt 1 <2Z/V w , Δt 2 >2Z/V w , Δt 3
= 2Z/V w +t s . The output waveforms of the multivibrators 162a and 162b (each with the second
(shown in Figures b and e) is selected by the multiplexer 163 according to the High and Low states of the switch 170,
By using the control signal of the analog switch 110 and inputting the output of the multivibrator 164 to the multivibrator 165 again, Δt 3
A pulse delayed by
(shown in e, f). This kind of circuit is TTL
(Transistor Transistor Logic). In Figure 2 a, b, c and d, e, f, t d <
2Z/V w , t d >2Z/V w Therefore, the time charts of the control signal and gate signal in the conventional method and the present interferometry are shown.

本実施例では、この様なモードの切り換えによ
つて試料からの反射信号の出現時刻は変化しない
から、同一のゲート信号を用いる事が出来る。
In this embodiment, since the appearance time of the reflected signal from the sample does not change due to such mode switching, the same gate signal can be used.

又、単にRFパルス信号の継続時間を切り換え
るだけで干渉法と従来の振巾法とを使いわける事
を可能にする。
Furthermore, it is possible to use the interference method and the conventional amplitude method selectively by simply switching the duration of the RF pulse signal.

即ち、上記説明から明らかなようにRFパルス
の継続時間tdを td<2Z/Vw (10) と短くすれば2つの反射超音波信号B,Cは重な
る事はないからである。
That is, as is clear from the above explanation, if the duration time t d of the RF pulse is shortened to t d <2Z/V w (10), the two reflected ultrasound signals B and C will not overlap.

この様な構成においてRF連続波発振器100
として周波数を可変に出来る様な可変周波数RF
発振器を用いれば本発明を実現出来る。
In such a configuration, the RF continuous wave oscillator 100
Variable frequency RF that can vary the frequency as
The present invention can be implemented using an oscillator.

この様な発振器として市販のダイアルを動かす
可変周波数RF発振器を用いても良いし、又VCO
発振器(電圧制御発振器)やシンセサイザーを用
いて電圧やデイジタル信号で制御出来るものを用
いても良い。
A commercially available variable frequency RF oscillator that moves a dial may be used as such an oscillator, or a VCO
An oscillator (voltage controlled oscillator) or a synthesizer that can be controlled by voltage or digital signals may also be used.

第6図は本発明の他の実施例を示す図で、前記
実施例が音波による参照波を用いているのに対
し、電気的な参照波を用いるものである。
FIG. 6 is a diagram showing another embodiment of the present invention, in which an electrical reference wave is used, whereas the previous embodiment uses a sonic reference wave.

可変周波数RF発振器200の出力RF連続波電
気信号(例えば1GHz)をアナログ・スイツチ2
10で継続時間td(例えば0.5μs)のRFパルス信号
にかえ、方向性結合器220を介して探触子系2
30に印加する。反射超音波信号を方向性結合器
220を介して受信RFアンプ240で増巾後、
RF加算器250に加える(第7図aの信号)。
RFパルス信号は又、RF遅延器280により試料
からのエコーの発生時間t0+tsまで遅延された後、
RF増巾器290を介してRF加算器250に加え
られる。(第7図bの信号)RF加算器の出力は第
7図cの様に干渉信号となるから、ダイオード検
波器260でビデオ信号(帯域〜10MHz)に変換
し、タイムゲート270により干渉信号のみをと
り出して撮像用信号とすればよい。コントロール
回路201は前記実施例と同様のものを用いれば
良い。この構成において、発振器200の周波数
を変化させてやれば本発明が実現出来る。
The output RF continuous wave electric signal (for example, 1 GHz) of the variable frequency RF oscillator 200 is sent to the analog switch 2.
10, it is converted into an RF pulse signal with a duration t d (for example, 0.5 μs), and is sent to the probe system 2 via the directional coupler 220.
30. After the reflected ultrasound signal is amplified by the receiving RF amplifier 240 via the directional coupler 220,
RF adder 250 (signal in FIG. 7a).
The RF pulse signal is also delayed by the RF delayer 280 to the time of occurrence of the echo from the sample t 0 +t s , and then
It is applied to RF adder 250 via RF amplifier 290. (Signal in Figure 7b) The output of the RF adder becomes an interference signal as shown in Figure 7c, so it is converted to a video signal (bandwidth ~10MHz) by a diode detector 260, and only the interference signal is detected by a time gate 270. It is sufficient to extract the signal and use it as an imaging signal. The control circuit 201 may be the same as in the previous embodiment. In this configuration, the present invention can be realized by changing the frequency of the oscillator 200.

なお、以上述べた実施例に限らず本質的に干渉
信号を有する装置であれば本発明を適用する事は
容易である。又、連続波発振器としてチヤープ信
号を発生させるものを用い、周波数の変化をx軸
として反射干渉信号をy軸としてブラウン管に表
示してスライス機能の確認に用いても良い。
Note that the present invention is not limited to the embodiments described above, and the present invention can be easily applied to any device that inherently has an interference signal. Alternatively, a continuous wave oscillator that generates a chirp signal may be used to display the frequency change on the x-axis and the reflected interference signal on the y-axis on a cathode ray tube to confirm the slicing function.

以上述べた様に、本発明によれば干渉顕微能力
を有する超音波顕微鏡において使用超音波周波数
を該周波数f0のまわりにΔfだけ変化させる事によ
り、スライス能力を著しく高め、IC等の多層構
造の深度別、層別観察を行なう際極めて有用であ
り当業界への寄与は極めて大なるものである。
As described above, according to the present invention, by changing the ultrasonic frequency used in an ultrasonic microscope having interference microscopy ability by Δf around the frequency f 0 , the slicing ability can be significantly increased, and multilayer structures such as ICs can be It is extremely useful when performing depth-based and stratified observations, and its contribution to this industry is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の探触子系の構成を示す図、第2
図は従来の超音波顕微鏡の動作を説明する図、第
3図は本発明の原理を説明する図、第4図及び第
5図は本発明の一実施例の構成を示す図、第6図
は本発明の他の実施例の構成を示す図、第7図は
その動作を説明する図である。
Figure 1 shows the configuration of a conventional probe system, Figure 2 shows the configuration of a conventional probe system.
The figures are diagrams explaining the operation of a conventional ultrasound microscope, Figure 3 is a diagram explaining the principle of the present invention, Figures 4 and 5 are diagrams showing the configuration of an embodiment of the present invention, and Figure 6 is a diagram explaining the operation of a conventional ultrasound microscope. 7 is a diagram showing the configuration of another embodiment of the present invention, and FIG. 7 is a diagram explaining its operation.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波集束ビームを試料に向けて送信し且つ
該超音波集束ビームの試料よりの反射波を受信す
る手段と、該ビームの焦点領域内で2次元に試料
を機械走査する手段と、前記超音波集束ビームと
同じ周波数であつて前記反射波と干渉する参照波
を発生する手段とを有する超音波顕微鏡におい
て、前記超音波集束ビーム及び前記参照波の周波
数を中心周波数より可変にする手段を具備する事
を特徴とする超音波顕微鏡。
1 means for transmitting a focused ultrasonic beam toward a sample and receiving reflected waves of the focused ultrasonic beam from the sample; means for mechanically scanning the sample in two dimensions within the focal region of the beam; An ultrasonic microscope having means for generating a reference wave having the same frequency as the focused ultrasound beam and interfering with the reflected wave, comprising means for making the frequencies of the focused ultrasound beam and the reference wave variable from a center frequency. An ultrasonic microscope characterized by:
JP56170031A 1981-10-26 1981-10-26 Ultrasonic microscope Granted JPS5871455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170031A JPS5871455A (en) 1981-10-26 1981-10-26 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170031A JPS5871455A (en) 1981-10-26 1981-10-26 Ultrasonic microscope

Publications (2)

Publication Number Publication Date
JPS5871455A JPS5871455A (en) 1983-04-28
JPH0232579B2 true JPH0232579B2 (en) 1990-07-20

Family

ID=15897315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170031A Granted JPS5871455A (en) 1981-10-26 1981-10-26 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS5871455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123067U (en) * 1991-04-22 1992-11-06 湯浅電池株式会社 Storage battery with handle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210944A (en) * 1985-03-15 1986-09-19 Hitachi Ltd Ultrasonic microscope
JP2019152598A (en) * 2018-03-06 2019-09-12 株式会社神戸製鋼所 Probe for ultrasonic flaw detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123067U (en) * 1991-04-22 1992-11-06 湯浅電池株式会社 Storage battery with handle

Also Published As

Publication number Publication date
JPS5871455A (en) 1983-04-28

Similar Documents

Publication Publication Date Title
EP0084174B1 (en) Ultrasonic microscope
US4694699A (en) Acoustic microscopy
JPS5944582B2 (en) scanning acoustic microscope
JPH0140309B2 (en)
JPH0232579B2 (en)
JPS634142B2 (en)
JPH0235937B2 (en)
JPS6098353A (en) Ultrasonic microscope
US3890829A (en) Method and apparatus for acoustical imaging
Wickramasinghe Acoustic microscopy: present and future
JPS58196453A (en) Ultrasonic microscope
Smith et al. NDE of Solids with a Mechanically B—Scanned Acoustic Microscope
JPH0155408B2 (en)
JPH0339265B2 (en)
JPH0338543B2 (en)
JPS5950937B2 (en) ultrasound microscope
JPH0235936B2 (en)
Hoppe et al. Acoustic Microscopy—State of the Art and Recent Developments
Bozkurt et al. Characterization and imaging with Lamb wave lens at gigahertz frequencies
CN109374739A (en) A kind of ultrasonic microscope and method based on annular surface battle array
Mezrich High Resolution, High Sensitivity Ultrasonic C-Scan Imaging System
JPS60166859A (en) Ultrasonic image pick-up apparatus
JPS59119257A (en) Ultrasonic microscope
Hoppe¹ et al. Acoustic Microscopy State of the Art and Recent Developments M. Hoppe¹ and A. Atalar2 1Ernst Leitz Wetzlar GmbH, PO Box 2020, D-6330 Wetzlar, Fed. Rep. of Germany
JPH0412824B2 (en)