JPH0412824B2 - - Google Patents

Info

Publication number
JPH0412824B2
JPH0412824B2 JP60010811A JP1081185A JPH0412824B2 JP H0412824 B2 JPH0412824 B2 JP H0412824B2 JP 60010811 A JP60010811 A JP 60010811A JP 1081185 A JP1081185 A JP 1081185A JP H0412824 B2 JPH0412824 B2 JP H0412824B2
Authority
JP
Japan
Prior art keywords
lens
sample
frequency
acoustic lens
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60010811A
Other languages
Japanese (ja)
Other versions
JPS61170654A (en
Inventor
Masao Takai
Nobuyuki Nakajima
Koshi Umemoto
Katsuji Ikenaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP60010811A priority Critical patent/JPS61170654A/en
Publication of JPS61170654A publication Critical patent/JPS61170654A/en
Publication of JPH0412824B2 publication Critical patent/JPH0412824B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波顕微鏡に係り、特に幅広い周
波数の超音波を用いて観察を行なうのに好敵な超
音波顕微鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultrasonic microscope, and particularly to an ultrasonic microscope that is suitable for observation using ultrasonic waves having a wide range of frequencies.

〔発明の背景〕[Background of the invention]

超音波顕微鏡に関しては、特開昭50−116058号
公報等に記載されているように種々の構成が開発
されつつある。これら従来の超音波顕微鏡の構成
を第2図によつて説明する。同図において、1は
円柱状の熔融石英等から成り一面を光学研磨し、
他面に半球穴のレンズ面15を形成して成る音響
レンズである。2は前記音響レンズ1の光学研磨
した面に取付けられる圧電薄膜(ZnO等)で、上
下電極3によつて挾んだ状態で前記音響レンズ1
に取付けられている。前記音響レンズ1、圧電薄
膜2および上下電極3をまとめてセンサ16とい
う。4は前記上下電極3に対して所要の連続波パ
ルス5を発信するパルス発振器である。該パルス
発振器4によつて発振したパルス5を前記上下電
極3に印加すると圧電薄膜2が励振して超音波6
を発生する。7は前記音響レンズ1のレンズ面1
5側に対向して試料台14に配置された試料、8
は音響レンズ1と試料7との間を満たす媒質(例
えば水)である。前記圧電薄膜2で発生した超音
波6な音響レンズ1内を平面波となつて伝播す
る。前記超音波6の平面波がレンズ面15部に達
すると該音響レンズ1の材質と媒質8との伝播音
速の差により屈折作用が生じ、前記超音波6の平
面波は集束されて試料7面上に照射される。この
ようにして試料7に照射された超音波6は、該試
料7内で反射して媒質8に伝わり、レンズ面15
部で集音整相され平面波となつて圧電薄膜2に達
し、該圧電薄膜2によつてRF信号(高周波電気
信号)9に変換される。10は前記RF信号9を
受信し、かつ、ダイオード検波してビデオ信号1
1に変換する受信器、21は前記ビデオ信号11
について増幅、レベル調整およびA/D変換を行
なつてデジタルイメージメモリ23に出力するエ
コー処理部である。13は前述の試料7を支える
試料台14を走査させる駆動装置で、該駆動装置
13は前記試料台14を走査させる際その走査位
置情報をデジタイズして前記デジタルイメージメ
モリ23へ出力する構成となつている。そして、
前記デジタルイメージメモリ23では、前記エコ
ー処理部21からのビデオ信号と前記駆動装置1
3からの走査位置情報とを同期させて画像情報を
形成し記憶する。そして、該デジタルイメージメ
モリ23内の画像情報をCRT(ブラウン管)12
に表示させて観察を行なう。なお、22は前記ビ
デオ信号11をエコー処理部21で増幅およびレ
ベル調整する度合を表示するエコー表示部であ
り、表示された状態を目安として観察を行なう。
一方、前述のように圧電薄膜2で発生した超音波
6は音響レンズ1の中を伝播してレンズ面15に
達すると、一部は試料7に照射され、一部は音響
レンズ1と媒質8との音響インピーダンスの差に
よつて反射する。音響レンズと試料との間に媒質
8を満たさない場合には、音響レンズ1と空気と
の音響インピーダンスの差が極度に大きいので、
超音波はレンズ面15で全反射する。
Regarding ultrasonic microscopes, various configurations are being developed as described in Japanese Patent Application Laid-Open No. 116058/1983. The configuration of these conventional ultrasonic microscopes will be explained with reference to FIG. In the figure, 1 is made of cylindrical fused silica or the like, optically polished on one side,
This is an acoustic lens having a hemispherical hole lens surface 15 formed on the other surface. 2 is a piezoelectric thin film (ZnO, etc.) attached to the optically polished surface of the acoustic lens 1, and the acoustic lens 1 is sandwiched between the upper and lower electrodes 3.
installed on. The acoustic lens 1, piezoelectric thin film 2, and upper and lower electrodes 3 are collectively referred to as a sensor 16. Reference numeral 4 denotes a pulse oscillator that emits necessary continuous wave pulses 5 to the upper and lower electrodes 3. When a pulse 5 oscillated by the pulse oscillator 4 is applied to the upper and lower electrodes 3, the piezoelectric thin film 2 is excited and an ultrasonic wave 6 is generated.
occurs. 7 is the lens surface 1 of the acoustic lens 1
A sample placed on the sample stage 14 facing the 5 side, 8
is a medium (for example, water) that fills the gap between the acoustic lens 1 and the sample 7. The ultrasonic wave 6 generated by the piezoelectric thin film 2 propagates within the acoustic lens 1 as a plane wave. When the plane wave of the ultrasonic wave 6 reaches the lens surface 15, a refraction effect occurs due to the difference in the propagation speed of sound between the material of the acoustic lens 1 and the medium 8, and the plane wave of the ultrasonic wave 6 is focused onto the surface of the sample 7. irradiated. The ultrasonic waves 6 irradiated to the sample 7 in this way are reflected within the sample 7 and transmitted to the medium 8, and the lens surface 15
The sound is collected and phased in the plane wave, which reaches the piezoelectric thin film 2 and is converted into an RF signal (high frequency electric signal) 9 by the piezoelectric thin film 2. 10 receives the RF signal 9 and performs diode detection to output the video signal 1.
1, a receiver 21 converts the video signal 11 into
This echo processing section performs amplification, level adjustment, and A/D conversion on the signal and outputs the result to the digital image memory 23. Reference numeral 13 denotes a drive device that scans the sample stage 14 that supports the sample 7, and the drive device 13 is configured to digitize the scanning position information when scanning the sample stage 14 and output it to the digital image memory 23. ing. and,
In the digital image memory 23, the video signal from the echo processing section 21 and the driving device 1 are processed.
Image information is formed and stored in synchronization with the scanning position information from 3. Then, the image information in the digital image memory 23 is transferred to a CRT (cathode ray tube) 12.
Display and observe. Note that 22 is an echo display section that displays the degree to which the video signal 11 is amplified and level-adjusted by the echo processing section 21, and the displayed state is used as a guide for observation.
On the other hand, as mentioned above, when the ultrasonic waves 6 generated in the piezoelectric thin film 2 propagate through the acoustic lens 1 and reach the lens surface 15, some of them are irradiated onto the sample 7, and some of them are irradiated onto the acoustic lens 1 and the medium 8. It is reflected due to the difference in acoustic impedance between the If the medium 8 is not filled between the acoustic lens and the sample, the difference in acoustic impedance between the acoustic lens 1 and the air will be extremely large.
The ultrasonic waves are totally reflected by the lens surface 15.

前述のような構成の超音波顕微鏡においては、
試料の材質等に応じて種々の異なる周波数域を用
い、かつ、それぞれの周波数域に応じたセンサ1
6を用いて観察を行なう方が効果的な観察が行な
える。各種のセンサ16を用いて観察を行なう場
合、該センサ16の対応周波数域における最適な
周波数すなわち超音波の伝播効率の最もよい周波
数を見付け出す必要がある。従来、この各センサ
16における周波数選定操作は、音響レンズ1の
レンズ面15に媒質8を満たさない状態で行な
い、周波数を手動で変換しながら前記半球穴15
で全反射してくる反射エコーの強度をエコー表示
部22で操作者が判定し、最適周波数を選定して
いた。この操作は、前述のように周波数を変えな
がら、各周波数毎にエコー表示部22を見て最大
反射エコーを判定しなければならず、非常に煩雑
で、かつ、多大な時間を要していた。また、セン
サ16を取替える度に行なわなければならず、こ
の点においても問題となつていた。
In an ultrasound microscope configured as described above,
The sensor 1 uses various different frequency ranges depending on the material of the sample, etc., and corresponds to each frequency range.
6, more effective observation can be made. When performing observation using various sensors 16, it is necessary to find the optimum frequency in the corresponding frequency range of the sensor 16, that is, the frequency with the best propagation efficiency of ultrasonic waves. Conventionally, the frequency selection operation in each sensor 16 is performed without filling the lens surface 15 of the acoustic lens 1 with the medium 8, and while manually converting the frequency, the frequency selection operation in the hemispherical hole 15 is
The operator judges the intensity of the reflected echo totally reflected by the echo display section 22 and selects the optimum frequency. This operation is very complicated and takes a lot of time, as it is necessary to change the frequency as described above and judge the maximum reflected echo by looking at the echo display section 22 for each frequency. . Furthermore, this process has to be performed every time the sensor 16 is replaced, which also poses a problem.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、各種の周波数域
でそれぞれ異なるセンサを用いて観察を行なう場
合において、各センサの最適周波数選定を自動的
に行なう機能を有する超音波顕微鏡を提供するこ
とにある。
An object of the present invention is to provide an ultrasonic microscope that has a function of automatically selecting the optimum frequency for each sensor when performing observations using different sensors in various frequency ranges.

〔発明の概要〕[Summary of the invention]

超音波顕微鏡に用いる超音波の周波数域は、方
位分解能、深度分解能等より50MHz〜1GHzさら
には2GHzまで広い範囲のものが用いられ、対象
試料および該試料の観察位置によつて適宜周波数
域を選定している。周波数域の選定に伴つてセン
サについても最適なものを用いる。このようにし
て周波数域およびセンサを決定するに当つてセン
サ毎に最も適した周波数すなわち伝播効率の最も
よい周波数がある。本発明は、各センサにおける
前記最適周波数の選定を、発振周波数を段階的に
変化させ、この時の球面レンズの半球穴部におけ
る全反射エコーの強度を順次比較判定して該反射
エコーの最大値を求めることによつて行なうこと
を特徴とするものである。
The frequency range of ultrasonic waves used in ultrasound microscopes is wide from 50 MHz to 1 GHz and even 2 GHz, depending on the azimuth resolution, depth resolution, etc., and the frequency range is selected as appropriate depending on the target sample and the observation position of the sample. are doing. In conjunction with the selection of the frequency range, the optimal sensor is also used. In determining the frequency range and sensor in this way, there is a frequency most suitable for each sensor, that is, a frequency with the best propagation efficiency. The present invention selects the optimal frequency for each sensor by changing the oscillation frequency stepwise, and then sequentially comparing and determining the intensity of the total reflection echo in the hemispherical hole of the spherical lens to determine the maximum value of the reflection echo. It is characterized by the fact that it is carried out by determining the

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図によつて説明
する。同図において、前記従来例と同一符号は同
一部材を示すものである。24は発振器4および
エコー処理部21に接続されたレンズエコー判定
部であり、発振器4の発振するパルス5の周波数
を段階的に変化させる指令を発振器4に出力する
とともに前述の周波数を段階的に変化させた際の
各段階におけるレンズ面15の全反射エコーの強
度を順次比較判定して最大値を求め、反射エコー
が最大値になる周波数を発振器4にセツトするも
のである。なお、前記レンズエコー判定部24で
最適周波数選定を行なう場合、レンズ面15にお
ける全反射エコーを用いて判定を行なうため、レ
ンズ面15には媒質8は満たされていない。とこ
ろで、前記レンズエコー判定部24で前述の判定
を行なう場合に圧電薄膜2で受ける反射エコーに
は、発振信号、レンズ面15で反射した反射エコ
ー、電気的な反射信号および音響レンズ1内で多
重反射した多重反射エコーが含まれている。これ
らのうち、前記判定に必要なものはレンズ面15
で反射した反射エコーのみで他は不要なものであ
り、この反射エコーを得るために次のような操作
が行なわれる。すなわち、電気的な反射信号は前
記レンズ面15からの反射エコーに比べて到達時
間が非常に速いため、ゲートを開く時間をわずか
に遅延させるだけで充分である。従つて、レンズ
エコー判定部24で前記圧電薄膜2からの出力を
取込む時間帯を、発振器4からパルス5を発振し
てからレンズ面15で反射してくるまでの経過時
間について各種センサ16のうち最も長い時間ま
でとし、この時間帯で反射エコーの取り込みを行
ないエコー強度の最大値を判定する。なお、前記
時間帯で反射エコーを取り込むと、場合によつて
は前記多重反射エコーも取り込まれるが、該多重
反射エコーは十分小さな値であるため、エコー強
度の判定に影響を与えることはない。
An embodiment of the present invention will be described below with reference to FIG. In the figure, the same reference numerals as in the conventional example indicate the same members. 24 is a lens echo determination unit connected to the oscillator 4 and the echo processing unit 21, which outputs a command to the oscillator 4 to change the frequency of the pulse 5 oscillated by the oscillator 4 in steps, and also changes the frequency mentioned above in steps. The intensity of the total reflection echo from the lens surface 15 at each stage of change is sequentially compared and judged to determine the maximum value, and the frequency at which the reflected echo reaches the maximum value is set in the oscillator 4. Note that when the optimum frequency is selected in the lens echo determination section 24, the determination is made using the total reflection echo at the lens surface 15, so the lens surface 15 is not filled with the medium 8. By the way, when the lens echo determination section 24 performs the above-mentioned determination, the reflected echo received by the piezoelectric thin film 2 includes an oscillation signal, a reflected echo reflected by the lens surface 15, an electrical reflected signal, and a multiplexed signal within the acoustic lens 1. Contains multiple reflected echoes. Among these, what is necessary for the above judgment is the lens surface 15.
Only the reflected echo reflected by the beam is unnecessary, and the following operations are performed to obtain this reflected echo. That is, since the electrical reflected signal arrives much faster than the reflected echo from the lens surface 15, it is sufficient to slightly delay the gate opening time. Therefore, the time period during which the output from the piezoelectric thin film 2 is acquired by the lens echo determination section 24 is determined by the elapsed time from the oscillation of the pulse 5 from the oscillator 4 until it is reflected by the lens surface 15 of the various sensors 16. The maximum value of the echo intensity is determined by capturing reflected echoes during this time period. Note that when reflected echoes are captured during the above time period, the multiple reflected echoes may also be captured in some cases, but since the multiple reflected echoes have a sufficiently small value, they do not affect the determination of echo intensity.

前述のようにしてセンサ16を取替える度に前
記レンズエコー判定部24によつて発振器4へ所
定の間隔で発振周波数の変換指令を出力し、か
つ、各周波数におけるレンズ面15からの反射エ
コーを取り込み、その値を順次判定して反射エコ
ーが最大値の時の周波数を見出して、その周波数
を発振器4にセツトして、周波数選定動作を完了
する。この時点で試料7を試料台14上にセツト
し、かつ、該試料7と音響レンズ1との間に媒質
8を満たして観察を実行する。
As described above, each time the sensor 16 is replaced, the lens echo determination section 24 outputs an oscillation frequency conversion command to the oscillator 4 at predetermined intervals, and captures the reflected echo from the lens surface 15 at each frequency. , the values are sequentially determined to find the frequency at which the reflected echo is at its maximum value, and this frequency is set in the oscillator 4 to complete the frequency selection operation. At this point, the sample 7 is set on the sample stage 14, the medium 8 is filled between the sample 7 and the acoustic lens 1, and observation is performed.

ところで、前記レンズエコー判定部24では、
各センサ16のレンズ面15からの反射エコーの
最大値を判定しているが、反射エコーはそのセン
サ16について所要値以上の値である必要があ
り、レンズエコー判定部24でレンズ面15から
の反射エコーの強度判定を行なわせてもよい。こ
の反射エコーの強度判定を行なうことによつて、
常に各センサの合否判定を行ないながら試料7の
観察ができる。
By the way, in the lens echo determination section 24,
The maximum value of the reflected echo from the lens surface 15 of each sensor 16 is determined, but the reflected echo must have a value greater than the required value for that sensor 16. The intensity of the reflected echo may also be determined. By determining the intensity of this reflected echo,
The sample 7 can be observed while constantly making pass/fail judgments for each sensor.

このような構成によれば、5MHz〜2GHzという
幅広い周波数域で各種試料の観察を行なう場合、
選定した周波数域に合わせてセンサ16をセツト
すると、自動的にセンサ16に最適な周波数が選
定でき、煩雑な周波数選定操作を行なう必要がな
くなる。したがつて、観察作業が迅速かつ効率的
に行なえる。
With this configuration, when observing various samples in a wide frequency range of 5MHz to 2GHz,
By setting the sensor 16 according to the selected frequency range, the optimal frequency for the sensor 16 can be automatically selected, eliminating the need for complicated frequency selection operations. Therefore, observation work can be performed quickly and efficiently.

なお、前記実施例においては、反射型のものに
ついて説明したが、透過型についても同様な効果
が得られるものである。
In the above embodiments, a reflective type was described, but similar effects can be obtained with a transmissive type.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、幅広い周
波数域で観察試料の材質あるいは観察深さ等によ
つて周波数域を変え、かつ、その周波数域に対応
するセンサを用いて観察を行なう場合に、周波数
の選定を簡単、かつ、正確に行なえる。
As explained above, according to the present invention, when the frequency range is changed in a wide frequency range depending on the material of the observation sample or the observation depth, etc., and when observation is performed using a sensor corresponding to the frequency range, Frequency selection can be done easily and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超音波顕微鏡の一実施例
を示すブロツク図、第2図は従来の超音波顕微鏡
を示すブロツク図である。 1……音響レンズ、2……圧電薄膜、4……発
振器、10……受信機、16……センサ、21…
…エコー処理部、22……エコー表示部、23…
…デジタルイメージメモリ、24……レンズエコ
ー判定部。
FIG. 1 is a block diagram showing an embodiment of an ultrasound microscope according to the present invention, and FIG. 2 is a block diagram showing a conventional ultrasound microscope. DESCRIPTION OF SYMBOLS 1... Acoustic lens, 2... Piezoelectric thin film, 4... Oscillator, 10... Receiver, 16... Sensor, 21...
...Echo processing section, 22...Echo display section, 23...
...Digital image memory, 24...Lens echo determination section.

Claims (1)

【特許請求の範囲】[Claims] 1 パルスを発振する発振器と、該発振器からの
パルスによつて超音波を発生する圧電薄膜を有
し、試料に対して前記音波を照射する音響レンズ
と、該音響レンズから照射され試料によつてじよ
う乱された音波を受信し整相する圧電薄膜を有す
る音響レンズと、前記試料を支える試料台と、該
試料台を走査させ、かつ、その走査情報を出力す
る駆動装置と、前記音響レンズで受信した音波を
ビデオ信号に変換する受信器と、該受信器からの
ビデオ信号と前記走査情報とを同期させて画像情
報を記憶するデジタルイメージメモリと、該デジ
タルイメージメモリの画像情報を表示し観察する
表示装置とから成る超音波顕微鏡において、前記
発振器の発振パルスの周波数を段階的に変化させ
て順次発振させ、かつ、該各パルスによつて圧電
薄膜で生起した超音波が音響レンズのレンズ面で
反射した反射エコーを順次取り込み、取り込んだ
反射エコーの強度を順次比較してエコーの強度が
最大値となる周波数を求めるレンズエコー判定部
を設けたことを特徴とする超音波顕微鏡。
1 An oscillator that oscillates pulses, an acoustic lens that irradiates the sample with the ultrasonic wave, which has an oscillator that oscillates pulses, a piezoelectric thin film that generates ultrasonic waves using the pulses from the oscillator, and an ultrasonic wave that is irradiated from the acoustic lens and is transmitted by the sample. an acoustic lens having a piezoelectric thin film that receives and phases the disturbed sound waves; a sample stage that supports the sample; a drive device that scans the sample stage and outputs scanning information; and the acoustic lens. a receiver for converting sound waves received by the receiver into a video signal; a digital image memory for storing image information by synchronizing the video signal from the receiver with the scanning information; and a digital image memory for displaying the image information in the digital image memory. In an ultrasonic microscope consisting of a display device for observation, the frequency of the oscillation pulses of the oscillator is changed stepwise and oscillated sequentially, and the ultrasonic waves generated in the piezoelectric thin film by each pulse are transmitted to the lens of the acoustic lens. An ultrasonic microscope characterized by being provided with a lens echo determination unit that sequentially captures reflected echoes reflected from a surface, sequentially compares the intensities of the captured reflected echoes, and determines a frequency at which the intensity of the echoes reaches a maximum value.
JP60010811A 1985-01-25 1985-01-25 Ultrasonic microscope Granted JPS61170654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60010811A JPS61170654A (en) 1985-01-25 1985-01-25 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60010811A JPS61170654A (en) 1985-01-25 1985-01-25 Ultrasonic microscope

Publications (2)

Publication Number Publication Date
JPS61170654A JPS61170654A (en) 1986-08-01
JPH0412824B2 true JPH0412824B2 (en) 1992-03-05

Family

ID=11760729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60010811A Granted JPS61170654A (en) 1985-01-25 1985-01-25 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS61170654A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831157A (en) * 1996-09-18 1998-11-03 The Boeing Company Digital bond tester

Also Published As

Publication number Publication date
JPS61170654A (en) 1986-08-01

Similar Documents

Publication Publication Date Title
TWI510800B (en) Measurement of variable frequency ultrasonic imaging devices
US4577504A (en) Acoustic microscope
JPS58122456A (en) Ultrasonic microscope
JPS59122942A (en) Ultrasonic wave microscope apparatus
JPH09281093A (en) Ultrasonic probe and ultrasonic wave inspecting apparatus using the probe
JP5247330B2 (en) Ultrasonic signal processing apparatus and ultrasonic signal processing method
JPH07294500A (en) Ultrasonic image inspection device
JPH0412824B2 (en)
JP4030644B2 (en) Ultrasonic imaging device
JPS6228869B2 (en)
US4620443A (en) Low frequency acoustic microscope
JPH04200539A (en) Ultrasonic wave probe and blood flow measuring instrument
JPS5928362Y2 (en) ultrasound microscope
JPH0658917A (en) Ultrasonic inspection method and device therefor
JPH0634009B2 (en) Ultrasonic microscope
JPS58196453A (en) Ultrasonic microscope
JPH0158458B2 (en)
JPH06300740A (en) Ultrasonic microscope
JP3050973B2 (en) Ultrasonic flaw detector
JPS6188142A (en) Ultrasonic image pickup device
JPH08128997A (en) Ultrasonic flaw detecting device
JPS6229021B2 (en)
JPH07146279A (en) Release detection method and ultrasonic microscope applying the method
JPS60169708A (en) Surface irregularity detector of ultrasonic wave microscope
JPH0339265B2 (en)