JPS60166859A - Ultrasonic image pick-up apparatus - Google Patents

Ultrasonic image pick-up apparatus

Info

Publication number
JPS60166859A
JPS60166859A JP60005682A JP568285A JPS60166859A JP S60166859 A JPS60166859 A JP S60166859A JP 60005682 A JP60005682 A JP 60005682A JP 568285 A JP568285 A JP 568285A JP S60166859 A JPS60166859 A JP S60166859A
Authority
JP
Japan
Prior art keywords
specimen
lens
reflected
sample
configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60005682A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanda
浩 神田
Kiyoshi Ishikawa
潔 石川
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60005682A priority Critical patent/JPS60166859A/en
Publication of JPS60166859A publication Critical patent/JPS60166859A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques

Abstract

PURPOSE:To impart a good reflected signal even to a specimen inferior to a reflective characteristic and to easily discriminate the reflected sonic wave from the interface of water and a lens, and that from the specimen, by providing an acoustical reflective mirror to the lower part of the specimen. CONSTITUTION:An RF electric signal is applied to the lens 120 provided to a piezoelectric thin film 110 to generate focusing ultrasonic beam 170. A specimen system, wherein an organism specimen 140 is held between two extremely thin Mylar films 130, 150, is placed to the focal region of beam. In this invention, a concaved reflective mirror 160 arranged so as to be positioned at the common focus with the lens 120 is provided and the specimen system surrounded by a medium 180. When this constitution is used and ultrasonic beam generated in the lens 120 transmits the specimen 140, it is reflected by a reflective mirror 160 and again transmits the specimen 140 to be condensed by the lens 120. Because the reflected ultrasonic wave obtained by this constitution transmits the specimen 140 two times, the transmission information of the specimen 140 is reflected in the similar way as conventional constitution.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高周波超音波エネルギーを利用した撮像装置、
符に音波顕微鏡に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an imaging device using high-frequency ultrasonic energy;
Regarding the sonic microscope.

〔発明の背骨〕[Backbone of invention]

音波周波数I G Hz、従って水中での音波畏約1ミ
クロンメータに及ぶ超高周波音波を利用して機械走査型
超音波顕微−、(Scanning Acoustic
Microscope 、以下SAMと略す)が提案さ
れでいる。
Mechanical scanning ultrasonic microscopy is performed using ultrahigh-frequency sound waves with a sound frequency of I GHz, which corresponds to a sound wave depth of about 1 micron meter underwater.
Microscope (hereinafter abbreviated as SAM) has been proposed.

12+1ち1.IEI図に示すように、サファイア等の
円柱状の結晶20’才、その一端面は光学研磨さね、た
平面で他端面には凹面状の半球穴が孔たれている。
12+1 1. As shown in the IEI diagram, a 20'-year-old cylindrical crystal such as sapphire is optically polished on one end surface and has a flat surface and a concave hemispherical hole in the other end surface.

平板面に作成された圧電薄膜15に信号源10よりRF
[低信号を印加し、結晶20内に平面波のRF音波を放
射させる。この平面音波は前記の凹面穴に形成される結
晶20と*Ik30(通常は水)の界面25で両省の音
速の差を利用した正の集束レンズにより、その所定焦点
Fに集束される。周知知の様に、レンズの焦点距離と開
口径の比、即ちレンズの明るさを表わすP゛ナンバ充分
小さい時lオ、この構成によって著しく狭い超音波ビー
ムを作成する事が出来る。
RF is transmitted from the signal source 10 to the piezoelectric thin film 15 created on the flat plate surface.
[Apply a low signal to emit a plane wave RF sound wave within the crystal 20.] This plane sound wave is focused at a predetermined focal point F by a positive focusing lens that utilizes the difference in sound speed between the two regions at the interface 25 between the crystal 20 and *Ik 30 (usually water) formed in the concave hole. As is well known, when the ratio of the focal length of the lens to the aperture diameter, that is, the P number representing the brightness of the lens, is sufficiently small, an extremely narrow ultrasonic beam can be created with this configuration.

焦点付近におかれた試料により、この集束音波は反射、
散乱、透過減衰上いったしょう乱を受けるから、このじ
よう乱音波エネルギーを上記レンズ系で、あるいは今一
つの同様のレンズ系で検出する事により試料の微小領域
の弾性的な性質を反映した(低信号5−4る事が出来ろ
。従って、試料を機械的に2次元に走査しながらこの電
気信号を機械走査に同期してCRT上に輝度表示tね、
げ、音波顕微像が得られるわけである。
This focused sound wave is reflected by the sample placed near the focus,
Since it is subject to disturbances in terms of scattering and transmission attenuation, by detecting such disturbed sound wave energy with the above lens system or another similar lens system, the elastic properties of the microscopic region of the sample can be reflected ( Therefore, while the sample is mechanically scanned in two dimensions, this electric signal is displayed in brightness on the CRT in synchronization with the mechanical scanning.
As a result, a sound wave microscopic image can be obtained.

この様なしよう乱エネルギー・2検出するSAMの構成
としては、第2図(a)及び第2図(blに示すものが
ある。第2図(alは、超音波ビームを発生させる探触
子系40・と、水70中の試料60の反射音波を検出す
るのに用いる反射型の構成を示し、第2図(b)は、探
触子系40と同一の今一つの探触子系50を対向して共
焦点に配置させ、試料60を透過した音波を検出する透
過型の構成を示しでいる。
The configuration of a SAM that detects such disturbance energy is shown in Figure 2 (a) and Figure 2 (bl). 2(b) shows another probe system 50 which is the same as the probe system 40. A transmission type configuration is shown in which the two are placed facing each other at a confocal position and the sound waves transmitted through the sample 60 are detected.

反射型は、ICやLSI等のデバイスや厚い金属試料等
を観察する際に用いられ、又透過型は薄い試料やとりわ
け生物試料に用いられている、他方生物試料はその音響
インピータンスが水の音響インピーダンスと良く似てい
る為、充分な反射超音波信号が得られない為に専ら透過
構成で撮蔵されている。
The reflective type is used to observe devices such as ICs and LSIs, and thick metal samples, while the transmission type is used for thin samples and especially biological samples. Because it is very similar to acoustic impedance, it is difficult to obtain a sufficient reflected ultrasound signal, so images are taken exclusively in a transmission configuration.

〔発明の目的〕 本発明の1つの目的は生物試料の様に良好な反射特性を
示さない試料に対しても、良好な反射信号を与えるよう
な構成を提供する事にある。
[Object of the Invention] One object of the present invention is to provide a configuration that provides a good reflection signal even to a sample that does not exhibit good reflection characteristics, such as a biological sample.

また本発明の他の目的は水とレンズとの間の界面からの
反射音波と試料からの反射音波の弁別を要易にできる構
成と提供するにある。
Another object of the present invention is to provide a structure that allows easy discrimination between the sound waves reflected from the interface between water and the lens and the sound waves reflected from the sample.

〔発明の概要〕[Summary of the invention]

反射超音波を検出する際、いわゆるパルスエコー法によ
って、送信パルスと受信エコーパルスを時間的に弁別す
る事により、試料からの反射超音波のみを検出する事が
行なわれている。
When detecting reflected ultrasonic waves, only the reflected ultrasonic waves from a sample are detected by temporally discriminating transmitted pulses and received echo pulses using a so-called pulse echo method.

第3図は、ある繰り返し周期t8のRFパルス電気信号
を印加した時のビデオ領域での受信器の波形の1例を示
したものである。波形Aは印加したRFパルスそのもの
を示し、波形Batレンズ表水との界面からの反射エコ
ーを、又波形Cは試料からの反射エコーを示している。
FIG. 3 shows an example of the waveform of the receiver in the video domain when an RF pulse electric signal with a certain repetition period t8 is applied. Waveform A shows the applied RF pulse itself, a reflected echo from the interface with the waveform Bat lens surface water, and waveform C shows a reflected echo from the sample.

高品質の画像を得る為には、この波形Cのみを波形Hか
ら独立に弁別して検出する必要がある。波形Bと波形C
の間の時間間隔t8は、レンズと試料との間の距離(こ
れはほぼレンズの焦点距離に等しい)2と水の音速vw
によって t 、=2Z/VW で与えられるから、2が小さくなると上記時間弁別作業
は急激に困難になる事がわかる。
In order to obtain a high quality image, it is necessary to distinguish and detect only this waveform C independently from the waveform H. Waveform B and waveform C
The time interval t8 between the distance between the lens and the sample (which is approximately equal to the focal length of the lens) 2 and the sound velocity of water vw
Since t is given by 2Z/VW, it can be seen that as 2 becomes smaller, the above-mentioned time discrimination task becomes rapidly difficult.

実際、超音波顕微鏡ではレンズと試料の間を充している
媒質、水中の音波減衰が激しく、周波数をあげて分解能
を高めようとすると、この減衰を避ける為、レンズと水
の間の距離を極めて短くする必要がある為(例えば1G
Hzで40μm)、この・具情は分解能向上の障害とな
っている。そこで本発明においてはレンズと水の間の界
面からの反射信号から試料からの反射信号を時間的に弁
別する事をも容易にせんとするものである。
In fact, in ultrasonic microscopes, sound waves are attenuated severely in water, the medium that fills the gap between the lens and the sample, and when trying to increase the resolution by increasing the frequency, the distance between the lens and water must be reduced to avoid this attenuation. Because it needs to be extremely short (for example, 1G)
40 μm at Hz), this particular condition is an obstacle to improving resolution. Therefore, in the present invention, it is an object of the present invention to easily distinguish the reflected signal from the sample from the reflected signal from the interface between the lens and water in terms of time.

さ゛C1本発明は上記した2つの目的を鑑みてなされた
もので1反射型の構成で試料の裏側に一定間隔離して反
射鏡を設ける事により上記課題を解決しようとするもの
である。以下、第4,5図を用いて本発明の詳細な説明
する。
C1 The present invention has been made in view of the above-mentioned two objects, and attempts to solve the above-mentioned problems by providing a reflection mirror on the back side of the sample at a certain distance with a one-reflection type configuration. Hereinafter, the present invention will be explained in detail using FIGS. 4 and 5.

〔発明の実施例」 94図において、圧電薄膜110を設けたレンズ120
にRF′に気信号を加えて、集束超音波ビーム170を
発生させる。ビームの焦域に生物試料140を2枚の極
めて薄いマイラー8!41130゜150(例えば厚み
1μm)ではさんだ試料系を2く。本発明では、レンズ
120と共焦点になる様に配置された凹面反射鏡160
を設け、試料系は媒質(例えば水)180で囲う。
[Embodiment of the Invention] In Fig. 94, a lens 120 provided with a piezoelectric thin film 110 is shown.
An air signal is applied to the RF' to generate a focused ultrasound beam 170. A sample system in which a biological sample 140 is sandwiched between two extremely thin sheets of Mylar 8!41130°150 (for example, 1 μm thick) is placed in the focal region of the beam. In the present invention, a concave reflecting mirror 160 is arranged to be confocal with the lens 120.
is provided, and the sample system is surrounded by a medium (eg, water) 180.

この様な構成を用いると、レンズ120で発生した超音
波ビームは試料140を透過すると、反射ψ160によ
って反射され再び試料140中を透過してレンズ120
によって集音される。この様な超音波ビームの伝播状況
から明らかなように、本構成で得られる反射超音波は、
試料140中を2回透過しているから従来の構成と同様
に試料140の透過情報を反映している。即ち、本構成
によると、反射構成にもかかわらず、透過像を得る事が
出来る事になる。前述の殿に、試料面t1から「の直接
反射超音波を検出する従来の反射法では、水石生物試料
の音響インピーダンスが極低している為極めて微弱な反
射超音波しか検出出来ないのに対して、本構成で/i充
分に大吉な透過信号を利用出来るという利点を有する。
When such a configuration is used, the ultrasonic beam generated by the lens 120 passes through the sample 140, is reflected by the reflection ψ160, passes through the sample 140 again, and returns to the lens 120.
The sound is collected by As is clear from the propagation situation of the ultrasound beam, the reflected ultrasound obtained with this configuration is
Since the light passes through the sample 140 twice, the transmitted information of the sample 140 is reflected as in the conventional configuration. That is, according to this configuration, a transmitted image can be obtained despite the reflective configuration. As mentioned above, with the conventional reflection method that detects direct reflected ultrasound from the sample surface t1, only extremely weak reflected ultrasound can be detected because the acoustic impedance of water stone biological samples is extremely low. Therefore, this configuration has the advantage that a sufficiently auspicious transmitted signal can be used.

=1g 5図は、本構成を用いてパルスエコー法により
反射超音波を検出する際の受信波形を示したものである
。波形Aは印加したRF屯i、信号そのものを示し、波
形1(はレンズ120と媒質180との界面からの反射
エコーを示している。又波形Cは試料140の表面t1
からの直接反射音波を示し波形C′は本構成によって始
めて生ずる反射音波による波形である。波形Bと波形C
の間の時間間隔は前述の記号を使えばt、であり、波形
Bと波形C′との間のそれは明らかに2t、となる。
=1g Figure 5 shows a received waveform when a reflected ultrasound is detected by the pulse echo method using this configuration. Waveform A shows the applied RF signal i, the signal itself, and waveform 1 shows the reflected echo from the interface between the lens 120 and the medium 180. Waveform C shows the surface t1 of the sample 140.
Waveform C' is a waveform of a reflected sound wave generated for the first time by this configuration. Waveform B and waveform C
The time interval between them is t using the above symbols, and that between waveform B and waveform C' is clearly 2t.

この様に本構成による反射エコーC′は、レンズエコー
Bより2t、だけ離れて出現するから、レラ ンズエコーBとの時間弁別は容易に行なえるよZになり
、図中の波形Cのように波形Bに重なったりする事情を
解消出来るのである。以上説明したように本発明による
と、@1ζこ生物試料のように良好な反射特性を示さな
い試料に対しても、珍好な反射信号、しかも透過構成上
等価な信号を与えてくるばかりでなく、$2にレンズ1
20と媒質180の境界面から反射してくるエコーの影
響を受けることなく試料の弾性的性質を反映したエコー
のみを時間弁別により選択検出する事が出来るのである
In this way, the reflected echo C' with this configuration appears 2t apart from the lens echo B, so it can be easily distinguished from the Lelans echo B in time. It is possible to resolve situations that overlap with B. As explained above, according to the present invention, even for samples that do not exhibit good reflection characteristics, such as @1ζ biological samples, it is possible to give a rare reflection signal, and a signal that is equivalent in terms of transmission configuration. No, $2 plus 1 lens
Only the echoes that reflect the elastic properties of the sample can be selectively detected by time discrimination without being affected by the echoes reflected from the interface between the sample 20 and the medium 180.

第6図は、本構成を、凹面反射鏡160の反射鏡なる性
質を利用して等価な透過系におきかえた図である。ミラ
ー面より上は、第4図と同じで、ミラー面より下はこの
面に関する鏡像の関係にある。凹面反射鏡160,16
0aは、この図の様にレンズ120の焦点面Fにある点
物体145を、145bなる像に変換するレンズ撮像系
とみなす事が出来る。点物体145が軸よりΔXずれて
いると、像145bも図の如く逆方向にΔXずれる事に
なるが、この像(音圧分布)によって透過される物体1
45aは145と同一方向にずれているから、結局物体
145aは、像145bのメインビームの中心より2Δ
Xずり、ていることになる。
FIG. 6 is a diagram in which this configuration is replaced with an equivalent transmission system by utilizing the reflecting mirror property of the concave reflecting mirror 160. The area above the mirror surface is the same as in FIG. 4, and the area below the mirror surface is in a mirror image relationship with respect to this surface. Concave reflector 160, 16
0a can be regarded as a lens imaging system that converts a point object 145 on the focal plane F of the lens 120 into an image 145b as shown in this figure. If the point object 145 is deviated by ΔX from the axis, the image 145b will also be deviated by ΔX in the opposite direction as shown in the figure, but the object 1 that is transmitted by this image (sound pressure distribution)
Since 45a is shifted in the same direction as 145, the object 145a is 2Δ from the center of the main beam of image 145b.
It means that there is an X difference.

従って、鏡面より下の撮像系は、周波数を倍にした従来
の透過撮イ象系と等価になる事がわかる。
Therefore, it can be seen that the imaging system below the mirror surface is equivalent to the conventional transmission imaging system with doubled frequency.

以上の議論より、本構成の撮像装置の分解能の性質を検
討する。レンズ系120の送波特性をP工(rl、凹面
反射鏡160の受波特性をP2(rlとすると(ここで
、rは試料面上にとった横座標)、第2 (al(b1
図の従来構成では、いずれも送受総合指向特性P、(r
)は、 P 、 (rl= P : (r) (2)で与えられ
る。他方、本構成では上述の議論より送受総合指向特性
P、(r)は。
From the above discussion, we will examine the nature of the resolution of the imaging device with this configuration. Assuming that the transmitting characteristics of the lens system 120 are P(rl) and the receiving characteristics of the concave reflecting mirror 160 are P2(rl (here, r is the abscissa taken on the sample surface), the second (al( b1
In the conventional configuration shown in the figure, both transmitting and receiving comprehensive directional characteristics P, (r
) is given by P, (rl=P: (r) (2). On the other hand, in this configuration, based on the above discussion, the transmitting and receiving comprehensive directivity characteristic P, (r) is given by:

P、(r)=P:(r)−P2(zr) (3)となり
、P、(2r)の項だけ、従来法より指向特性が改善さ
れ、より高分解能の画像を与える効果を併せて有してい
る事になる。実際、凹面反射鏡160としてレンズ12
0と同一のものを用いてこの事情を検討してみよう。レ
ンズ120のFナンバをFとし、λを音波長とする七、
式(21(3)は%式% )(5) と書くことが出来る。ここでJl()は、第1種り次の
ベッセル関数である。第7図イ、ま、F=0.63とし
たときの従来法p、Cr1s 本構成によるP、(r)
なる分解能を比較したものでちる。図中、縦軸は送受指
向特性P、(r)、P、(r)をリニアスケールで表示
し、横軸は横座標を波長単位で示したものである。この
様に本構成によれば、半値巾で定義した分解能は、約1
/2に改善され、又不要なサイドローブの発生する領域
は約半分に挟まり高分解能高階調という画質の改善に大
きく寄与する事がわかる。
P, (r) = P: (r) - P2 (zr) (3), and only the term P, (2r) improves the directivity compared to the conventional method, and also has the effect of providing a higher resolution image. It means that you have it. In fact, the lens 12 is used as the concave reflector 160.
Let's examine this situation using the same thing as 0. 7, where the F number of the lens 120 is F and λ is the sound wave length;
Equation (21(3) can be written as % expression % ) (5). Here, Jl() is a Bessel function of the first kind. Fig. 7 A, M, Conventional method p, Cr1s when F=0.63 P, (r) with this configuration
This is a comparison of the resolution. In the figure, the vertical axis represents the transmitting/receiving directivity characteristics P, (r), P, (r) on a linear scale, and the horizontal axis represents the horizontal coordinate in wavelength units. As described above, according to this configuration, the resolution defined by the half-width is approximately 1
It can be seen that the area where unnecessary side lobes occur is halved, greatly contributing to the improvement of image quality with high resolution and high gradation.

本発明に用いた凹面反射@160の形状としては、レン
ズ120と同一の焦点距離やFナンバを有している必要
はない。父、円柱レンズや円柱反射鏡など他の集束手段
を有する系を用いても本発明と同一の効果がある事は勿
論である。
The shape of the concave reflection @160 used in the present invention does not need to have the same focal length or F number as the lens 120. Of course, the same effect as the present invention can be obtained even if a system having other focusing means such as a cylindrical lens or a cylindrical reflecting mirror is used.

又、この様な反射鏡を構成する材料としては、従来レン
ズ材料として用いられている石英ガラスやサファイア等
の結晶や、金属等水に比べて音響インピーダンスの充分
大きなものであればよい。
Further, the material constituting such a reflecting mirror may be a crystal such as quartz glass or sapphire, which has been conventionally used as a lens material, or a metal having a sufficiently large acoustic impedance compared to water.

f4iこ、金属等の薄膜を空気で裏打ちしたものや、い
わゆるL/4波長整合板を用いた多層構造の材料でもよ
い。
f4i may be a thin film of metal or the like lined with air, or a multilayer structure material using a so-called L/4 wavelength matching plate.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば第1に反射構成のま
まで透過構成で得られる透過イ象と等価な像を得る事が
出来、第2′に上記信号の検出に際しC障害となるレン
ズ面反射信号と上記信号間の時間弁別が容易となり第3
に撮像系の解像度が従来構成の倍向上するという顕著な
効果を生む事が出来、超音波顕微鏡、超音波スペクトロ
スコピー等の当業界への寄与は極めて大である。
As described above, according to the present invention, first, it is possible to obtain an image equivalent to the transmission image obtained with the transmission configuration with the reflection configuration as it is, and second, it is possible to obtain an image equivalent to the transmission image obtained with the transmission configuration, and secondly, it is possible to avoid C interference when detecting the above-mentioned signal. The time discrimination between the lens surface reflection signal and the above signal becomes easy and the third
It was possible to produce a remarkable effect in that the resolution of the imaging system was twice as high as that of the conventional configuration, and the contribution to the industry of ultrasonic microscopes, ultrasonic spectroscopy, etc. was extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の超音波撮像装置の要部の概略構成を示
す図、第2図(a)及び第2図(blは、それぞれその
装置の撮1象方法を説明する図、第3図は超音波撮像装
置の動作波形図、第4図は、本発明の一実施例の構成を
示す図、第5図は、その受信波形を示す図、第6図は、
本発明の他の一実施例の構成を示す図%第7図は、分解
能を示す特性曲線図である。 第 1 図 2ρ 第 2 図(a〕 第 2 図(4!)第 3 図 ヒー/★−拍 7 第 4 図 第 5 図 IL8安りt 第 6 図 t/ρ
FIG. 1 is a diagram showing a schematic configuration of the main parts of a conventional ultrasonic imaging device, FIGS. 4 is a diagram showing the configuration of an embodiment of the present invention. FIG. 5 is a diagram showing the received waveform. FIG.
FIG. 7, which shows the configuration of another embodiment of the present invention, is a characteristic curve diagram showing resolution. Fig. 1 Fig. 2ρ Fig. 2 (a) Fig. 2 (4!) Fig. 3 He/★-beat 7 Fig. 4 Fig. 5 Fig. IL8 Low t Fig. 6 t/ρ

Claims (1)

【特許請求の範囲】[Claims] 集束超音波を発生検出する音波探触子系を用いて試料か
らの透過音波により上記試料の超音波像を得る撮像装置
において、上記試料の下部に音響的反射鏡を設けた事を
特徴とする超音波撮像装置0
An imaging device that obtains an ultrasonic image of the sample using sound waves transmitted from the sample using a sonic probe system that generates and detects focused ultrasonic waves, characterized in that an acoustic reflecting mirror is provided below the sample. Ultrasonic imaging device 0
JP60005682A 1985-01-18 1985-01-18 Ultrasonic image pick-up apparatus Pending JPS60166859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005682A JPS60166859A (en) 1985-01-18 1985-01-18 Ultrasonic image pick-up apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005682A JPS60166859A (en) 1985-01-18 1985-01-18 Ultrasonic image pick-up apparatus

Publications (1)

Publication Number Publication Date
JPS60166859A true JPS60166859A (en) 1985-08-30

Family

ID=11617865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005682A Pending JPS60166859A (en) 1985-01-18 1985-01-18 Ultrasonic image pick-up apparatus

Country Status (1)

Country Link
JP (1) JPS60166859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910217B2 (en) 2000-10-13 2005-06-21 Nec Corporation Disk drive unit having a scratch prevention device and information processing device containing the disk drive unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910217B2 (en) 2000-10-13 2005-06-21 Nec Corporation Disk drive unit having a scratch prevention device and information processing device containing the disk drive unit

Similar Documents

Publication Publication Date Title
US3911729A (en) Shear wave acoustical holography
JPS6035255A (en) Scanning type acoustic microscope
JP4196643B2 (en) Method and apparatus for imaging internal defect by ultrasonic wave
US4563898A (en) Acoustic microscope
JPS60146152A (en) Ultrasonic microscope
JPS6255556A (en) Acoustic lens device
US4566333A (en) Focusing ultrasonic transducer element
JPS60166859A (en) Ultrasonic image pick-up apparatus
JPH021263B2 (en)
RU2359265C1 (en) Ultrasonic introscopy device
JPS634142B2 (en)
Wickramasinghe Acoustic microscopy: present and future
Gilmore et al. Broadband acoustic microscopy: scanned images with amplitude and velocity information
US3890829A (en) Method and apparatus for acoustical imaging
JPS5950936B2 (en) Ultrasonic microscope sample holding plate
JPS60355A (en) Ultrasonic microscope
Nikoonahad New techniques in differential phase contrast scanning acoustic microscopy
JPS5950937B2 (en) ultrasound microscope
RU2451291C1 (en) Ultrasonic microscope
JPS59214759A (en) Ultrasonic wave microscope
JPH0238906B2 (en)
Cutler et al. Another Angle on Acoustic Microscopy (Oblique)
JPS58118958A (en) Ultrasonic microscope
Hayman et al. Developments in direct ultrasonic visualization of defects
Idris et al. The Use Of Scanning Acoustic Microscope For Flaw Detection In Metallic Materials