JPH0238906B2 - - Google Patents

Info

Publication number
JPH0238906B2
JPH0238906B2 JP60005683A JP568385A JPH0238906B2 JP H0238906 B2 JPH0238906 B2 JP H0238906B2 JP 60005683 A JP60005683 A JP 60005683A JP 568385 A JP568385 A JP 568385A JP H0238906 B2 JPH0238906 B2 JP H0238906B2
Authority
JP
Japan
Prior art keywords
sample
spherical lens
ultrasonic
propagation medium
configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60005683A
Other languages
Japanese (ja)
Other versions
JPS60166860A (en
Inventor
Hiroshi Kanda
Kyoshi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP60005683A priority Critical patent/JPS60166860A/en
Publication of JPS60166860A publication Critical patent/JPS60166860A/en
Publication of JPH0238906B2 publication Critical patent/JPH0238906B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は高周波超音波エネルギーを利用した撮
像装置、特に超音波顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an imaging device that utilizes high frequency ultrasound energy, and particularly to an ultrasound microscope.

[発明の背景] 音波周波数lGHz、従つて水中での音波長約1
ミクロンメータに及ぶ超高周波超音波を利用して
機械走査型超音波顕微鏡(Scanning Acoustic
Microscope、以下SAMと略す)が提案されてい
る。
[Background of the invention] The sound wave frequency is lGHz, and therefore the sound wavelength in water is approximately 1
A mechanical scanning ultrasound microscope (Scanning Acoustic
Microscope (hereinafter abbreviated as SAM) has been proposed.

即ち第1図に示すように、第1の音波伝播媒体
であるサフアイア等の円柱状の結晶20は、その
一端面は光学研磨された平面で他端面には所定焦
点を有する凹面状の半球穴が形成され球面レンズ
をなしている。
That is, as shown in FIG. 1, a cylindrical crystal 20 such as sapphire, which is the first sound wave propagation medium, has one end face that is an optically polished plane and the other end face that has a concave hemispherical hole having a predetermined focal point. is formed to form a spherical lens.

平面板に作成された圧電薄膜15に信号線10
よりRF電気信号を印加し、結晶20内に平面波
のRF音波を放射させる。この平面音波は前記球
面レンズの凹面穴に形成される結晶20と第2の
音波伝播媒体である媒質30(通常水)の界面2
5で両者の音速差を利用した正のレンズにより、
その所定焦点Fに集束される。周知の様に焦点距
りと開口径の比、即ちレンズの明るさを表わすF
ナンバが充分小さい時は、この構成により著しく
狭い超音波ビームを作成することが出来る。
A signal line 10 is connected to a piezoelectric thin film 15 formed on a flat plate.
An RF electric signal is applied to radiate a plane wave RF sound wave within the crystal 20. This plane sound wave is transmitted to the interface 2 between the crystal 20 formed in the concave hole of the spherical lens and the medium 30 (usually water) that is the second sound wave propagation medium.
5, with a positive lens that utilizes the sound speed difference between the two,
The light is focused at a predetermined focal point F. As is well known, F is the ratio of the focal length to the aperture diameter, which indicates the brightness of the lens.
When the number is small enough, this configuration can create a significantly narrower ultrasound beam.

焦点付近におかれた試料により、この集束音波
は反射、散乱、透過減衰といつたじよう乱を受け
るから、このじよう乱音波エネルギーを検出する
事により試料の弾性的な性質を反映した電気信号
を得る事が出来る。試料を機械的に2次元に走査
しながら、この電気信号をこの走査に同期して
CRT上に表示すれば、音波顕微鏡像が得られる
わけである。
Due to the sample placed near the focal point, this focused sound wave is disturbed by reflection, scattering, and transmission attenuation, so by detecting the energy of this disturbed sound wave, we can generate an electrical signal that reflects the elastic properties of the sample. I can get the signal. While mechanically scanning the sample in two dimensions, this electrical signal is synchronized with this scanning.
If displayed on a CRT, a sonic microscope image can be obtained.

この様なじよう乱エネルギーを検出する構成と
しては、第2図a及び第2図bに示すものがあ
る。第2図aは、超音波ビームを発生させる探触
子系40を再び用いて水70中の試料60の反射
音響を検出する反射型の構成を示し、第2図bは
探触子系40と同一の今一つの探触子系50を対
向して共焦点に配置させ、試料60を透過した音
波を検出する透過型の構成を示す。
A configuration for detecting such similar disturbance energy is shown in FIGS. 2a and 2b. FIG. 2a shows a reflection type configuration in which the reflected sound of the sample 60 in water 70 is detected again using the probe system 40 that generates an ultrasonic beam, and FIG. 2b shows the probe system 40 that generates an ultrasonic beam. A transmission-type configuration is shown in which another probe system 50 identical to that shown in FIG.

従来は、生物試料60等は試料台80に貼つて
おり、この試料台として金属わくにはられた薄い
マイラー膜が用いられていた。マイラー膜の音響
インピーダンスは水と殆んど同じで、支持膜の存
在が無視出来るからである。
Conventionally, the biological sample 60 and the like have been attached to a sample stand 80, and a thin Mylar film mounted on a metal frame has been used as the sample stand. This is because the acoustic impedance of Mylar membrane is almost the same as that of water, and the presence of the supporting membrane can be ignored.

反射型は、ICやLSI等のデバイスや厚い金属試
料等を観察する際に用いられ、又透過型は薄い試
料やとりわけ生物試料に用いられている。生物試
料はその音響インピーダンスが水の音響インピー
ダンスと良く似ている為、充分な反射信号が得ら
れないからである。
The reflection type is used to observe devices such as ICs and LSIs, and thick metal samples, while the transmission type is used for thin samples and especially biological samples. This is because the acoustic impedance of a biological sample is very similar to that of water, so a sufficient reflected signal cannot be obtained.

ところで、透過構成では、探触子系が2つ必要
であるばかりでなく、2つの探触子系を共焦点に
設定する為のアライメントが必要で反射構成に比
べて著しく設定が困難であるという欠点を有す
る。従つて、もし反射構成のままで、透過構成で
得られる透過信号を検出する事が出来れば、この
様な難点は解消され、又価格も安価になる事が期
待される。
By the way, the transmission configuration not only requires two probe systems, but also requires alignment to set the two probe systems confocal, which is significantly more difficult to set up than the reflection configuration. It has its drawbacks. Therefore, if it is possible to detect the transmitted signal obtained in the transmission configuration while keeping the reflection configuration, it is expected that these difficulties will be solved and the price will be reduced.

[発明の目的] 本発明は以上の点を鑑みてなされたもので、単
一の探触子系のみを用いる反射構成で、透過構成
で得られる透過信号と同等の信号を得ることを目
的とする。
[Purpose of the Invention] The present invention has been made in view of the above points, and an object of the present invention is to obtain a signal equivalent to a transmitted signal obtained in a transmission configuration using a reflection configuration using only a single probe system. do.

[発明の概要] 本発明は、試料の下面を平面にし、かつ該下面
に試料と音響インピーダンスの異なる音波伝播媒
体を接触させ音響的界面を有するように工夫する
事により目的を達せんとするものである。即ち、
従来用いられているように、試料台として1〜
2μmの厚みのマイラー膜を用いその裏側に試料
を貼付する方法の代りに、第1に2枚のマイラー
膜で試料をはさみ、その背面を空気とする構成
を、第2に金属やガラス等からなる多層構造の支
持台を用いるのである。水や生物試料にとつて、
空気やガラスや金属は完全反射体となる。第3図
を用いて、何故この様な完全反射体を用いて、反
射構成にもかかわらず透過信号が得られるのかを
説明する。
[Summary of the Invention] The present invention aims to achieve the object by making the lower surface of the sample flat and by making contact with the lower surface of the sample and a sound wave propagation medium having a different acoustic impedance to form an acoustic interface. It is. That is,
As conventionally used, 1~
Instead of using a Mylar film with a thickness of 2 μm and attaching the sample to the back side, first, the sample is sandwiched between two Mylar films, and the back side is air, and the second method is to use metal, glass, etc. A support stand with a multilayer structure is used. For water and biological samples,
Air, glass, and metal are perfect reflectors. With reference to FIG. 3, it will be explained why such a perfect reflector can be used to obtain a transmitted signal despite the reflective configuration.

ある厚みの生物試料100の上面をl1とし下面
をl2とし、下面l2には本発明の第3の音波伝播媒
体110が裏打ちされている。試料上方より入射
した超音波ビーム120はまず界面l1で一部は反
射し、大部分は試料100中へ伝播する。この界
面l1からの反射波は生物試料では著しく弱いので
ある。さて、試料100中を伝播した波は界面l2
で反射され、試料中を上方へ再び伝播し、界面l1
を介して水中130に出、反射音波として探触子
系140によつて検出されるのである。ここで、
界面l2での反射は殆んど完全反射であつてこの反
射信号は極めて大きいから、この構成の反射信号
は界面l1における反射波よりははるかに大きい界
面l2からの反射音波で決まるといえるわけであ
る。この反射信号は試料中を2回透過したのと同
じじよう乱を受けていると考えられる。又、完全
反射体の裏打ち材を鏡200とみなした第4図の
破線構成からも明らかであろう。
The upper surface of a biological sample 100 having a certain thickness is designated as l1 , and the lower surface is designated as l2 , and the lower surface l2 is lined with the third sound wave propagation medium 110 of the present invention. The ultrasonic beam 120 incident from above the sample is first partially reflected at the interface l1 , and most of it propagates into the sample 100. The reflected wave from this interface l 1 is extremely weak in biological samples. Now, the wave propagated in the sample 100 is the interface l 2
and propagates upward through the sample again, reaching the interface l 1
The sound waves exit into the water 130 through the water, and are detected by the probe system 140 as reflected sound waves. here,
Since the reflection at interface l 2 is almost complete reflection and this reflected signal is extremely large, the reflected signal in this configuration is determined by the reflected sound wave from interface l 2 , which is much larger than the reflected wave at interface l 1 . I can say that. It is thought that this reflected signal is subjected to the same disturbance as when it passed through the sample twice. It will also be clear from the broken line configuration in FIG. 4, in which the backing material of the perfect reflector is considered to be a mirror 200.

即ち、第3図の構成は、第4図のようにミラー
面200により共焦点に対向した探触子系21
0,220とその間にそう入された等価的に厚み
が倍の試料230が水中240内にある構成と等
価で、従来の透過構成と同であるからである。
That is, the configuration shown in FIG. 3 has a probe system 21 facing the confocal area by a mirror surface 200 as shown in FIG.
This is because it is equivalent to a configuration in which a sample 230 having an equivalent thickness of 0.0 and 220 and inserted therebetween is placed in water 240, and is the same as a conventional transmission configuration.

実際、生物試料の厚みをd、減衰率をαsとし
て、生物試料、水、裏打ちされた第3の音波伝播
媒体の音響インピーダンスをそれぞれZS、ZW
ZBとするとZSZWとして ZS=ZW+ΔZ ΔZ≪ZS、ZW (1) とおき、従来構成での反射信号rSや透過信号tS
び本発明における反射信号rS′の大きさを計算し
てみた。それによると、第2図の構成では、 透過信号tS=e-s
In fact, where the thickness of the biological sample is d and the attenuation rate is αs, the acoustic impedances of the biological sample, water, and the backed third sound propagation medium are Z S , Z W , respectively.
If Z B , then Z S Z W , Z S = Z W + ΔZ ΔZ≪Z S , Z W (1) Then, the reflected signal r S and transmitted signal t S in the conventional configuration and the reflected signal r S ′ in the present invention I calculated the size of. According to this, in the configuration shown in Figure 2, the transmitted signal t S = e -s

Claims (1)

【特許請求の範囲】[Claims] 1 第1の音波伝幡媒体と、この第1の媒体の一
端に設けられた圧電体と、その他端に形成され所
定焦点を有する球面レンズと、この球面レンズと
所定試料との間に設けられた第2の音波伝幡媒体
とからなる音波探触子系を用いて、前記所定焦点
の近傍に前記試料を配置し、圧電体より球面レン
ズを介して試料に放射された超音波の該試料から
の反射音波を前記球面レンズを介して前記圧電体
で受信し、この受信エコーにより上記試料の超音
波像を得る超音波撮像装置において、上記試料の
下面が平面で、かつ該試料の音響インピーダンス
と異なる音響インピーダンスをもつ第3の音波伝
幡媒体に接触させられた界面を有し、試料よりの
前記反射音波のうち、前記界面で反射し再度試料
を透過して来る反射音波の受信エコーを用いて超
音波画像を得るようにしたことを特徴とする超音
波顕微鏡。
1 A first sound wave propagation medium, a piezoelectric body provided at one end of the first medium, a spherical lens formed at the other end and having a predetermined focus, and a piezoelectric material provided between the spherical lens and a predetermined sample. The sample is placed in the vicinity of the predetermined focal point using a sonic probe system consisting of a second acoustic wave propagation medium, and the ultrasonic wave emitted from the piezoelectric body to the sample via the spherical lens is transmitted to the sample. In an ultrasonic imaging device that receives reflected sound waves from the piezoelectric body through the spherical lens and obtains an ultrasonic image of the sample using the received echoes, the lower surface of the sample is flat and the acoustic impedance of the sample is has an interface brought into contact with a third sound wave propagation medium having an acoustic impedance different from An ultrasonic microscope characterized in that it is used to obtain ultrasonic images.
JP60005683A 1985-01-18 1985-01-18 Ultrasonic image pick-up apparatus Granted JPS60166860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60005683A JPS60166860A (en) 1985-01-18 1985-01-18 Ultrasonic image pick-up apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60005683A JPS60166860A (en) 1985-01-18 1985-01-18 Ultrasonic image pick-up apparatus

Publications (2)

Publication Number Publication Date
JPS60166860A JPS60166860A (en) 1985-08-30
JPH0238906B2 true JPH0238906B2 (en) 1990-09-03

Family

ID=11617893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60005683A Granted JPS60166860A (en) 1985-01-18 1985-01-18 Ultrasonic image pick-up apparatus

Country Status (1)

Country Link
JP (1) JPS60166860A (en)

Also Published As

Publication number Publication date
JPS60166860A (en) 1985-08-30

Similar Documents

Publication Publication Date Title
AU713650B2 (en) Method and system for 3-D acoustic microscopy using short pulse excitation and 3-D acoustic microscope for use therein
JPH0254503B2 (en)
US3233450A (en) Acoustic flaw detection system
CA1212447A (en) Non-destructive testing system employing a liquid crystal detector cell
JPH022921A (en) Apparatus for inspecting sample by ultrasonic wave
US3911729A (en) Shear wave acoustical holography
JPS59160755A (en) Acoustic microscope
US4651567A (en) Non-coherent frequency source and sector scanning apparatus for ultrasonic imaging system using a liquid crystal detector cell
US5406849A (en) Method and apparatus for detecting guided leaky waves in acoustic microscopy
US4393712A (en) Portable liquid crystal testing device
JPS59162449A (en) Ultrasonic wave microscope
JPH0330105B2 (en)
JPH0238906B2 (en)
US4652086A (en) Ultrasonic detector cell and system
JPH0437379B2 (en)
JPH0470562A (en) Transmission type ultrasonic microscope
JPS60355A (en) Ultrasonic microscope
JPS63212917A (en) Construction of acoustic image liquid crystal cell
Wickramasinghe Acoustic microscopy: present and future
JPS60166859A (en) Ultrasonic image pick-up apparatus
JPS585646A (en) Ultrasonic microscope
CN1714282A (en) Optical hydrophone for a shock-wave field with long service life
JPS59198353A (en) Portable type liquid crystal test set
JPS60111152A (en) Ultrasonic microscope
JPH0233984B2 (en)